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Abstract

This ONR award has significantly helped the PI and his research group to survive and
develop. Major achievements include students training, technology transfer to DoD product, and
research accomplishments. Eight Ph.D students and eight M.S. students have been supported
by this ONR project. Of these 16 Ph.D/M.S. students, 4 Ph.D students and 4 M.S. students
are women. In this ONR project, we have systematically studied radar sensor networks, which
include sense-through-foliage target detection using FOPEN radar and radar sensor network,
UWB radar for Sense-through-foliage channel modeling and foliage clutter modeling, waveform
design and diversity in radar sensor networks, multi-target detection in radar sensor networks,
UWB noise radar for sense-through-wall channel modeling, and compressive sensing for radar
and radar sensor networks, etc. Sixty-five papers have been produced during this project and
are attached to this final technical report.

Our research results on Foliage Penetration (FOPEN) radar and radar sensor networks have
been transferred to US Air Force for their laser imaging through clouds product. The algorithms
from this ONR project could be integrated into existing Navy and Marine Corps’ radar sensor
systems such as Tactical Remote Sensor System (TRSS), Joint Surveillance Target Attack Radar
System (JSTARS), Tier II Pioneer Unmanned Aerial System (UAS), Expeditionary Tactical
Area Surveillance Sysem (ETASS), Critical Area Protection System (CAPS), etc. The research
will directly benefit DoD netcentricity based programs and concepts including Navy FORCEnet,
Distributed Common Ground System (DCGS), Transparent Urban Structures (TUS) program,
etc.

1 Students Training

The PI strives to create a research-intensive educational environment and establish and maintain
a strong network sensing group at UT-Arlington to develop the next generation of educators,
researchers, and entrepreneurs who will drive future innovation in radars, communications, and
networks.
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Eight Ph.D students (Qingchun Ren, Haining Shu, Xinsheng Xia, Jing Liang, Emily Lei Xu,
Ji Wu, Steve Iverson, and Davis Kirachaiwanich) and eight M.S. students (Rahul Sawant, Hung
Ly, Hong-Sam Le, Mukta Athavale, Varsha Bolar, Siddhartha Mukkamala, Mamta Desai, Ashith
Kumar) have been supported by this ONR project. Of these 16 graduate students, 4 Ph.D students
and 4 M.S. students are women. Four PhD students have graduated during this project:

1. Haining Shu, PhD Dissertation: Wireless Sensor Network Lifetime Analysis and Energy Ef-
ficient Techniques, August 2007.

2. Qingchun Ren, PhD Dissertation: Medium Access Control (MAC) Layer Design and Data
Query Processing for Wireless Sensor Networks, December 2007.

3. Xinsheng Xia, PhD Dissertation: Cross-Layer Design for Wireless Ad Hoc Sensor Networks,
December 2007.

4. Jing Liang, Ph.D Dissertation: Radar and Non-Radar Sensor Networks, August 2009.

Besides, five M.S. students (Rahul Sawant, Hung Ly, Hong-Sam Le, Mukta Athavale, Varsha Bolar)
have completed their degrees during this project. With two new PhD students (Ishrat Maherin and
Julie Chen) and two new MS students (Urmi Desai and Sanil Fulani) joining us in January 2010,
we have six PhD students and five M.S. students in this group.

2 Recognitions and Honors Associated with this ONR Award

During this project, the PI has received the following recognitions and honors associated with this
award.

• Promoted to Associate Professor with tenure in early 2008 (Promotion and Tenure dossier
submitted in Fall 2007).

• 2007 U.S. Air Force Summer Faculty Fellowship Program Award.

• 2009 U.S. Air Force Summer Faculty Fellowship Program Award.

• Lead Guest Editor, Special Issue on Radar and Sonar Sensor Networks, EURASIP Journal
on Wireless Communications and Networking, 2009.

3 Technology Transition to DoD Product

A technology outcome from this ONR project, sense-through-foliage target detection using UWB
radar and UWB radar sensor networks, has been transferred to AFRL/RHX for the application of
wideband concepts to laser cloud penetration for the purpose of airborne imaging for Air Force.
This product is being implemented in Brooks City AFB in San Antonio, TX, and will be deployed
in 2011-2013 for Air Force.

Forests and buildings favor asymmetric threats because the warfighter has a limited sensing
capability. Forest and buildings provide excellent concealment from observation, ambush, and
escape, as well as provide secure bases for enemy Command & Control (C2), weapons caches, and
Improvised Explosive Device (IED)/ Weapon of Mass Destruction (WMD) assembly. These have
become “the high ground” in fourth-generation warfare, providing a significant strategic advantage.
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We believe that solving the sense-through-foliage target detection will significantly benefit sense-
through-wall and other subsurface sensing problems. In [42][31], we studied sense-through-foliage
target detection using ultra-wideband (UWB) radars. We proposed a Discrete-Cosine-Transform
(DCT)-based approach for sense-through-foliage target detection when the echo signal quality is
good, and a Radar Sensor Network (RSN) and DCT-based approach when the echo signal quality is
poor. A RAKE structure which can combine the echos from different cluster-members was proposed
for clusterhead in the RSN. We compared our approach with the ideal case when both echos are
available, i.e., echos with target and without target. We also compared our approach against the
scheme in which 2-D image was created via adding voltages with the appropriate time offset as well
as the matched filter-based approach. We observed that the matched filter-based couldn’t work
well because the UWB channel has memory. Simulation results show that our DCT-based scheme
works much better than the existing approaches, and our RSN and DCT-based approach can be
used for target detection successfully while even the ideal case fails to do it. Based on this study,
AFRL/RHX has applied it to the application of wideband concepts to laser cloud penetration for
the purpose of airborne imaging. According to the AFRL/RHX officer, Dr. Richard A. Albanese
in USAF AFMC 711 HPW, the laser imaging through clouds will come to operational fruition in
the coming three-five years.

This technology also has its Naval relevance. It will help Marine Corps and expeditionary war-
fighters to make the forest and wall transparent. It will directly benefit Navy’s Transparent Urban
Structures (TUS) program. Sense-through-foliage algorithms resulting from this research could be
integrated into emerging net-centric Navy and Marine Corps Command & Control and Intelligence,
Surveillance, and Reconnaissance (C2 and ISR) acquisition programs through a Service Oriented
Architecture (SOA).

4 Research Accomplishments

4.1 An Overview

Perhaps this is the first research project in this world that is fully dedicated to radar sensor
networks. In this ONR project, we have extensively studied radar sensor networks, and have
produced 65 papers, of which 20 journal papers and 25 conference papers have been published
or accepted, and the other 20 papers are still in the review process. In summary, we have made
significant contributions in the following aspects of radar sensor networks:

• sense-through-foliage target detection using FOPEN radar and radar sensor network [3][29][31]
[36][39][42][43],

• UWB radar for Sense-through-foliage channel modeling and foliage clutter modeling [1][19][23]
[40][44][62],

• waveform design and diversity in radar sensor networks [2][8][9][13][21][22][32][38][47][61][65],

• radar sensor network optimization [25][46],

• MIMO radar [22][65],

• multi-target detection in radar sensor networks [7][24][28][35][48][55],

• sensor network for threat assessment [5][11][27][35][37],
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• virtual MIMO sensor networks [4][41][45][51],

• UWB sensor network optimization [6][54][57],

• energy efficiency in wireless sensor networks [12][14][16][20][52],

• resource allocation in wireless sensor networks [15][18][49][50][53],

• cross layer design for sensor networks [10][14],

• passive geolocation in electronic warfare [26][30][56][63],

• UWB noise radar for sense-through-wall channel modeling [33],

• compressive sensing for radar and radar sensor networks [58][59][60][64].

The most significant research results in each category are described in the following section. All
publications are included in the Appendix.

4.2 Most Significant Research Results

4.2.1 UWB Radar Sensor Networks for Sense-through-Foliage Target Detection

In [31][42], we studied sense-through-foliage target detection using FOPEN UWB radar sensor
network. We proposed a Discrete-Cosine-Transform (DCT)-based approach for sense-through-
foliage target detection using a single UWB radar when the echo signal quality is good, and a
Radar Sensor Network (RSN) and DCT-based approach when the echo signal quality is poor. A
RAKE structure which can combine the echos from different cluster-members was proposed for
clusterhead in the RSN. We compared our approach with the ideal case when both echos are
available, i.e., echos with target and without target. We also compared our approach against the
scheme in which 2-D image was created via adding voltages with the appropriate time offset as
well as the matched filter-based approach. We observed that the matched filter-based couldnt work
well because the UWB channel has memory. Simulation results show that our DCT-based scheme
works much better than the existing approaches, and our RSN and DCT-based approach can be
used for target detection successfully while even the ideal case fails to do it.

4.2.2 UWB Radar for Outdoor Propagation Channel Modeling in Foliage Environ-
ment

In [1], we studied the statistical modeling for outdoor non-line-of-sight (NLOS) channel in rich
scattering and slowly time-varying foliage environment based on extensive data collected using
both narrowband and ultra-wideband (UWB) radars. The multi-path contributions arrive at the
receiver are grouped into clusters. The time of arrival of clusters can be modeled as a Poisson arrival
process, while within each cluster, subsequent multipath contributions or rays also arrive according
to a Poisson process. However, the parameters are quite different along with the frequency. We also
observed that the amplitude of multipath channel at each path can be more accurately characterized
by log-logistic distribution (LLD) other than log-normal, Weibull or Rayleigh due to the best
goodness-of-fit and smallest root mean square error (RMSE).
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4.2.3 Network-enabled Electronic Warfare for Target Recognition Based on Radar
Sensor Networks

Network-enabled Electronic Warfare (NEW) is to develop modeling and simulation effort to explore
the advantages and limitations of network-enabled electronic warfare concepts. The advantages of
linking multiple electronic support measures (ESM) and electronic attack (EA) assets to achieve
improved capabilities across a networked battle force have yet to be quantified. In [2], we utilized
radar sensors as ESM and EA assets to demonstrate the advantages of NEW in Collaborative Au-
tomatic Target Recognition (CATR). Signal (waveform) design for Radar Sensor Networks (RSN)
in NEW was studied theoretically. The conditions for waveform coexistence and the interferences
among waveforms in RSN were analyzed. We applied the NEW to CATR via waveform diversity
combining and proposed maximum-likelihood (ML)-ATR algorithms for non-fluctuating targets as
well as fluctuating targets. Simulation results indicated that our NEW-CATR performs much better
than the single sensor-based ATR algorithm for non-fluctuating targets and fluctuating targets.

4.2.4 Biologically-Inspired Target Recognition in Radar Sensor Networks

One of the great mysteries of the brain is cognitive control. How can the interactions between
millions of neurons result in behavior that is coordinated and appears willful and voluntary? There
is consensus that it depends on the prefrontal cortex (PFC). Many PFC areas receive converging
inputs from at least two sensory modalities. Inspired by human’s innate ability to process and in-
tegrate information from disparate, network-based sources, we applied human-inspired information
integration mechanisms to target detection in cognitive radar sensor network [3]. Humans’ infor-
mation integration mechanisms have been modelled using maximum-likelihood estimation (MLE)
or soft-max approaches. We applied these two algorithms to cognitive radar sensor networks target
detection. Discrete-cosine-transform (DCT) was used to process the integrated data from MLE
or soft-max. We applied fuzzy logic system (FLS) to automatic target detection based on the
AC power values from DCT. Simulation results showed that our MLE-DCT-FLS and soft-max-
DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the
existing 2-D construction algorithm doesn’t work in this study.

4.2.5 Channel Selection in Virtual MIMO Sensor Networks

In [4], we presented two practical algorithms for selecting a subset of channels in virtual multiple-
input multiple-output (MIMO) wireless sensor networks (WSNs) to balance the MIMO advantage
consumption of sensor cooperation. If intracluster node-to-node multihop needs be taken into ac-
count, the maximum spanning tree searching (MASTS) algorithm, with respect to the cross-layer
design, always provides a path connecting all sensors. When the WSN is organized in a manner
of cluster-to-cluster multihop, the singular-value decomposition-QR with threshold (SVD-QR-T)
approach selects the best subset of transmitters while keeping all receivers active. The threshold
is adaptive by means of fuzzy c-means (FCM). These two approaches are compared by simulation
against the case without channel selection in terms of capacity, bit error rate (BER), and multiplex-
ing gain with water filling or equal transmission power allocation. Despite less multiplexing gain,
when water filling is applied, MASTS achieves higher capacity and lower BER than virtual MIMO
without channel selection at moderate-to-high signal-to-noise ratio (SNR), whereas SVD-QR-T by
FCM provides the lowest BER at high SNR; in the case of no water filling and equal transmission
power allocation, MASTS still offers the highest capacity at moderateto- high SNR, but SVD-QR-T
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by FCM achieves the lowest BER. Both algorithms provide satisfying performances with reduced
resource consumption.

4.2.6 A New Ternary Code Design for Radar Sensor Networks

Based on the zero correlation zone (ZCZ) concept, we [21] presented the definition and properties
of a set of new ternary codes - ZCZ sequence-pair set (ZCZPS) and proposed a method to use the
optimized punctured sequence-pair along with Hadamard matrix in the zero correlation zone in
order to construct the optimized punctured ZCZ sequence-pair set (optimized punctured ZCZPS).
According to property analysis, the optimized punctured ZCZPS has good autocorrelation and cross
correlation properties when Doppler shift is not large. We applied it to radar target detection. The
simulation results showed that the optimized punctured ZCZ sequence-pairs (optimized punctured
ZCZPS) outperform other conventional pulse compression codes, such as the well known polyphase
codeP4 code. We have applied our triphase coded waveform to radar sensor network. In [21],
we performed some theoretical studies on coexistence and interferences of phase coded waveforms
in RSN. We analyzed our ternary codes properties, especially their optimized cross correlation
property of any two sequence pairs in the set. We applied our ternary codes and equal gain
combination technique to target recognition and evaluated the performances versus different number
of radars in RSN with Doppler shift or time delay. Simulation results showed that detection
performances of RSN with our optimized punctured ZCZPS (with or without Doppler shift) are
much better than those of single radar.

4.2.7 Orthogonal Pulse Compression Codes for MIMO Radar System

Inspired by recent advances in MIMO radar, in [22], we introduced orthogonal pulse compression
codes to MIMO radar system in order to gain better target direction finding performance. We
proposed the concept and the design methodology for the optimized triphase phase coded waveforms
that is the optimized punctured Zero correlation Zone (ZCZ) sequence-Pair Set (ZCZPS). The
method is to use the optimized punctured sequence-pair along with Hadamard matrix in the ZCZ.
According to codes property analysis, our proposed phase coded waveforms could provide optimized
autocorrelation and cross correlation properties in ZCZ. Then we presented a generalized MIMO
radar system model using our proposed codes and simulate the target direction finding performance
in the system. The simulation results showed that diversity gain could be obtained using our
orthogonal pulse compression codes for MIMO radar system. The more antennas used, the better
target direction finding performance provided.

4.2.8 Compressive Sensing in Radar Sensor Networks

Motivated by recent advances on Compressive Sensing (CS) and high data redundancy among
radars in radar sensor networks, we studied CS for radar sensor networks [58]. We demonstrated
that the sense-through-foliage UWB radar signals are very sparse, which means CS could be applied
to radar sensor networks to tremendously reduce the sampling rate. We applied SVD-QR and
maximum likelihood algorithms to CS for radar sensor networks. SVD-QR could vastly reduce
the number of radar sensors, and CS is applied to the selected radar sensors for data compression.
Simulations are performed and our compression ratio could be 192:1 overall.
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Abstract

In this paper, we study the statistical modeling for outdoor non line-of-sight (NLOS) channel

in rich scattering and slowly time-varying foliage environment based on extensive data collected

using both narrowband and ultra-wideband (UWB) radars. The multi-path contributions arrive

at the receiver are grouped into clusters. The time of arrival of clusters can be modeled as a

Poisson arrival process, while within each cluster, subsequent multipath contributions or rays

also arrive according to a Poisson process. However, the parameters are quite different along

with the frequency. We also observe that the amplitude of multipath channel at each path can be

more accurately characterized by log-logistic distribution (LLD) other than log-normal, Weibull

or Rayleigh due to the best goodness-of-fit and smallest root mean square error (RMSE).

Index Terms : Channel modeling, foliage, outdoor, log-logistic, goodness-of-fit, narrow-

band, UWB

1 Introduction and Motivation

The performance of communications systems in foliage is confined to propagation channels. An

accurate characterization model is crucial in degradation improvement for sensing-through-foliage

detection, tracking and classification. The radio channels can be categorized in a number of dif-

ferent ways, such as narrowband versus wideband, indoor versus outdoor, etc. In the narrowband

situation, the bandwidth of signals are much smaller than both the carrier frequency and the co-

herence bandwidth of the channel [1], therefore the multipath reflections are not easy to resolve in
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the receiving signals. On the contrary, the signal bandwidth of wideband is on the order of or lager

than the coherent bandwidth of the channel, and thus the multipath components in the received

are resolvable. As for indoor or outdoor environment, in general, the former tends to induce higher

multiple scattering and diffraction due to obstacles inside while the latter is more likely to bring

on large-scale fading.

There have been many efforts undertaken to investigate propagation channels. In narrowband

mobile radio channels, Rayleigh, Rician and Nakagami distributions have been commonly used for

the flat fading modeling, and a narrowband model close to additive white Gaussian noise (AWGN)

with strong specular interference for aeronautical telemetry [2]. [3]-[5] studied radiowave propaga-

tion in foliage using narrowband signals. For wideband channels, the Ultra-Wideband (UWB) pulse

is one of the most interesting signal due to the exceptional range resolution, strong penetrating

capability and low power. IEEE has standardized UWB indoor multipath channel [6] on a basis

of Saleh and Valenzuela (S-V) channel model [7]. Compared to indoor situation, measurements

and models are inadequate for UWB outdoor propagations. [8] has applied UWB radar-like test

apparatus to obtain propagation delays, which serves as a preliminary investigation into UWB

channel for rural terrain, but more extensive measurements and further analysis are absent for

statistical characterization. [9] has characterized UWB channels for outdoor office environment by

S-V model with modifications on the ray arrival times and amplitude statistics to fit the empirical

data. However, these parameters may not fit foliage environment as trees and branches provide

different scattering from that of indoor. Some experimental outdoor studies other than UWB are

presented in [10]-[12]. [10] proposes that instead of Rayleigh, Weibull provides better fit to spa-

tially and temporally extended spiking data. [11] shows that the foliage is impulsively corrupted

with multipath fading, which leads to inaccuracy of the K-distribution model. [12] models the

aeronautical telemetry channel gain using a complex gaussian random variable.

Foliage is a special environment goes somewhere in between indoor and outdoor cases. Like

indoor environment, the foliage contains a wealth of multiple scattering owning to rough surfaces of

branches and leaves, thus a dominant line-of-sight (LOS) is less likely to present. Moreover, due to

the wind the movement of leaves, branches and even the tree trunks contribute to the time-varing
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fading phenomenon and therefore the channel can not be as stationary as the one indoor. In such

a situation, it’s more accurate to apply both narrowband and ultra-wide band (UWB) radar to

model the propagation channel, as we believe that foliage is composed of intervening materials

that are electromagnetically dispersive, which contributes to the strong frequency dependence of

propagation, and thus a narrowband-wideband study would assist with the better understanding of

channel characterization. In our investigation, narrowband signals have been tried at 200 and 400

MHz respectively, while UWB radar emissions are at a relatively low frequency-typically between

100 MHz and 3 GHz. Each frequency component in a radar signal will sense the foliage in a slightly

different manner, therefore provides differences in multipath pulses.

The rest of this paper is organized as follows. In Section 2, we summarize the measurement

and collection of the data. In Section 3, we apply CLEAN algorithm to extract channel impulse

response (CIR) for 200MHz, 400MHZ, and UWB signals. Section 4 presents the channel model in

view of temporal characterization as well as statistic model comparison. We conclude our work in

Section 5.

2 Measurement Setup

The foliage penetration measurement effort began in August 2005 and continued through December

2005. The measurements were taken in Holliston, Massachusetts. The data used in this paper were

measured in November. The foliage is made up of both deciduous and conifer trees with higher

percentage of deciduous. Generally the hight of trees are above 25 meters. Fig. 1 illustrated the

largely defoliated but dense forest at this time.

The foliage experiment was constructed on a seven-ton man lift, which had a total lifting

capacity of 450 kg. The limit of the lifting capacity was reached during the experiment as essentially

the entire measuring apparatus was placed on the lift. Fig. 2 shows the lift. This picture was taken

in September with the foliage largely still present. The lift was a 4-wheel drive diesel platform

that was driven up and down a graded track 25 meters long with an experimental length of 20

meters. This track served as a strip map synthetic aperture radar track and the extra 5 meters

accommodated the length of the lift. The measurement system was moved to twelve equally parted
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locations named ’0’,’2’,’4’,’5’,’6’,’8’,’10’,’12’,’14’,’16’,’18’ and ’20’ on the track. At each location

along the track, 35 pulses taken 3 seconds apart have been obtained for the transmitted and

received signal respectively. Each sample in the pulse is spaced at 50 picoseconds interval, and

16,000 samples were collected for each pulse for a total time duration of 0.8 microseconds. The

accomplished data structure is shown in Fig. 3.

The principle pieces of equipment secured on the lift under a weather shield are listed below:

• dual antenna mounting stand

• two antennas

• 200MHz, 1KW Amplifier, power supply, pre-amp

• 400MHz, 1KW Amplifier, power supply, pre-amp

• Barth pulse source (Barth Electronics, Inc. model 732 GL) for UWB

• Tektronix model 7704 B oscilloscope

• rack system

• HP signal Generator

• IBM laptop

• custom RF switch and power supply

• weather shield (small hut)

The general equipment layout is shown as a schematic in Fig. 4. A photographic side view

of the equipment platform on the lift is illustrated in Fig. 5. Individual transmit and receive

antennas have been used as it was believed that circulators did not exist for wideband signals

in 2005. Antennas are EMCO ridged waveguide horns (Microwave Horn, EMCO 3106) over a

frequency range of 200MHz to 2 GHz. An 5.486-meter (18-foot) distance between antennas was

chosen to reduce the signal coupling between the transmitter and the receiver [13]. The system

was pointing at the specified 91.44 meters (300 feet) one way distance. Beyond 91.44 meters (300
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feet) the received signal disappeared into the noise. The transmit and receive antenna required two

degrees of rotational freedom (azimuth and elevation). The antennas could be adjusted during the

course of the experiment while having sufficient stability not to become misaligned during wind

gusts in excess of 40 mph. The position along the track was changed and the rotation angle down

range adjusted at each measurement location such that it the centerline of the RF beam made a

series of parallel measurements along the track.

The preamplifiers were Henry Radio model 50B-200 and 50B-400 for 200 and 400 MHz respec-

tively. The Henry Radio power amplifiers were TEMPO-2002A and TEMPO-2400A for 1 KW

pulsed at 200 and 400MHz respectively. Each amplifier was specified at a minimum bandwidth of 2

MHz around it center frequency. The source for all of the narrow band or continuous wave signals

was an Agilent 8648A signal generator. The UWB pulse generator uses a coaxial reed switch to

discharge a charge line for a very fast rise time pulse outputs. The model 732 pulse generator pro-

vides pulses of less than 50 picoseconds (ps) rise time, with amplitude from 150 V to greater than 2

KV into any load impedance through a 50 ohm coaxial line. The generator is capable of producing

pulses with a minimum width of 750 ps and a maximum of 1 microsecond. This output pulse width

is determined by charge line length for rectangular pulses, or by capacitors for 1/e decay pulses.

A Yagi antenna (Antenna Research Associates LPC-2010-C) which contained the Barth pulse was

applied in transmit primarily to spread the beam of the wideband pulse. The signal output was

displayed on a computer-controlled digital storage oscilloscope (Tektronix model 7704 B). Please

see Fig. 6 for system schematic diagram and Fig. 7 for EMCO 3106 gain and beamwidth.

3 Channel Impulse Response Based on the Measured Data and

CLEAN Algorithm

We calculated the averaged transmitted and received signals of 35 measured pulses at each location

(12 locations) for 200MHz, 400MHz and UWB respectively. The transmitted and averaged received

signals at location ’4’ for different frequencies are shown from Fig. 8 to 10. According to [14] a

minimum of 9 samples are necessary to average out small-scale fading to permit the true shape
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of the power decay profile (PDP) to be recovered. We believe the average of 35 samples offers

satisfactory removal of both small-scale fading and noise. Note that at a different location (e.g.

’0”2”6’...) the result will be slightly different. However, for simplicity and conciseness, illustration

at one location is sufficient to show the essential properties.

As in foliage, the received signal is made up of distorted and time shifted pulses, the complicated

multipath channel impulse response (CIR) can be modeled as follows [15]

r(t) ≈
∑

n

anpn(t− τn)ejφn (1)

where an, pn and τn are referred to as the amplitude, unit pulse, time delay, and phase angle of the

nth propagation path respectively.

Generally speaking, time domain, frequency-domain and with sliding correlator are three basic

techniques to characterize the channel [16]. If high-resolution channel modeling is required, a

deconvolution algorithm, such as the CLEAN [17] can be used to extract the CIR. It was initially

introduced in [18] to enhance radio astronomical maps of the sky, and has also been employed in

both narrowband [17] and UWB [19]-[21].

The CLEAN algorithm is an iterative, high-resolution, subtractive deconvolution procedure

that is capable resolving dense multipath components which are usually irresolvable by conven-

tional inverse filtering [22]. It generates multiple taps by “cleaning” the similarities between the

measurement and the template, and thus constructs a discrete CIR in time. There have been some

enhanced versions of CLEAN proposed recently [15][17][23]-[25].

Our steps involved [25] are:

1. Calculate the autocorrelation of the transmitted signal Rss(t) and the cross-correlation of the

transmitted with the received waveform Rsy(t).

2. Find the largest correlation peak in Rsy(t), record the normalized amplitudes αk and the

relative time delay τk of the correlation peak.

3. Subtract Rss(t) scaled by αk from Rsy(t) at the time delay τk.

4. If a stopping criterion (a minimum threshold on the peak correlation) is not met, go step 2.

otherwise stop.)

6
17 of 816



The stopping criterion should be decided on a basis of noise level. Choosing the good stopping

criterion is important because the deconvolution must go deep enough to be correct but CLEAN

algorithms start to diverge when the noise is cleaned too deep. A good compromise is slightly below

the noise level, typically 0.5σ, where σ is the standard deviation of noise. Since each CIR (12 CIR

for 12 locations) we obtained is based on the 35 averaged pulses (noise has been averaged out), we

searched the total number of clean components.

Given the transmission, reception and the CLEAN processing described above, the obtained

CIR of location ’4’ are illustrated from Fig. 11 to 13. Note that we plot the absolute value of the

UWB channel for the comparison between the outdoor UWB channel (Fig. 13) with the indoor

S-V model [7] (Fig. 14). Generally, these figures show that

1. Compare Fig. 13 with Fig. 14, similar to the discrete channel impulse in S-V model, impulse

responses in foliage arrive in clusters. There are subsequent rays within each cluster. This is

also a typical phenomenon for Fig. 11 and 12. Due to the complex layout of trees, foliage is

a rich scattering environment, which leads to multipath components in propagtion channels.

2. Channels are frequency dependent. It has been observed that the intervening materials, such

as foliage and soil, have dielectric properties that are strongly frequency dependent. This in

part explains the differences of 200MHz, 400MHz and UWB CIR .

The phase angles φn will be assumed a priori to be statistically independent random vari-

ables with a uniform distribution over [0, π). We believe that this is self-evident and needs no

experimental justification.

We have experimentally derived multipath propagation channels for foliage environment using

200MHz, 400MHz and UWB signals. Based on the large ensemble of CIR, a statistical model will

be proposed in the next Section.
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4 Outdoor Channel Modeling

4.1 Temporal Characterization

We start with the physical realization that rays obtained through CLEAN arrive in clusters, which

is not consistent with a simple Poisson arrival-time model. Similar observations were found in

modeling urban mobile radio channels [26]. Observe CIR at 200MHz, 400MHz and UWB for 12

locations, such as some of those given in Fig. 11 to 13, like in S-V model, the time axis of multipath

contributions are divided into “bins”, with the probability of a ray arriving within a given “bin”.

In the S-V model, the arrival of clusters is modeled as a Poisson arrival process with a rate Λ,

while within each cluster, subsequent multipath contributions or rays also arrive according to a

Poisson process with a rate λ (see Fig. 15). Given that 1) S-V model retains the basic features of

a constant-rate Poisson arrival-time process and mutually independent path gain, 2) it appears to

be extendable by adjusting its parameters to present different measured channel responses, 3) the

parameter analysis is relatively simple, we model the foliage temporal properties on a basis of S-V,

and therefore link up the outdoor and indoor multipath environment. Moreover, this model can be

explained from a physical viewpoint, therefore making it more readily extendable to other foliage

environment.

The time arrival of clusters in foliage can be modeled as a Poisson arrival process with a rate

Λ. The first arriving ray of a cluster is formed by the transmitted signal following a more-or-less

“direct” path to the receiver. Such a path, comprises mostly open spaces, goes through a few, but

not too many, tree trunks and branches. Subsequent clusters result from reflections from farther

trunks, branches and leaves. Within each cluster, subsequent multipath contributions or rays also

arrive according to a Poisson process with a rate λ. These rays within a cluster are formed by

multiple “weaker” reflections from tree trunks, branches, leaves and other potential animals (e.g.,

birds and squirrels).

We define:

• Tl = the arrival time of the first path of the l-th cluster;

• τk,l = the delay of the k-th path within the l-th cluster relative to the first path arrival time

8
19 of 816



Tl;

• Λ = the cluster arrival rate;

• λ = the ray arrival rate, i.e., the arrival rate of the paths within each cluster.

By definition, we have τ0l = Tl. The distributions of the cluster arrival time and the ray arrival

time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0

p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (2)

It is worth mentioning that clusters generally overlap. Deciding which ray belongs to a particular

cluster can be difficult from time to time. Let Γ and γ denote power-delay time constants for the

clusters and the rays respectively (see Fig.15). Typically, Γ > γ, and the expected power of the

rays in a cluster decay faster than the expected power of the first ray of the next cluster. Note that

if Tl − Tl−1 is large enough such that e
−Tl−Tl−1

γ ¿ e−
Tl−Tl−1

Γ , then the lth and (l− 1)th cluster will

appear separate. In our analysis, the cluster is determined in such a way that within each cluster,

the gain of rays decay. Then we observe T̄l, i.e., the averaged arrival time of the first path within

clusters, and τ̄k,l, i.e., the averaged arrival rate of the paths within each cluster.

Table 1 listed the parameters of Λ and λ, which are averaged values of 12 locations for 200MHz,

400MHz and UWB impulse responses respectively. As for indoor UWB data, we refer [27]. The

higher Λ and λ of UWB implies its exceptional range resolution compared to narrowband signals.

Lower Λ and λ of outdoor UWB than those of indoor means indoor environment typically have

a richer multiple scattering due to the effect of superstructure (such as walls, furniture, doors for

indoor environment), that provides stronger reflections other than trunks, branches and leaves.

Higher value of Λ and λ for clusters and rays would be expected if denser trees are present. At the

same time, we believe some weak rays may appear to be miss detected due to our measurement

sensitivity.
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4.2 Statistical Distribution of Channel Amplitude

In the IEEE UWB indoor channel model [6], the clutter approach was adopted (same as S-V model),

but a lognormal distribution was suggested for characterizing the multipath gain amplitude, and

an additional log-normal variable was introduced for representing the fluctuations of the total

multipath gain. In this Section we propose that log-logistic model would better characterize the

multipath gain for both outdoor narrowband and UWB channels.

4.2.1 Statistic Models

Log-logistic distribution (LLD) [28] is a special case of Burr’s type-XII distribution [29] as well as a

special case of the kappa distribution proposed by Mielke and Jonson [30]. Lee et al. employed the

LLD for frequency analysis of multiyear drought durations [31], whereas Shoukri et al. employed

LLD to analyse extensive Canadian precipitation data [32], and Narda & Malik used LLD to

develop a model of root growth and water uptake in wheat [33]. In spite of intensive application in

precipitation and stream-flow data, so far the log-logistic distribution (LLD) statistical model has

never been applied to foliage channel modeling to the best our knowledge.

This model is intended to be employed on a basis of higher kurtosis and longer tails, as well

as its statistical similarity to log-normal and Weibull distributions. PDF for LLD on a basis of

different of µ and σ are illustrated in Fig. 16. As we shall see that this model provides the best

curve fit compared to lognormal, Weibull and Rayleigh.

Here we use the two-parameter distribution with parameters µ and σ. The PDF for this

distribution is given by

f(x) =
e

lnx−µ
σ

σx(1 + e
lnx−µ

σ )2
, x > 0, σ > 0 (3)

where µ is scale parameter and σ is shape parameter. The mean of the the LLD is

E{x} = eµΓ(1 + σ)Γ(1− σ) (4)

The variance is given by

V ar{x} = e2µ{Γ(1 + 2σ)Γ(1− 2σ)− [Γ(1 + σ)Γ(1− σ)]2} (5)
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while the moment of order k is

E{xk} = σeµB(kσ, 1− kσ), k <
1
σ

(6)

where

B(m,n) =
∫ 1

0
xm−1(1− x)n−1dx (7)

Similarly, the log-normal distribution [34] is a two-parameter distribution with parameters µ

and σ. The PDF for this distribution is given by

f(x) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 , x > 0, σ > 0 (8)

where µ is the scale parameter and σ is the shape parameter.

The Weibull distribution, which is named after Waloddi Weibull, can be made to fit measure-

ments that lie between the Rayleigh and log-normal distribution [35].

The Weibull distribution is also a two-parameter distribution with parameters a and b. The

PDF for this distribution is given by

f(x) = ba−bxb−1e−(x/a)b
, x > 0, a > 0, b > 0 (9)

where b is the shape parameter and a is the scale parameter.

The Rayleigh distribution, whose real and imaginary components are Gaussian, has the PDF

as follows:

f(x) =
x

b2
e−

x2

2b2 , b > 0 (10)

If a and b are the parameters of the Weibull distribution, then the Rayleigh distribution with

parameter b is equivalent to the Weibull distribution with parameters a =
√

2b and b = 2.

4.2.2 Maximum Likelihood Estimation

On a basis of CIR amplitude from 12 different locations, we apply Maximum Likelihood Estimation

(MLE) approach to estimate the parameters for log-logistic, log-normal, Weibull and Rayleigh

models respectively. MLE is often used when the sample data are known and parameters of the

underlying probability distribution are to be estimated [36] [37]. It is generalized as follows:
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Let y1, y2, · · · , yN be N independent samples drawn from a random variable Y with m para-

meters θ1, θ2, · · · , θm, where θi ∈ θ, then the joint PDF of y1, y2, · · · , yN is

LN (Y|θ) = fY |θ(y1|θ1, θ2, · · · , θm)fY |θ(y2|θ1, θ2, · · · , θm) · · · fY |θ(yn|θ1, θ2, · · · , θm) (11)

When expressed as the conditional function of Y depends on the parameter θ, the likelihood

function is

LN (Y|θ) =
N∏

k=1

fY |θ(yk|θ1, θ2, · · · , θm) (12)

The maximum likelihood estimate of θ1, θ2, · · · , θm is the set of values θ̂1, θ̂2, · · · , θ̂m that maximize

the likelihood function LN (Y|θ).
As the logarithmic function is monotonically increasing, maximizing LN (Y|θ) is equivalent to

maximizing ln(LN (Y|θ)). Hence, it can be shown that a necessary but not sufficient condition to

obtain the ML estimate θ̂ is to solve the likelihood equation

∂

∂θ
ln(LN (Y|θ)) = 0 (13)

We obtain µ̂ and σ̂ for log-logistic, µ̂ and σ̂ for log-normal, â and b̂ for weibull and b̂ for Rayleigh

respectively, which are shown in Table 2. We also explore the standard deviation (STD) error of

each parameter. These descriptions are also shown in Table 2 in the form of εx, where x denotes

different parameter for each model. It is obvious that log-logistic model provides smaller STD

errors than those of log-normal.

4.2.3 Goodness-of-fit in curve and RMSE

We may also observe that to what extend does the PDF curve of the statistic model match that

of CIR amplitude by root mean square error (RMSE). Let i (i=1, 2, · · · , n) be the sample index of

CIR amplitude, ci is the corresponding PDF value whereas ĉi is the PDF value of the statistical

model with estimated parameters by means of MSE. RMSE is obtained through

RMSE =

√√√√ 1
n

n∑

i=1

(ci − ĉi)2 (14)
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where n is the sample index. The RMSE for 200MHz, 400Hz and UWB have been listed in Table

3. It demonstrates that LLD turns out to be the model that fits the channel data best.

One may also draw the above conclusion from the Fig. 17 and 18, which describe the the

goodness-of-fit by curves. In Fig. 17, the absolute gains of all our resolved paths have been plotted

in terms of histogram. It can be easily seen that Rayleigh model provides the worst goodness-

of-fit compared to LLD, log-normal and Weibull. Also, Weibull is not a good choice due to the

inaccurate kurtosis and high tails. Compare LLD with log-normal, it is obvious that LLD is able

to provide higher kurtosis, sharper slope, and lower tail. In other word, LLD provides generally

better goodness-of-fit than that of log-normal. Fig. 18 uses cumulated statistical methodology to

show the general better goodness-of-fit provided by LLD model.

The above investigations show that LLD can better characterize the amplitude of outdoor mul-

tipath impulse responses other than log-normal, Weibull and Rayleigh models for both narrowband

and UWB cases.

5 Conclusions and Future Work

This paper presented propagation measurement results of 200MHz, 400MHz and UWB signals in

Holliston foliage in November with largely defoliated but dense forest. Like indoor environment,

foliage contains a wealth of multiple scattering owning to rough surfaces of trunks, branches and

leaves. CLEAN algorithm was used to resolve dense multipath components which were usually

irresolvable by conventional inverse filtering.

We came to following conclusions: 1) foliage non line-of-sight (NLOS) channels are generally

frequent dependent, which is illustrated by different temporal and amplitude properties of channel

impulse response (CIR) based on three measurement frequencies. This is due to the fact that foliage

is made up of intervening materials that have dielectric properties associated with frequencies. 2)

The temporal characterizations of CIR for both narrowband and UWB are similar to those of S-V

model for indoor environment. Therefore we model the time arrival of clusters as a Poisson process

with a rate Λ and subsequent multipath contributions using another Poisson process with a rate

λ. The analysis result of Λ and λ are shown in Table 1. The capability of multipath resolution
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(from high to low) is that UWB > 200MHz > 400MHz, and indoor environment typically has

a richer multiple scattering than that of outdoor. 3) The amplitude of multipath channels can be

more accurately characterized by log-logistic distribution (LLD) other than log-normal, Weibull or

Rayleigh. We apply maximum likelihood estimation (MLE) approach to estimate the parameters

for those models based on CIR amplitude. Table 2 and 3 show that LLD provides smaller STD

errors and root-mean-square-error (RMSE). Additionally, the better fit provided by LLD is visually

shown in Fig. 17 and 18. Our model is extendable by adjusting temporal and LLD parameters

to represent the channels within the same foliage at different season or other foliage environment.

This model can be easily used in simulation and analysis for planning wireless networks, designing

fixed terrestrial and satellite communication services.

The channels discussed in this paper are very slowly time varying. At each location, 35 pulses

were taken 3 seconds apart, having roughly 0.9 correlation coefficient at each location. Generally,

foliage are time varying from time to time because of changes with the seasons or due to movement

on windy days. For future work, we may collect extensive data to explore the time varying nature

of foliage propagation channels.
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Table 1: Temporal Parameters for Channel Models

Scenario Λ(1/ns) λ(1/ns)
200MHz 0.012 0.4
400MHz 0.004 0.128

Outdoor UWB 0.04 0.8
Indoor UWB Extreme NLOS 0.0667 2.1

Table 2: Estimated Parameters for Statistic Model

PDF Log-Logistic Log-normal Weibull Rayleigh

200MHz

µ̂ = −3.79907
σ̂ = 0.43948

εµ = 0.0517626
εσ = 0.0250518

µ̂ = −3.69473
σ̂ = 0.811659

εµ = 0.0550099
εσ = 0.0390963

â = 0.0388139
b̂ = 1.00543

εa = 0.0027934
εb = 0.00456447

b̂=0.0474046

400MHz

µ̂ = −3.75666
σ̂ = 0.482505
εµ = 0.071783
εσ = 0.035901

µ̂ = −3.61265
σ̂ = 0.917049

εµ = 0.0795182
εσ = 0.0565477

â = 0.0447926
b̂ = 0.903163

εa = 0.00458706
εb = 0.0536079

b̂=0.0609159

Outdoor UWB

µ̂ = −3.30616
σ̂ = 0.590192
εµ = 0.202988
εσ = 0.101636

µ̂ = −3.13344
σ̂ = 1.12623

εµ = 0.225245
εσ = 0.164277

â = 0.080002
b̂ = 0.765597

εa = 0.0222858
εb = 0.106023

b̂=0.141188

Table 3: Root Mean Square Error (RMSE) Comparison between Statistic Models

PDF Log-Logistic Log-normal Weibull Rayleigh
200MHz 5.7016 6.2850 8.8810 9.7562
400MHz 5.9023 6.5635 9.7056 10.3359
UWB 2.1867 2.4756 3.0136 4.8975
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Figure 1: Foliage environment in November
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Figure 2: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.

200MHz 400MHz UWB

0 2 4 5 6 8 10 12 14 16 18 20

Transmit Receive Transmit Receive Transmit Receive

Figure 3: Measured data file structure. ’0’ - ’20’ are 12 equally parted locations with an experi-
mental length of 20 meters. At each location, 35 pulses of 200MHz, 400MHz and UWB signals are
measured respectively.
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Receiver Transmitter
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Figure 4: Antenna layout

 

Figure 5: The experiment on top of the lift under the hut built for weather protection. The black
box in the foreground is a weather resistant box that held the oscilloscope and Barth pulser during
the testing.
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(a)
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Figure 7: EMCO 3106 technical data (a) gain (b) half power beamwidth
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(b)

Figure 8: Measurement of 200MHz and 35 pulses average : (a) transmitted pulse (b) received
echoes
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(b)

Figure 9: Measurement of 400MHz and 35 pulses average: (a) transmitted pulse (b) received echoes

26
40 of 816



0 2000 4000 6000 8000 10000 12000 14000 16000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

Time sample index

T
ra

nm
is

tte
d 

U
W

B
 s

ig
na

l 

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
−4

−3

−2

−1

0

1

2

3

4
x 10

4

Time sample index

R
ec

ei
ve

d 
U

W
B

 s
ig

na
l 

(b)

Figure 10: Measurement of UWB and 35 pulses average: (a)transmitted pulse (b) received echoes
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Figure 11: 200MHz channel impulse response by CLEAN from 35-pulse averaged transmitting and
receiving signals
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Figure 12: 400MHz channel impulse response by CLEAN from 35-pulse averaged transmitting and
receiving signals
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Figure 13: UWB channel impulse response by CLEAN from 35-pulse averaged transmitting and
receiving signals
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Figure 14: An illustration of the channel impulse in S-V model.
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Figure 15: An illustration of the double exponential decay of the cluster power profile and the ray
power profile within clusters in S-V model.

Figure 16: An illustration of log-logistic probability density function.
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Figure 17: Goodness-of-fit illustration by density (a)CIR for 200MHz (b)CIR for 400MHz (c)CIR
for UWB 31

45 of 816



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.00050.001 
0.005 0.01  
0.05  
0.1   

0.25  
0.5   

0.75  
0.9   

0.95  
0.99  0.995 
0.999 0.9995
0.9999

Amplitude

P
ro

ba
bi

lit
y

channel data
Log−logistic
Lognormal
Weibull
Rayleigh

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0.00050.001 
0.005 0.01  

0.05  
0.1   

0.25  

0.5   

0.75  
0.9   

0.95  

0.99  0.995 
0.999 0.9995
0.9999

Amplitude

P
ro

ba
bi

lit
y

channel data
Log−logistic
Lognormal
Weibull
Rayleigh

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00050.001 
0.005 0.01  
0.05  
0.1   

0.25  
0.5   

0.75  
0.9   

0.95  
0.99  0.995 
0.999 0.9995
0.9999

Amplitude

P
ro

ba
bi

lit
y

channel data

Log−logistic

Lognormal

Weibull

Rayleigh

(c)

Figure 18: Goodness-of-fit illustration by cumulated probability (a)CIR for 200MHz (b)CIR for
400MHz (c)CIR for UWB 32
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Abstract

Network-enabled Electronic Warfare (NEW) is to develop modeling and simulation effort

to explore the advantages and limitations of network-enabled electronic warfare concepts. The

advantages of linking multiple electronic support measures (ESM) and electronic attack (EA)

assets to achieve improved capabilities across a networked battle force have yet to be quantified.

In this paper, we utilize radar sensors as ESM and EA assets to demonstrate the advantages

of NEW in Collaborative Automatic Target Recognition (CATR). Signal (waveform) design for

Radar Sensor Networks (RSN) in NEW is studied theoretically. The conditions for waveform

coexistence and the interferences among waveforms in RSN are analyzed. We apply the NEW

to CATR via waveform diversity combining and propose maximum-likelihood (ML)-ATR al-

gorithms for non-fluctuating targets as well as fluctuating targets. Simulation results indicate

that our NEW-CATR performs much better than the single sensor-based ATR algorithm for

non-fluctuating targets and fluctuating targets.

Index Terms : Network-enabled electronic warfare, radar sensor networks, waveform diversity,

collaborative automatic target recognition, maximum-likelihood, interferences.
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1 Introduction and Motivation

In current and future military operational environments such as Global War on Terrorism (GWOT)

and Maritime Domain Awareness (MDA), war fighters require technology that can support their

information needs in manner that is independent of their location and consistent with their level of

command or responsibility and operational situation. To support this need, the U.S. Department of

Defense (DoD) has developed the concept of Network Centric Warfare (NCW), defined as “military

operations that exploit state-of-the-art information and networking technology to integrate widely

dispersed human decision makers, situational and targeting sensors, and forces and weapons into a

highly adaptive, comprehensive system to achieve unprecedented mission effectiveness” [1]. Network-

enabled Electronic Warfare (NEW) is the form of electronic combat used in NCW. Focus is placed

on a network of interconnected, adapting systems that are capable of making choices about how

to survive and achieve their design goals in a dynamic environment. The goal of NEW is to

develop modeling and simulation effort to explore the advantages and limitations of network-enabled

electronic warfare concepts. The advantages of linking multiple electronic support measures (ESM)

and electronic attack (EA) assets to achieve improved capabilities across a networked battle force

have yet to be quantified [2]. In this paper, we utilize radar sensors as ESM and EA assets to

demonstrate the advantages of NEW in Collaborative Automatic Target Recognition (CATR). The

network of radar sensors should operate with multiple goals managed by an intelligent platform

network that can manage the dynamics of each radar to meet the common goals of the platform,

rather than each radar operates as an independent system. Therefore, it is significant to perform

signal design and processing and networking cooperatively within and between platforms of radar

sensors and their communication modules. This need is also testified by the recent solicitations

from the U.S. Office of Naval Research [2][3]. For example, in [3], it is stated that “Algorithms are

sought for fused, and/or, coherent cross-platform Radio Frequency (RF) sensing. The focus of this

2
48 of 816



effort is to improve surveillance utilizing a network, not fusion of disparate sensor products. The

algorithms should be capable of utilizing RF returns from multiple aspects in a time-coordinated

sensor network.”

In this paper, we study waveform design and diversity algorithms for radar sensor networks.

Waveform diversity is the technology that allows one or more sensors on board a platform to

automatically change operating parameters, e.g., frequency, gain pattern, and pulse repetition

frequency (PRF), to meet the varying environments. It has long been recognized that judicious use

of properly designed waveforms, coupled with advanced receiver strategies, is fundamental to fully

utilize the capacity of the electromagnetic spectrum. However, it is the relatively recent advances

in hardware technology that are enabling a much wider range of design freedoms to be explored. As

a result, there are emerging and compelling changes in system requirements such as more efficient

spectrum usage, higher sensitivities, greater information content, improved robustness to errors,

reduced interference emissions, etc. The combination of these changes is fueling a worldwide interest

in the subject of waveform design and the use of waveform diversity techniques.

Most existing works on waveform design and selection are focused on single radar or sonar

system. In 1974, Fitzgerald [8] demonstrated the inappropriateness of selection of waveforms based

on measurement quality alone: the interaction between the measurement and the track can be

indirect, but must be accounted for. Since then, extensive works on waveform design have been

reported. Bell [6] used information theory to design radar waveforms for the measurement of ex-

tended radar targets exhibiting resonance phenomena. In [5], the singularity expansion method was

used to design discriminant waveforms such as K-pulse, E-pulse, and S-pulse. Sowelam and Tewfik

[23] developed a signal selection strategy for radar target classification, and a sequential classifi-

cation procedure was proposed to minimize the average number of necessary signal transmissions.

Intelligent waveform selection was studied in [4][12], but the effect of Doppler shift was not con-
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sidered. In [16], time-frequency-based generalized chirps were used as waveform for detection and

estimation. In [15], the performance of constant frequency (CF) and linear frequency modulated

(LFM) waveform fusion from the standpoint of the whole system was studied, but the effect of

clutter was not considered. In [24], a new time-frequency signal decomposition algorithm based

on the S-method was proposed and evaluated on the high-frequency surface-wave radar (HFSWR)

data, and demonstrated that it provided an effective way for analyzing and detecting maneuver-

ing air targets with significant velocity changes, including target signal separation from the heavy

clutter. In [25], CF and LFM waveforms were studied for a sonar system, but it was assumed that

the sensor is non-intelligent (i.e., waveform can’t be selected adaptively). All the above studies

and design methods focused on the waveform design or selection for a single active radar or sonar

system. In [21], cross-correlation properties of two radars were briefly mentioned and the binary

coded pulses using simulated annealing [7] are highlighted. However, the cross-correlation of two

binary sequences such as binary coded pulses (e.g. Barker sequence) is much easier to study than

that of two analog radar waveforms.

In this paper, we focus on the waveform diversity and design for radar sensor networks using

the constant frequency (CF) pulse waveform. Comparing to previous works, this paper has the

following novelties:

1. Our focus is placed on a network of interconnected, adapting radar systems that are capable of

making choices about how to survive and achieve their design goals in a dynamic environment.

2. We study waveform design and diversity for radar sensors networks. In Space-Time Adaptive

Processing (STAP) [18], the waveform (pulse) design is essentially for a single radar system.

The pulse is sent repeatedly at different time and echo is received and processed by an antenna

array, and no interference exists among pulses if the pulse repetition interval is large enough.
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3. We investigate collaborative automatic target recognition using radar sensor networks and

compare it against single radar system in CATR.

4. Simulations are performed for nonfluctuating targets as well as fluctuating targets, and a real

world application example, sense-through-foliage target detection, is presented.

The rest of this paper is organized as follows. In Section 2, we study the coexistence of radar

waveforms. In Section 3, we analyze the interferences among radar waveforms. In Section 4, we

propose a RAKE structure for waveform diversity combining and present a maximum-likelihood

(ML) algorithm for CATR. In Section 5, we provide simulation results on ML-CATR. In Section

6, we conclude this paper and discuss future research.

2 Co-existence of Radar Waveforms

In radar sensor networks (RSN), radar sensors interfere with each other and the signal-to-interference-

ratio may be very low if the waveforms are not properly designed. In this paper, we introduce

orthogonality as one criterion for waveform design in RSN to make radars coexistence. In addition,

since the radar channel is narrow-band, we will also consider the bandwidth constraint.

In our radar sensor networks, we choose the CF pulse waveform, which can be defined as

x(t) =

√
E

T
exp(j2πβt) − T/2 ≤ t ≤ T/2 (1)

where β is the RF carrier frequency in radians per second. In radar, ambiguity function (AF) is an

analytical tool for waveform design and analysis, which succinctly characterizes the behavior of a

waveform paired with its matched filter. The ambiguity function is useful for examining resolution,

side lobe behavior, and ambiguities in both range and Doppler for a given waveform [18]. For a

single radar, the matched filter for waveform x(t) is x∗(−t), and the ambiguity function of CF pulse
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waveform is

A(τ, FD) =

∣∣∣∣∣
∫ T/2

−T/2+τ
x(t) exp (j2πFDs)x∗(t− τ)dt

∣∣∣∣∣
=

∣∣∣∣E sin[πFD(T − |τ |)]
TπFD

∣∣∣∣ − T ≤ τ ≤ T (2)

We can simplify this AF in the following three special cases:

1. When τ = 0,

A(0, FD) =
∣∣∣∣E sin(πFDT )

Tπ(FD)

∣∣∣∣ ; (3)

2. when FD = 0,

A(τ, 0) =
∣∣∣∣E(T − |τ |)

T

∣∣∣∣ ; (4)

3. and when τ = FD = 0,

A(0, 0) = E (5)

Note that the above ambiguity is for one radar only (no coexisting radar).

For radar sensor networks, the waveforms from different radars interfere with each other. We

choose the waveform for radar i as

xi(t) =

√
E

T
exp[j2π(β + δi)t] − T/2 ≤ t ≤ T/2 (6)

which means that there is a frequency shift δi for radar i. To minimize the interference from one

waveform to another, optimal values for δi should be determined to make the waveforms orthogonal

to each other, i.e., let the cross-correlation between xi(t) and xn(t) be 0,

∫ T/2

−T/2
xi(t)x∗n(t)dt =

E

T

∫ T/2

−T/2
exp[j2π(β + δi)t] exp[−j2π(β + δn)t]dt (7)

= Esinc[π(δi − δn)T ] (8)

If we choose

δi =
i

T
(9)
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where i is a dummy index, (8) can be written as

∫ T/2

−T/2
xi(t)x∗n(t)dt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E i = n

0 i �= n

(10)

Therefore choosing δi = i
T in (6) yields orthogonal waveforms, i.e., the waveforms can coexist if the

carrier spacing is a multiple of 1/T between two radar waveforms. In other words, orthogonality

amongst carriers can be achieved by separating the carriers by a multiple of the inverse of waveform

pulse duration. With this design, all the orthogonal waveforms can work simultaneously. However,

there may exist time delay and Doppler shift ambiguity which may interfere with other waveforms

in RSN.

3 Interferences of Waveforms In Radar Sensor Networks

3.1 RSN with Two Radar Sensors

We are interested in analyzing the interference from one radar to another if there exist time delay

and Doppler shift. For a simple case where there are two radar sensors (i and n), the ambiguity

function of radar i (considering the interference from radar n) is

Ai(ti, tn, FDi , FDn) =
∣∣∣∣
∫ ∞
−∞

[xi(t) exp(j2πFDit) + xn(t− tn) exp(j2πFDnt)]x
∗
i (t− ti)dt

∣∣∣∣ (11)

≤
∣∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn(t− tn) exp(j2πFDnt)x

∗
i (t− ti)dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T/2

−T/2+ti

xi(t) exp (j2πFDi t)x
∗
i (t− ti)dt

∣∣∣∣∣ (12)

=

∣∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn(t− tn) exp(j2πFDnt)x

∗
i (t− ti)dt

∣∣∣∣∣
+
∣∣∣∣E sin[πFDi(T − |ti|)]

TπFDi

∣∣∣∣ (13)

To make the analysis easier, it is generally assumed that the radar sensor platform has access to the

Global Positioning Service (GPS) and the Inertial Navigation Unit (INU) timing and navigation
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data [3]. In this paper, we assume that the radar sensors are synchronized and that ti = tn = τ .

Then (13) can be simplified as

Ai(τ, FDi , FDn) ≈ |Esinc[π(n− i+ FDnT )]| +
∣∣∣∣E sin[πFDi(T − |τ |)]

TπFDi

∣∣∣∣ (14)

We have the following three special cases:

1. If FDi = FDn = 0, and δi and δn follow (9), (14) becomes

Ai(τ, 0, 0) ≈
∣∣∣∣E(T − |τ |)]

T

∣∣∣∣ (15)

2. If τ = 0, (14) becomes

Ai(0, FDi , FDn) ≈ |Esinc[π(n− i+ FDnT )]| +
∣∣∣∣E sin(πFDiT )

TπFDi

∣∣∣∣ (16)

3. If FDi = FDn = 0, τ = 0, and δi and δn follow (9), (14) becomes

Ai(0, 0, 0) ≈ E (17)

3.2 RSN with M Radar Sensors

Our analysis on an RSN with two radar sensors can be extended to the case of M radars. Assuming

that the time delay τ for each radar is the same, then the ambiguity function of radar 1 (considering

interferences from all the other M − 1 radars with CF pulse waveforms) can be expressed as

A1(τ, FD1 , · · · , FDM
) ≈

M∑
i=2

|Esinc[π(i− 1 + FDiT )]| +
∣∣∣∣E sin[πFD1(T − |τ |)]

TπFD1

∣∣∣∣ (18)

Similarly, we have the following three special cases:

1. FD1 = FD2 = · · · = FDM
= 0, and the frequency shift δi in (6) for each radar follows (9),

then (18) becomes

A1(τ, 0, 0, · · · , 0) ≈
∣∣∣∣E(T − |τ |)]

T

∣∣∣∣ (19)
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Comparing it against (4), we notice that a radar may exist that can get the same signal

strength as that of the single radar in a single radar system (no coexisting radar) when the

Doppler shift is 0.

2. If τ = 0, then (18) becomes

A1(0, FD1 , FD2 , · · · , FDM
) ≈

M∑
i=2

|Esinc[π(i− 1 + FDiT )]| +
∣∣∣∣E sin(πFD1T )

TπFD1

∣∣∣∣ (20)

Comparing to (3), a radar in RSN has higher interferences when unknown Doppler shifts

exist.

3. FD1 = FD2 = · · · = FDM
= 0, τ = 0, and δi in (6) follows (9), then (18) becomes

A1(0, 0, 0, · · · , 0) ≈ E (21)

4 NEW for Collaborative Automatic Target Recognition

In NEW, the radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireless backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggests a hierarchical organization

of radar sensor networks with the lowest level in the hierarchy being a cluster. As argued in

[9] [10] [13] [17], in addition to helping with scalability and robustness, aggregating sensor nodes

into clusters has additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for the

nodes in the attended clusters to update their topology information;
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4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide its waveform parameters such as δi to its clusterhead radar, and

the clusterhead radar can combine the waveforms from its cluster members.

In RSN with M radars, the received signal for clusterhead (assume it’s radar 1) is

r1(u, t) =
M∑
i=1

α(u)xi(t− ti) exp(j2πFDit) + n(u, t) (22)

where α(u) stands for radar cross section (RCS), which can be modeled using non-zero constants

for non-fluctuating targets and four Swerling target models for fluctuating targets [18]; FDi is

the Doppler shift of the target relative to waveform i; ti is the delay of waveform i, and n(u, t)

is the additive white Gaussian noise (AWGN). In this paper, we propose a RAKE structure for

waveform diversity combining, as illustrated by Fig. 1. The RAKE structure is so named because

it reminds the function of a garden rake, each branch collecting echo energy similarly to how tines

on a rake collect leaves. This figure summarizes how the clusterhead works. The received signal

r1(u, t) consists of echoes triggered by the waveforms from each radar sensor, and x∗i (t − ti) is

used to retrieve the amplified waveform from radar i (amplified by the target RCS) based on the

orthogonal property presented in Sections 2 and 3, and then this information is time-averaged for

diversity combining.

%%%%% Insert Figure 1 here %%%%%
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According to this structure, the received r1(u, t) is processed by a bank of matched filters, then

the output of branch 1 (after integration) is

Z1(u; t1, · · · , tM , FD1 , · · · , FDM
)

=
∫ T/2

−T/2
r1(u, t)x∗1(t− t1)ds (23)

=
∫ T/2

−T/2
[

M∑
i=1

αi(u)xi(t− ti) exp(j2πFDit) + n(u, t)]x∗1(t− t1)dt (24)

Assuming t1 = t2 = · · · = tM = τ , then based on (18),

Z1(u; τ, FD1 , · · · , FDM
) ≈

M∑
i=2

α(u)Esinc[π(i− 1 + FDiT )]

+
α(u)E sin[πFD1(T − |τ |)]

TπFD1

+ n(u, τ) (25)

Similarly, we can get the output for any branch m (m = 1, 2, · · · ,M),

Zm(u; τ, FD1 , · · · , FDM
) ≈

M∑
i=1,i�=m

α(u)Esinc[π(i−m+ FDiT )]

+
α(u)E sin[πFDm(T − |τ |)]

TπFDm

+ n(u, τ) (26)

Therefore Zm(u; τ, FD1 , · · · , FDM
) consists of three parts, namely signal (reflected signal from radar

m waveform): α(u)E sin[πFDm(T−|τ |)]
TπFDm

, interferences from other waveforms:
∑M

i=1,i�=m α(u)Esinc[π(i−

m+ FDiT )], and noise: n(u, τ).

We can also have the following three special cases for |Zm(u; τ, FD1 , · · · , FDM
)|:

1. When FD1 = · · · = FDM
= 0,

Zm(u; τ, 0, 0, · · · , 0) ≈ Eα(u)(T − |τ |)]
T

+ n(u, τ) (27)

which means that if there is no Doppler mismatch, there is no interference from other wave-

forms.
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2. If τ = 0, (26) becomes

Zm(u; 0, FD1 , · · · , FDM
)

≈
M∑

i=1,i�=m

α(u)Esinc[π(i−m+ FDiT )] +
α(u)E sin[πFDmT ]

TπFDm

+ n(u) (28)

3. If τ = 0, and FD1 = · · · = FDM
= 0, (26) becomes

Zm(u; 0, 0, 0, · · · , 0) ≈ Eα(u) + n(u) (29)

Doppler mismatch happens quite often in target search where target velocity is not yet known.

However, in target recognition, generally high-resolution measurements of targets in range

(τ = 0) and Doppler are available, therefore (29) will be used for CATR.

How to combine all the Zm’s (m = 1, 2, · · · ,M) is very similar to the diversity combining in

wireless communications to combat channel fading, and the combination schemes may be different

for different applications. In this paper, we are interested in applying the RSN waveform diversity

to CATR, e.g., recognition that the echo on a radar display is that of an aircraft, ship, motor

vehicle, bird, person, rain, chaff, clear-air turbulence, land clutter, sea clutter, bare mountains,

forested areas, meteors, aurora, ionized media, or other natural phenomena via collaborations

among different radars. Early radars were “blob” detectors in that they detected the presence of a

target and gave its location in range and angle, and radar began to be more than a blob detector

and could provide recognition of one type of target from another [21]. It is known that small

changes in the aspect angle of complex (multiple scatter) targets can cause major changes in the

radar cross section (RCS). This has been considered in the past as a means of target recognition,

and is called fluctuation of radar cross section with aspect angle, but it has not had much success

[21]. In [19], a parametric filtering approach was proposed for target detection using airborne

radar. In [14], knowledge-based sensor networks were applied to threat assessment. In this paper,
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we propose maximum likelihood collaborative automatic target recognition (ML-CATR) algorithms

for non-fluctuating targets as well as fluctuating targets.

4.1 ML-CATR for Non-fluctuating Targets

In some sources, the non-fluctuating target is identified as a “Swerling 0” or “Swerling 5” model [22].

For non-fluctuating targets, the RCS αm(u) is just a constant α for a given target. In (29), n(u, τ)

is a zero-mean Gaussian random variable for a given τ , so |Zm(u; 0, 0, · · · , 0)| follows a Rician

distribution because signal Eα(u) is a positive constant, Eα, for a non-fluctuating target. Let

ym
�
= |Zm(u; 0, 0, · · · , 0)|, then the probability density function (pdf) of ym is

f(ym) =
2ym

σ2
exp[−(y2

m + λ2)
σ2

]I0(
2λym

σ2
) (30)

where

λ = Eα, (31)

σ2 is the noise power (with I and Q sub-channel power σ2/2), and I0(·) is the zero-order modified

Bessel function of the first kind. Let y
�
= [y1, y2, · · · , yM ], then the pdf of y is

f(y) =
M∏

m=1

f(ym) (32)

Our CATR is a multiple-category hypothesis testing problem, i.e., to decide a target category

(e.g. aircraft, ship, motor vehicle, bird, etc) based on r1(u, t). Assume there are totally N categories

and a category n target has RCS αn, therefore the ML-CATR algorithm to decide a target category

C can be expressed as,

C = arg maxN
n=1f(y|λ = Eαn) (33)

= arg maxN
n=1

M∏
m=1

2ym

σ2
exp[−(y2

m +E2α2
n)

σ2
]I0(

2Eαnym

σ2
) (34)
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4.2 ML-CATR for Fluctuating Targets

Fluctuating target modeling is more realistic in which the target RCS is drawn from either the

Rayleigh or chi-square of degree four pdf. The Rayleigh model describes the behavior of a complex

target consisting of many scatters, none of which is dominant. The fourth-degree chi-square models

targets having many scatters of similar strength with one dominant scatter. Based on different

combinations of pdf and decorrelation characteristics (scan-to-scan or pulse-to-pulse decorrelation),

four Swerling models are used [18]. In this paper, we focus on the “Swerling 2” model which is

a Rayleigh distribution with pulse-to-pulse decorrelation. The pulse-to-pulse decorrelation implies

that each individual pulse results in an independent value for RCS α.

For the Swerling 2 model, the RCS |α(u)| follows a Rayleigh distribution and its I and Q

subchannels follow zero-mean Gaussian distributions with a variance γ2. Assume

α(u) = αI(u) + jαQ(u) (35)

and n(u) = nI(u) + jnQ(u) follows a zero-mean complex Gaussian distribution with a variance

σ2 for the I and Q subchannels. Therefore according to (29), Zm(u; 0, 0, 0, · · · , 0) is a zero-mean

Gaussian random variable with a variance E2γ2 + σ2 for the I and Q subchannels, which means

ym
�
= |Zm(u; 0, 0, · · · , 0)| follows a Rayleigh distribution with a parameter

√
E2γ2 + σ2,

f(ym) =
ym

E2γ2 + σ2
exp(− y2

m

E2γ2 + σ2
) (36)

The mean value of ym is
√

π(E2γ2+σ2)
2 , and the variance is (4−π)(E2γ2+σ2)

2 . The variance of signal is

(4−π)E2γ2

2 and the variance of noise is (4−π)σ2

2 .

Let y
�
= [y1, y2, · · · , yM ], then the pdf of y is

f(y) =
M∏

m=1

f(ym) (37)

Assume there are totally N categories and a category n target has a RCS αn(u) (with a variance
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γ2
n), so the ML-ATR algorithm to decide a target category C can be expressed as,

C = arg maxN
n=1f(y|γ = γn) (38)

= arg maxN
n=1

M∏
m=1

ym

E2γ2
n + σ2

exp(− y2
m

E2γ2
n + σ2

) (39)

5 Simulations and Real World Application Example

5.1 Computer Simulations

Radar sensor networks will be required to detect a broad range of target classes. Too often, the

characteristics of objects that are not of interest (e.g., bird) are similar to those of threat objects

(e.g., missile). Therefore, new techniques to discriminate threat against undesired detections (e.g.

birds, etc.) are needed. We applied our ML-CATR to this important application, to recognize a

target from many target classes. We assume that the domain of target classes is known a priori (N

in Sections 4.1 and 4.2), and that the RSN is confined to work only on the known domain.

For non-fluctuating target recognition, our targets have 5 classes with different RCS values,

which are summarized in Table 1 [21]. We applied the ML-CATR algorithms in Section 4.1 (for

the non-fluctuating target case) to classify an unknown target as one of these 5 target classes.

At each average SNR value, we ran Monte-Carlo simulations for 105 times for each target. The

average SNR value is based on the average power from all targets (signal variance), so the actual

SNRs for bird and missile are much lower than the average SNR value. For example, at the

average SNR=16dB, the bird target SNR=-33.1646dB, and the missile target SNR=0.8149dB; and

at average SNR=20dB, the bird target SNR=-29.1646dB, and the missile target SNR=4.8149dB.

In Fig. 2(a)(b), we plotted the probability of the ATR error in bird and missile recognition when

they are assumed as non-fluctuating targets. These figures indicate that a single radar system can’t

perform well in both recognitions, whose probability of the ATR error is above 10%, which can’t
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be used for real-world ATR. However, the 5-radar RSN and 10-radar RSN can maintain very low

ATR errors. In Fig. 2(c), we plotted the average probability of the ATR error for all 5 targets

recognition. Since the other 3 targets (different aircrafts) have much higher SNRs, their ATR error

is lower, which makes the average probability of ATR error lower.

%%%%% Insert Table 1 here %%%%%

%%%%% Insert Figure 2 here %%%%%

For fluctuating target recognition, we assume the fluctuating targets follow the “Swerling 2”

model (Rayleigh distribution with pulse-to-pulse decorrelation), and assume the RCS value listed in

Table 1 to be the standard deviation (std) γn of RCS αn(u) for target n. We applied the ML-CATR

algorithm in Section 4.2 (for the fluctuating target case) for target recognition within the 5 targets

domain. Similarly we ran Monte-Carlo simulations at each SNR value. In Fig. 3(a)(b)(c), we

plotted the ATR performance for fluctuating targets and compared the performances of a single-

radar system, a 5-radar RSN, and a 10-radar RSN. Observe that the two RSNs perform much better

than the single radar system. The ATR error for the missile is higher than that of bird because

the Rayleigh distribution of the missile has a lot of overlap with its neighbor targets (aircrafts).

Comparing Fig. 2(a)(b)(c) to Fig. 3(a)(b)(c), it is clear that higher SNRs are needed for the

fluctuating target recognition comparing to the non-fluctuating target recognition. According to

Skolnik [21], the radar performance with a probability of recognition error (pe) less than 10% is

good enough. Our RSN with waveform-diversity can achieve a probability of ATR error much less

than 10% for each target ATR as well as the average ATR for all targets. However, the single

radar system has a probability of ATR error much higher than 10%. Fig. 3(c) also tells us that the
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average probability of ATR error of a single-radar system is impossible to be less than 10% even at

an extremely high SNR. Our RSN with waveform diversity is very promising for real-world ATR.

%%%%% Insert Figure 3 here %%%%%

5.2 Real World Application Example

We verified our approach based on a real world application example, sense-through-foliage target

detection from U.S. Air Force Research Laboratory. The target is a trihedral reflector (as shown

in Fig. 4) in a forest. We plot two collections using UWB radars in Figs. 5a and 5b. Fig. 5a has

no target on range, and Fig. 5b has target at samples around 13,900. We plot the echo differences

between Figs. 5a and 5b in Fig. 5c. However, it is impossible to identify whether there is any

target and where there is target based on Fig. 5c, which means single radar doesn’t work even

in ideal case. Since significant pulse-to-pulse variability exists in the echoes, this motivates us to

explore the spatial and time diversity using radar sensor networks approach. The echoes, i.e., RF

responses by the pulse of each cluster-member radar, are combined by the clusterhead using the

RAKE structure in Fig. 1.

%%%%% Insert Figure 4 here %%%%%

%%%%% Insert Figure 5 here %%%%%

We ran simulations for an RSN with 30 radar sensors, and plot the power of AC values in Figs.

6a and 6b for the two cases (with target and without target) respectively. Observe that in Fig.

6b, the power of AC values (around sample 13,900) where the target is located is non-fluctuating
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(monotonically increase then decrease). Although some other samples also have very high AC

power values, it is very clear that they are quite fluctuating and the power of AC values behaves

like random noise because generally the clutter has Gaussian distribution in the frequency domain.

%%%%% Insert Figure 6 here %%%%%

6 Conclusions and Future Works

We have studied the constant frequency pulse waveform design and diversity in radar sensor net-

works. We showed that the waveforms can coexist if the carrier frequency spacing is a multiple

of 1/T between two radar waveforms. We made analysis on interferences among waveforms in

RSN and proposed a RAKE structure for waveform diversity combining in RSN. As an application

example, we applied the waveform design and diversity to CATR in RSN and proposed ML-CATR

algorithms for non-fluctuating targets as well as fluctuating targets. Simulation results show that

an RSN using our waveform diversity-based ML-ATR algorithms performs much better than a sin-

gle radar system for non-fluctuating targets and fluctuating targets recognition. We also validated

our RSN approach via a real-world sense-through-foliage target detection example.

In our future research, we will investigate the CATR when multiple targets coexist in RSN, and

the number of targets are time-varying. In this paper, we used spatial diversity combining. For

multi-target ATR, we will further investigate spatial-temporal-frequency combining for waveform

diversity in RSN.
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Table 1: RCS values at microwave frequency for 5 targets.

Index n Target RCS

1 Bird 0.01

2 Conventional unmanned winged missile 0.5

3 Small single-engine aircraft 1

4 Small fighter aircraft or 4 passenger jet 2

5 Large fighter aircraft 6

22
69 of 816



List of Figures

1 Waveform diversity combining by clusterhead in RSN. . . . . . . . . . . . . . . . . . 23

2 Probability of ATR error for non-fluctuating targets at different average SNR (dB)

values. (a) bird, (b) missile, (c) the average probability of ATR error for 5 targets. . 24

3 Probability of ATR error for fluctuating targets at different average SNR (dB) values.

(a) bird, (b) missile, (c) the average probability of ATR error for 5 targets. . . . . . 25

4 The target (a trihedral reflector) is shown on the stand at 300 feet from the mea-

surement lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Measurement of UWB radar. (a) Expanded view of traces (no target) from sample

13,001 to 15,000. (b) Expanded view of traces (with target) from sample 13,001 to

15,000. (c) The differences between (a) and (b). . . . . . . . . . . . . . . . . . . . . 27

6 Power of AC values based on radar sensor networks approach. (a) No target (b)

With target in the field (in samples around 13,900). . . . . . . . . . . . . . . . . . . 28

List of Figures : 1
70 of 816



Diversity

     

 Combining 

x

x

)( 1

*

1 ttx

)( 2

*

2 ttx

x

)(*

MM
ttx

T()dt

T()dt

T()dt

),(1 tur

|| 1Z

|| 2Z

||
M
Z
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Figure 2: Probability of ATR error for non-fluctuating targets at different average SNR (dB) values.
(a) bird, (b) missile, (c) the average probability of ATR error for 5 targets.
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Figure 3: Probability of ATR error for fluctuating targets at different average SNR (dB) values.
(a) bird, (b) missile, (c) the average probability of ATR error for 5 targets.
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Figure 4: The target (a trihedral reflector) is shown on the stand at 300 feet from the measurement
lift.
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Figure 5: Measurement of UWB radar. (a) Expanded view of traces (no target) from sample
13,001 to 15,000. (b) Expanded view of traces (with target) from sample 13,001 to 15,000. (c) The
differences between (a) and (b).
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Figure 6: Power of AC values based on radar sensor networks approach. (a) No target (b) With
target in the field (in samples around 13,900).
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Biologically-Inspired Target Recognition in Radar Sensor Networks∗
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Abstract

One of the great mysteries of the brain is cognitive control. How can the interactions between

millions of neurons result in behavior that is coordinated and appears willful and voluntary?

There is consensus that it depends on the prefrontal cortex (PFC). Many PFC areas receive con-

verging inputs from at least two sensory modalities. Inspired by human’s innate ability to process

and integrate information from disparate, network-based sources, we apply human-inspired infor-

mation integration mechanisms to target detection in cognitive radar sensor network. Humans’

information integration mechanisms have been modelled using maximum-likelihood estimation

(MLE) or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar

sensor networks target detection. Discrete-cosine-transform (DCT) is used to process the in-

tegrated data from MLE or soft-max. We apply fuzzy logic system (FLS) to automatic target

detection based on the AC power values from DCT. Simulation results show that our MLE-

DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network

target detection, whereas the existing 2-D construction algorithm doesn’t work in this study.

∗Some material in this paper has been presented at International Conference on Wireless Algorithms, Systems,

and Applications, August 2009, Boston, MA.
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Index Terms : Biologically-inspired, information integration, prefrontal cortex (PFC), cog-

nitive radar sensor networks, fuzzy logic systems, automatic target recognition, maximum-

likelihood estimation.

1 Introduction and Motivation

Humans display a remarkable capability to perform visual and auditory information integration de-

spite noisy sensory signals and conflicting inputs. Humans are adept at network visualization, and

at understanding subtle implications among the network connections. To date, however, human’s

innate ability to process and integrate information from disparate, network-based sources has not

translated well to automated systems. Motivated by the above challenges, we apply human infor-

mation integration mechnisms to cognitive radar sensor networks. A cognitive network is one that

is aware of changes in user needs and its environment, adapts its behavior to those changes, learns

from its adaptations, and exploits knowledge to improve its future behavior. A cognitive radar sen-

sor network consists of multiple networked radar sensors and radar sensors sense and communicate

with each other collaboratively to complete a mission. In real world, cognitive radar sensor network

information integration is necessary in different applications. For example, in an emergency natural

disaster scenario, such as China Wenchuan earthquake in May 2008, Utah Mine Collapse in August

2007, or West Virginia Sago mine disaster in January 2006, cognitive radar sensor network-based

information integration for first responders is critical for search and rescue. Danger may appear

anywhere at any time, therefore, first responders must monitor a large area continuously in order

to identify potential danger and take actions. Due to the dynamic and complex nature of natural

disaster, some buried/foleage victims may not be found with image/video sensors, and UWB radar

sensors are needed for penetrating the ground or sense-through-wall. Unfortunately, the radar data

acquired are often limited and noisy. Unlike medical imaging or synthetic aperture radar imaging
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where abundance of data is generally available through multiple looks and where processing time

may not be crucial, practical cognitive radar sensor networks are typically the opposite: availability

of data is limited and required processing time is short. This need is also motivated by the fact that

humans display a remarkable capability to quickly perform target recognition despite noisy sensory

signals and conflicting inputs. Humans are adept at network visualization, and at understand-

ing subtle implications among the network connections. To date, however, human’s innate ability

to process and integrate information from disparate, network-based sources for situational under-

standing has not translated well to automated systems. In this paper, we apply human information

integration mechanisms to information fusion in cognitive radar sensor network.

The rest of this paper is organized as follows. In Section 2, we introduce the human infor-

mation integration mechanisms and their mathematical modeling. In Section 3, we introduce the

radar sensor network data collection. In Section 4, we apply the human information integration

mechanisms to cognitive radar sensor network. In Section 5, we apply fuzzy logic system for target

detection as a post-processing for Section 4. In Section 6, we conclude this paper.

2 Human Information Integration Mechanisms

One of the great mysteries of the brain is cognitive control. How can the interactions between

millions of neurons result in behavior that is coordinated and appears willful and voluntary? There

is consensus that it depends on the prefrontal cortex (PFC) [14][16]. A schematic diagram of some

of the extrinsic and intrinsic connections of the PFC is depicted in Fig. 1 [14]. Many PFC areas

receive converging inputs from at least two sensory modalities [3][9]. For example, the dorsolateral

(DL) (areas 8, 9, and 46) and ventrolateral (12 and 45) PFC both receive projections from visual,

auditory, and somatosensory cortex. Furthermore, the PFC is connected with other cortical regions

that are themselves sites of multimodal convergence. Many PFC areas (9, 12, 46, and 45) receive
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inputs from the rostral superior temporal sulcus, which has neurons with bimodal or trimodal

(visual, auditory, and somatosensory) responses [2][17]. The arcuate sulcus region (areas 8 and

45) and area 12 seem to be particularly multimodal. They contain zones that receive overlapping

inputs from three sensory modalities [17]. Observe, for example, that mid-dorsal area 9 directly

processes and integrates visual, auditory, and multimodal information. Regarding the functional

model/mechanisms of different PFC areas (in Fig. 1): mid-dorsal area 9, dorsolateral area 46, and

ventrolateral areas 12, 45, and orbital and medial areas 10, 11, 13, 14, different models and rules

have been reported in the literature [6][18][4][5].

Recently, a maximum-likelihood estimation (MLE) approach was proposed for multi-sensory

data fusion in human [6]. In the MLE approach [6], sensory estimates of an environmental property

can be represented by Ŝj = fi(S) where S is the physical property being estimated, f is the

operation the nervous system performs to derive the estimate, and Ŝ is the perceptual estimate.

Sensory estimates are subject to two types of error: random measurement error and bias. Thus,

estimates of the same object property from different cues usually differ. To reconcile the discrepancy,

the nervous system must either combine estimates or choose one, thereby ignoring the other cues.

Assuming that each single-cue estimate is unbiased but corrupted by independent Gaussian noise,

the statistically optimal strategy for cue combination is a weighted average [6]

Ŝc =
M∑
i=1

wiŜi (1)

where wi = 1/σ2
i�

j 1/σ2
j

and is the weight given to the ith single-cue estimate, σ2
i is that estimates

variance, and M is the total number of cues. Combining estimates by this MLE rule yields the

least variable estimate of S and thus more precise estimates of object properties.

Besides, some other summation rules have been proposed in perception and cognition such as

soft-max rule: y = (
∑M

i=1 x
n
i )

1
n [5] where xi denotes the input from an input source i, and M is the

total number of sources. In this paper, we will apply MLE and soft-max human brain information
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integration mechanisms to cognitive radar sensor network information integration.

3 Radar Sensor Networks Data Measurement and Collection

Our work is based on the sense-through-foliage UWB radar sensor networks. The foliage experiment

was constructed on a seven-ton man lift, which had a total lifting capacity of 450 kg. The limit of

the lifting capacity was reached during the experiment as essentially the entire measuring apparatus

was placed on the lift. (as shown in Fig. 2). The principle pieces of equipment secured on the lift are:

Barth pulser, Tektronix model 7704 B oscilloscope, dual antenna mounting stand, two antennas,

rack system, IBM laptop, HP signal Generator, Custom RF switch and power supply and Weather

shield (small hut). The target is a trihedral reflector (as shown in Fig. 3). Throughout this work,

a Barth pulse source (Barth Electronics, Inc. model 732 GL) was used. The pulse generator uses

a coaxial reed switch to discharge a charge line for a very fast rise time pulse outputs. The model

732 pulse generator provides pulses of less than 50 picoseconds (ps) rise time, with amplitude from

150 V to greater than 2 KV into any load impedance through a 50 ohm coaxial line. The generator

is capable of producing pulses with a minimum width of 750 ps and a maximum of 1 microsecond.

This output pulse width is determined by charge line length for rectangular pulses, or by capacitors

for 1/e decay pulses.

For the data we used in this paper, each sample is spaced at 50 picosecond interval, and 16,000

samples were collected for each collection for a total time duration of 0.8 microseconds at a rate of

approximately 20 Hz. We plot the transmitted pulse (one realization) in Fig. 4a) and the received

echos in one collection in Fig. 4b (averaged over 35 pulses). The data collections were extensive.

20 different positions were used, and 35 collections were performed at each position using UWB

radar sensor networks.

5
81 of 816



4 Human-Inspired Sense-through-Foliage Target Detection

In Figs. 5a and 5b, we plot two collections of UWB radars. Fig. 5a has no target on range, and Fig.

5b has target at samples around 13,900. We plot the echo differences between Figs. 5a and 5b in

Fig. 5c. However, it is impossible to identify whether there is any target and where there is target

based on Fig. 5c. Since significant pulse-to-pulse variability exists in the echos, this motivate us to

explore the spatial and time diversity using Radar Sensor Networks (RSN).

In RSN, the radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireline backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggests a hierarchical organization

of radar sensor networks with the lowest level in the hierarchy being a cluster. As argued in

[11] [8] [7] [19], in addition to helping with scalability and robustness, aggregating sensor nodes

into clusters has additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for

only the nodes in attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their pulse parameters such as timing to their clusterhead radar,

and the clusterhead radar can combine the echos (RF returns) from the target and clutter. In this

paper, we propose a RAKE structure for combining echos, as illustrated by Fig. 6. The integration
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means time-average for a sample duration T and it’s for general case when the echos are not in

discrete values. It is quite often assumed that the radar sensor platform will have access to Global

Positioning Service (GPS) and Inertial Navigation Unit (INU) timing and navigation data [15]. In

this paper, we assume the radar sensors are synchronized in RSN. In Fig. 6, the echo, i.e., RF

response by the pulse of each cluster-member sensor, will be combined by the clusterhead using a

weighted average, and the weight wi is determined by the two human-inspired mechanisms.

We applied the human-inspired MLE algorithm to combine the sensed echo collection from

M = 30 UWB radars, and then the combined data are processed using discrete-cosine transform

(DCT) to obtain the AC values. Based on our experiences, echo with a target generally has

high and nonfluctuating AC values and the AC values can be obtained using DCT. We plot the

power of AC values in Figs. 7a and 7b using MLE and DCT algorithms for the two cases (with

target and without target) respectively. Observe that in Fig. 7b, the power of AC values (around

sample 13,900) where the target is located is non-fluctuating (somehow monotonically increase then

decrease). Although some other samples also have very high AC power values, it is very clear that

they are quite fluctuating and the power of AC values behaves like random noise because generally

the clutter has Gaussian distribution in the frequency domain.

Similarly, we applied the soft-max algorithm (n = 2) to combine the sensed echo collection from

M = 30 UWB radars, and then used DCT to obtain the AC values. We plot the power of AC values

in Figs. 7a and 7b using soft-max and DCT algorithms for the two cases (with target and without

target) respectively. Observe that in Fig. 8b, the power of AC values (around sample 13,900) where

the target is located is non-fluctuating (somehow monotonically increase then decrease).

We made the above observations. However, in real world application, automatic target detection

is necessary to ensure that our algorithms could be performed in real time. In Section 5, we apply

fuzzy logic systems to automatic target detection based on the power of AC values (obtained via
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MLE-DCT or soft-max-DCT).

We compared our approaches to the scheme proposed in [20]. In [20], 2-D image was created

via adding voltages with the appropriate time offset. In Figs. 9a and 9b, we plot the 2-D image

created based on the above two data sets (from samples 13,800 to 14,200). The sensed data from

30 radars are averaged first, then plotted in 2-D [20]. However, it’s not clear which image shows

there is target on range.

5 Fuzzy Logic System for Automatic Target Detection

5.1 Overview of Fuzzy Logic Systems

Figure 10 shows the structure of a fuzzy logic system (FLS) [12]. When an input is applied to

a FLS, the inference engine computes the output set corresponding to each rule. The defuzzifer

then computes a crisp output from these rule output sets. Consider a p-input 1-output FLS, using

singleton fuzzification, center-of-sets defuzzification [12] and “IF-THEN” rules of the form

Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl.

Assuming singleton fuzzification, when an input x′ = {x′1, . . . , x′p} is applied, the degree of firing

corresponding to the lth rule is computed as

μFl
1
(x′1) � μFl

2
(x′2) � · · · � μFl

p
(x′p) = T p

i=1μFl
i
(x′i) (2)

where � and T both indicate the chosen t-norm. There are many kinds of defuzzifiers. In this paper,

we focus, for illustrative purposes, on the center-of-sets defuzzifier [12]. It computes a crisp output

for the FLS by first computing the centroid, cGl , of every consequent set Gl, and, then computing a

weighted average of these centroids. The weight corresponding to the lth rule consequent centroid
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is the degree of firing associated with the lth rule, T p
i=1μFl

i
(x′i), so that

ycos(x′) =

∑M
l=1 cGlT p

i=1μFl
i
(x′i)∑M

l=1 T p
i=1μFl

i
(x′i)

(3)

where M is the number of rules in the FLS. In this paper, we design a FLS for automatic target

recognition based on the AC values obtained using MLE-DCT or soft-max-DCT.

5.2 FLS for Automatic Target Detection

Observe that in Figs. 7 and 8, the power of AC values are quite fluctuating and have lots of

uncertainties. FLS is well known to handle the uncertainties. For convenience in describing the

FLS design for Automatic Target Detection (ATD), we first give the definition of footprint of

uncertainty of AC power values and region of interest in the footprint of uncertainty.

Definition 1 (Footprint of Uncertainty) Uncertainty in the AC power values and time index

consists of a bounded region, that we call the footprint of uncertainty of AC power values. It is the

union of all AC power values.

Definition 2 (Region of Interest (RoI)) An RoI in the footprint of uncertainty is a contour

consisting of a large number (greater than 50) of AC power values where AC power values increase

then decrease.

Definition 3 (Fluctuating Point in RoI) P (i) is called a fluctuating point in the RoI if P (i−

1), P (i), P (i + 1) are non-monotonically increasing or decreasing.

Our FLS for automatic target detection will classify each ROI (with target or no target) based

on two antecedents: the centroid of the ROI and the number of fluctuating points in the ROI.

The linguistic variables used to represent these two antecedents were divided into three levels: low,

moderate, and high. The consequent – the possibility that there is a target at this RoI – was divided
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into 5 levels, Very Strong, Strong, Medium, Weak, Very Weak. We used trapezoidal membership

functions (MFs) to represent low, high, very strong, and very weak ; and triangle MFs to represent

moderate, strong, medium, and weak. All inputs to the antecedents are normalized to 0–10.

Based on the fact the AC power value of target is non-fluctuating (somehow monotonically

increase then decrease), and the AC power value of clutter behaves like random noise because

generally the clutter has Gaussian distribution in the frequency domain, we design a fuzzy logic

system using rules such as:

Rl : IF centroid of a RoI (x1) is F1
l , and the number of fluctuating points in the ROI (x2) is F2

l ,

THEN the possibility that there is a target at this RoI (y) is Gl.

where l = 1, . . . , 9. We summarize all the rules in Table 1. For every input (x1, x2), the output is

computed using

y(x1, x2) =

∑9
l=1 μF1

l
(x1)μF2

l
(x2)clavg∑9

l=1 μF1
l
(x1)μF2

l
(x2)

(4)

We ran simulations to 1000 collections in the real world sense-through-foliage experiment, and

found that our FLS performs very well in the automatic target detection based on the AC power

values obtained from MLE-DCT or soft-max-DCT, and achieve probability of detection pd = 100%

and false alarm rate pfa = 0.

6 Conclusions

Inspired by human’s innate ability to process and integrate information from disparate, network-

based sources, we applied human-inspired information integration mechanisms to target detection in

cognitive radar sensor network. Humans’ information integration mechanisms have been modelled

using maximum-likelihood estimation (MLE) or soft-max approaches. In this paper, we applied

these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform
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(DCT) was used to process the integrated data from MLE or soft-max. We applied fuzzy logic

system (FLS) to automatic target detection based on the AC power values from DCT. Simulation

results showed that our MLE-DCT-FLS and soft-max-DCT-FLS approaches performed very well in

the radar sensor network target detection, whereas the existing 2-D construction algorithm couldn’t

work in this study.
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Table 1: The rules for target detection. Antecedent 1 is centroid of a RoI, Antecedent 2 is the
number of fluctuating points in the ROI, and Consequent is the possibility that there is a target at
this RoI.

Rule # Antecedent 1 Antecedent 2 Consequent
1 low low medium
2 low moderate weak
3 low high very weak
4 moderate low strong
5 moderate moderate medium
6 moderate high weak
7 high low very strong
8 high moderate strong
9 high high medium
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connections are reciprocal; the exceptions are indicated by arrows. The frontal eye field (FEF) has
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Figure 2: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.
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Figure 3: The target (a trihedral reflector) is shown on the stand at 300 feet from the lift.
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Figure 4: Transmitted pulse and received echos in one experiment. (a) Transmitted pulse. (b)
Received echos.
.
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Figure 5: Measurement with 35 pulses average. (a) Expanded view of traces (no target) from
sample 13,001 to 15,000. (b) Expanded view of traces (with target) from samples 13,001 to 15,000.
(c) The differences between (a) and (b).
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Figure 6: Echo combining by clusterhead in RSN.
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Figure 7: Power of AC values using MLE-based information integration and DCT. (a) No target
(b) With target in the field.
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Figure 8: Power of AC values using soft-max based information integration and DCT. (a) No target
(b) With target in the field.
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Figure 9: 2-D image created via adding voltages with the appropriate time offset. (a) No target
(b) With target in the field.
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Channel Selection in Virtual MIMO
Wireless Sensor Networks

Jing Liang, Student Member, IEEE, and Qilian Liang, Senior Member, IEEE

Abstract—In this paper, we present two practical algorithms
for selecting a subset of channels in virtual multiple-input–
multiple-output (MIMO) wireless sensor networks (WSNs) to bal-
ance the MIMO advantage consumption of sensor cooperation. If
intracluster node-to-node multihop needs be taken into account,
the maximum spanning tree searching (MASTS) algorithm, with
respect to the cross-layer design, always provides a path connect-
ing all sensors. When the WSN is organized in a manner of cluster-
to-cluster multihop, the singular-value decomposition-QR with
threshold (SVD-QR-T) approach selects the best subset of trans-
mitters while keeping all receivers active. The threshold is adaptive
by means of fuzzy c-means (FCM). These two approaches are com-
pared by simulation against the case without channel selection in
terms of capacity, bit error rate (BER), and multiplexing gain with
water filling or equal transmission power allocation. Despite less
multiplexing gain, when water filling is applied, MASTS achieves
higher capacity and lower BER than virtual MIMO without
channel selection at moderate-to-high signal-to-noise ratio (SNR),
whereas SVD-QR-T by FCM provides the lowest BER at high
SNR; in the case of no water filling and equal transmission power
allocation, MASTS still offers the highest capacity at moderate-
to-high SNR, but SVD-QR-T by FCM achieves the lowest BER.
Both algorithms provide satisfying performances with reduced
resource consumption.

Index Terms—Channel selection, fuzzy c-means (FCM), maxi-
mal spanning tree, singular-value decomposition-QR (SVD-QR),
virtual multiple-input–multiple-output (MIMO), wireless sensor
networks (WSNs).

I. INTRODUCTION

V IRTUAL multiple-input–multiple-output (MIMO)
communication-based wireless sensor networks (WSNs)

have intensively been studied in recent years. Constrained
by its physical size and limited battery, an individual sensor
node is allowed to accommodate only one antenna. Numerical
results show that if these sensors can be constructed into
cooperative MIMO systems, over certain distance ranges, they
may outperform single-input–single-output systems in energy
consumption [1], [2].
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Fig. 1. Cooperative clusters in multihop WSNs.

To encompass both wireless and networking communica-
tions, virtual-MIMO-based WSNs have so far been extended by
incorporating the multihop routings and hop-by-hop recovery
schemes [3], [4]. This model is shown in Fig. 1. Assume that the
multihop WSNs consist of n clusters. Here, the cluster refers
to a group of closely gathered wireless sensors that have been
cooperated as multiple transmitters or receivers. If each cluster
consists of ci, i = 1, 2, . . . , n sensor nodes, respectively, then
the radio-frequency (RF) chains for this virtual MIMO WSN
system will turn out to be

∏n
i=1 ci, which implies tremendous

circuit energy consumption, along with the increase in n. Pro-
vided that the energy and delay cost associated with the local in-
formation exchange have to be taken into account, cooperative
virtual MIMO WSN may not always guarantee to be effective.

In this paper, we investigate a methodology called channel
selection, with the aim of balancing the MIMO advantage and
the complexity of sensor cooperation. This channel-selection-
based virtual MIMO WSN model is shown in Fig. 2. It is a
common scenario that sensor nodes (denoted by circles) are
efficiently grouped into clusters by means of [5]–[8] while
cluster heads (denoted by triangles) [9] offer centralized control
over cooperative virtual MIMO channels. These cluster heads
are not subject to strict energy constrains, but others are [2].
At first, channel side information (CSI) may be obtained by
various channel estimation techniques, such as the reciprocity
principle and a feedback channel [10]. Then, channel selec-
tion may be applied through subset selection algorithms using
switches placed at either the transmitting or the receiving
cluster head, or jointly working at both ends. Therefore, the best
set of channels is selected to be active, whereas the remaining
channels are not employed. Since, at some hops, transmissions
are turned off, energy will be saved during the virtual MIMO
communications [13], [14]. If the same total transmitting power
is allocated to the best subset of channels, the performances
after channel selection such as capacity and BER may even be
better, compared to those before channel selection.

0018-9545/$25.00 © 2009 IEEE
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Fig. 2. System illustration for virtual MIMO channel selection. (a) Before
channel selection. (b) After channel selection.

It is worth mentioning that the energy consumption intro-
duced by collecting CSI is indispensable for the proper op-
eration of virtual MIMO. In [1], MIMO fading channels are
presented as a scalar matrix, which implies that CSI is assumed
to be known; however, the overhead computation for CSI is
ignored. Jayaweera [2] takes into account this extra training
energy to provide a fair comparison and demonstrates that, if
the system is designed with judicious parameters, significant
energy efficiency can be achieved after all.

This paper proposes two channel-selection algorithms for
different situations. One is the maximum spanning tree
searching (MASTS) approach; the other is singular-value
decomposition-QR with threshold (SVD-QR-T) by fuzzy
c-means (FCM). In general, Monte Carlo simulation results
show that, in spite of less multiplexing gain, when water filling
is applied, MASTS achieves higher capacity and lower BER
than virtual MIMO without channel selection at moderate-
to-high signal-to-noise ratio (SNR), whereas SVD-QR-T by
FCM provides the lowest BER at high SNR; in the case of no
water filling and equal transmission power allocation, MASTS
still offers the highest capacity at moderate-to-high SNR, but
SVD-QR-T by FCM achieves the lowest BER. Both approaches
provide satisfying performances with reduced RF resource
compared with the case without channel selection.

The remainder of this paper is organized as follows:
Section II proposes the MASTS and SVD-QR-T by FCM
algorithms with concrete examples for virtual MIMO channel
selection. Section III estimates their performances in terms of
capacity, BER, and multiplexing gain. Section IV draws the
conclusion.

II. CHANNEL-SELECTION ALGORITHM

A. Problem Formulation

Among the existing research on conventional MIMO channel
selection, four criteria have been used.

1) Capacity maximization: In previous works [15]–[17],
channel capacity is used as the optimality criterion, i.e.,
antennas that achieve the largest capacity are active.

2) Minimum error rate: Apart from maximization of capac-
ity based on the Shannon theory, Heath and Paulraj [18]
derived another criteria from the aspect of minimum error
rate when coherent receivers, either maximum likelihood,
zero forcing, or a minimum mean-square error linear
receiver is employed.

3) SNR maximization: In [19], antenna selection is per-
formed only at the receiver based on the largest in-
stantaneous SNR using space-time coding (STC). It is
analytically shown that the full diversity advantage
promised by MIMO can fully be exploited using this
criterion as long as the space-time code employed has full
spatial diversity.

4) Cross-layer optimal scheduling: In addition to the phys-
ical layer, some related works have adopted the graph
theory approach to consider the cross-layer design.
Choi et al. performed the optimal antenna assignment
for spatial multiplexing by Hungarian algorithm using
a weighted bipartite matching graph [20] and took into
account users’ quality-of-service (QoS) requirement with
a clique-searching algorithm for antenna selection [21].

Although the aforementioned criteria have provided dazzling
mathematical standards, one problem is how to accommodate
them in the WSN rather than traditional communications; the
other problem is how to encompass intracluster or intercluster
multihop connectivity to better support the networking capabil-
ity and QoS requirement.

We shall answer these questions in two steps.

1) If intracluster sensor-to-sensor multihop must be taken
into account, we suggest the MASTS algorithm based on
Kruskal’s theory [22] from the aspect of graph theory.
The idea behind the scheme is that selected channels
not only provide better channel gain but also act as a
connected path between two arbitrary sensor nodes to
perfectly serve the upper layer routing and networking.
Take Fig. 2(b) as an example; these channels denoted
by red lines have been selected based on MASTS. It is
obvious that, between any two nodes XiYj , i = 1, 2, 3,
j=1, . . . , 5; XiXj , i=1, 2, 3, j=1, 2, 3, i �=j; or YiYj ,
i = 1, . . . , 5, y = 1, . . . , 5, i �= j, there is a path connect-
ing them through single hop or multihop. Due to the
inherent link layer connectivity, MASTS can be referred
to as a cross-layer design.

2) If the WSN is organized in a manner of cluster-to-cluster
multihop (as shown in Fig. 1), we propose an SVD-QR-T
virtual MIMO channel-selection approach employing
FCM to virtually provide an adaptive threshold. Since
current multihop theory and routing algorithms can be
applied by the upper layers, we only focus on the physical
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Fig. 3. Graphic channel model for virtual MIMO.

Fig. 4. Examples of spanning trees for a 3× 5 virtual MIMO.

layer design. This approach selects the rt×Mr best
subsets of channels (see Section II-C1 for rt; Mr is
the number of receivers) while keeping rt transmitting
sensors and all of the receiving sensors active.

B. MASTS

1) MASTS Design: A virtual MIMO communication sce-
nario can simply be presented by equation Y = HX + n,
where H is an Mr ×Mt channel matrix and n denotes
the random Gaussian noise. The MIMO channel model with
Mt transmitting sensors and Mr receiving nodes is shown in
Fig. 3, where each receiver observes a superposition of the
Mt transmitted signals corrupted by the flat fading and addi-
tive white Gaussian noise. Each hij , where i = 1, 2, . . . ,Mr

and j = 1, 2, . . . ,Mt, represents the channel gain from
transmitter j to receiver i [23], which is assumed to be Rayleigh
independent identically distributed (i.i.d.). The additive noise
also has i.i.d. entries nj ∼ CN (0, σ2). From the aspect of
graph theory, the vertex set and edge set consist of sensors and
channels, respectively, and Fig. 3 shows a connected graph [24],
i.e., there is a path connecting two arbitrary nodes, with hij

denoting its edge weight.
Global connectivity is usually required for WSNs [25], [26].

When node-to-node multihop needs to be considered, the chan-
nel selection scheme has to incorporate routing connectivity
inside a cluster, aside from pure physical communications.
A spanning tree [24] suggests an algorithm in which, in an
arbitrary graph, all the vertices are connected with the minimum
necessary edges, i.e., there is no isolated vertices under the
condition of the least possible edge number. For example, when
Mt = 3 and Mr = 5, some of the possible spanning trees are
shown in Fig. 4.

Fig. 5. MASTS algorithm.

The MASTS approach is to compute a spanning tree with
the maximum sum of edge weight, i.e., to select the maximum
sum of channel gain while realizing the connectivity of all
the sensors. Note that, for an arbitrary graph of n vertices, its
spanning tree consists of n vertices and n− 1 edges [24]. Since
there areMt+Mr vertices, the number of edges to be selected
by the MASTS algorithm is a fixed Mt+Mr − 1, which
means that MASTS always chooses Mt+Mr − 1 channels.
The MASTS algorithm can be presented in three steps.

Step 1: Select the three edges with the highest weight and
their vertices.

Step 2: Enlarge the subgraph by edges with decreasing
weight, and make sure that no cycles are formed.

Step 3: Continue Step 2 until the number of edges in the
enlarged subgraph is equal to Mt+Mr − 1. This
final subgraph is the spanning tree with the maxi-
mum sum of weight.

2) Example of MASTS: As a virtual MIMO graph contains
the same information as that of channel gain matrix H, we
illustrate the MASTS algorithm in Fig. 5 and though matrices
HbHcHdHeHg .

Fig. 5(a) shows the original virtual MIMO graph. Fig. 5(b)
shows the subgraph with the three highest edge weights. These
edges are denoted by 〈〉 in matrix Hb, i.e.,

Hb =

⎡
⎢⎢⎢⎣

0.6211 〈0.7536〉 0.6595
0.5602 〈0.6596〉 0.1834
0.2440 0.2141 0.6365
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

⎤
⎥⎥⎥⎦ .

This is Step 1.
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Note that, among the three selected entries, 0.8220 has a
different row index from that of 0.7536 or 0.6595, so enlarging
this subgraph with any of the remaining edges will absolutely
not form a cycle.

Thus, the second step starts with selecting the edge with
the fourth highest weight, which is shown in Fig. 5(c) and by
matrix Hc, i.e.,

Hc =

⎡
⎢⎢⎢⎣

0.6211 〈0.7536〉 〈0.6595〉
0.5602 〈0.6596〉 0.1834×
0.2440 0.2141 0.6365
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

⎤
⎥⎥⎥⎦ .

Note that, after the selection of entry 0.6595, entry 0.1834
will no longer be selected; else, a cycle X2Y1X3Y2 will form.
Thus, we note entry 0.1834 with “×” and use a dashed line
to represent the unavailability of the corresponding edge in
Fig. 5(c). This implies the following criteria:

Criteria: Any four entries with index (i, j)(i, q)(p, j)(p, q),
where i, p ≤Mr, i �= p; j, q ≤Mt, j �= q, form a cycle. If
any three have been selected, the remaining one should be
eliminated.

Based on this condition, we continually select entries as
shown in Fig. 5(d)–(f) and matrices HdHeHf , i.e.,

Hd =

⎡
⎢⎢⎢⎣

0.6211 〈0.7536〉 〈0.6595〉
0.5602 〈0.6596〉 0
0.2440 0.2141× 〈0.6365〉
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

⎤
⎥⎥⎥⎦

He =

⎡
⎢⎢⎢⎣

〈0.6211〉 〈0.7536〉 〈0.6595〉
0.5602× 〈0.6596〉 0
0.2440× 0 〈0.6365〉
〈0.8220〉 0.6021× 0.1703×
0.2632 0.6049 0.5396

⎤
⎥⎥⎥⎦

Hg =

⎡
⎢⎢⎢⎣

0.6211 0.7536 0.6595
0 0.6596 0
0 0 0.6365

0.8220 0 0
0 0.6049 0

⎤
⎥⎥⎥⎦ .

As we only have to select 3 + 5 − 1 = 7 edges, the edges
shown in Fig. 5(f) represented by nonzero entries in matrix Hg

are the channels finally selected.

C. SVD-QR-T by FCM

1) SVD-QR-T Design: When cluster-to-cluster multihop
turns out to be a major concern and intracluster node-to-node
multihop can be ignored, the SVD-QR-T by FCM may work
as a practical virtual MIMO channel-selection approach for the
physical layer, and multihop theory and routing algorithms can
be applied by the upper layers. Singular value decomposition
(SVD) has been applied to MIMO channel decomposition in
[23] and [27], and sensor node selection in [28]. However, these
studies are theoretical analysis only, and no algorithm about
which channels will physically be selected in practice has been
proposed.

We propose SVD-QR-T in three steps.

1) Given the channel gain matrices H ∈ RMr×Mt and
r = rank(H) ≤ min(Mt,Mr), determine a numerical
estimate rt of the rank r by calculating the SVD, i.e.,

H = UΣVT (1)

where U is an Mr ×Mr matrix of orthonormalized
eigenvectors of HHT , V is an Mt×Mt matrix of
orthonormalized eigenvectors of HT H, and Σ is the di-
agonal matrix Σ = diag(σ1, σ2, . . . , σi, . . . , σr), where
σi =

√
λi. λi is the ith eigenvalue of HHT , and σi is

the singular value of H and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
In many practical cases, σ1, σ2, . . . , σrt are much larger
than σrt+1, . . . , σr; thus, we may set a threshold to pick
up valuable σi, i = 1, 2, . . . , rt, and discard those trivial
singular values to save resource but maintain a satisfying
performance. Sometimes, rt can be much smaller than
rank r, e.g., even 1. In this paper, we use FCM to
determine rt.

2) Partition

V =
[
V11 V12

V21 V22

]
(2)

where V11 ∈ Rrt×rt, V12 ∈ Rrt×(Mt−rt), V21 ∈
R(Mt−rt)×rt, and V22 ∈ R(Mt−rt)×(Mt−rt).

3) Using QR decomposition with column pivoting,
determine E such that

[
VT

11,V
T
21

]
E = QR (3)

where Q is a unitary matrix, R ∈ Rrt×Mt forms an upper
triangular matrix with decreasing diagonal elements, and
E is the permutation matrix. The positions of 1 in the
first rt columns of E correspond to the rt ordered most
significant transmitters.

2) FCM—Unsupervised Clustering for Adaptive Threshold:
In this section, we propose the FCM clustering approach to
divide singular values σ1, σ2, . . . , σr into two clusters that
provide a virtual adaptive threshold so the cluster with higher
center would remain for active channels.

FCM clustering is a data clustering technique where each
data point belongs to a cluster to a certain degree specified by a
membership grade. This technique was originally introduced by
Bezdek [29] as an improvement on earlier clustering methods.
Here, we briefly summarize it.

Definition 1 (Fuzzy C-Partition): Let X = x1, x2, . . . , xn be
any finite set, Vcn be the set of real c× n matrices, and c be an
integer, where 2 ≤ c < n. The fuzzy c-partition space for X is
the set

Mfc = U ∈ Vcn|uik ∈ [0, 1] ∀i, k (4)

where
∑c

i=1 uik = 1∀k, and 0 <
∑n

k=1 uik < n∀i. Row i of
matrix U ∈Mfc contains values of the ith membership func-
tion ui in the fuzzy c-partition U of X.
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Definition 2 (FCM Functionals) [29]: Let Jm: Mfc ×
Rcp → R+ be

Jm(U,v) =
n∑

k=1

c∑
i=1

(uik)m(dik)2 (5)

where U ∈Mfc is a fuzzy c-partition of X; v = (v1,v2, . . . ,
vc) ∈ Rcp, where vi ∈ Rp, is the cluster center of prototype
ui, 1 ≤ i ≤ c; and

(dik)2 = ‖xk − vi‖2 (6)

where, in turn, ‖ · ‖ is any inner product induced norm on Rp,
weighting exponential m ∈ [1,∞), and uik is the membership
of xk in fuzzy cluster ui. Jm(U,v) represents the distance
from any given data point to a cluster weighted by that point’s
membership grade.

The solutions of

min
U∈Mfc,v∈Rcp

Jm(U,v) (7)

are the least squared error stationary points of Jm. An in-
finite family of fuzzy clustering algorithms—one for each
m ∈ (1,∞)—is obtained using the necessary conditions for
solutions of (7), as summarized in the following:

Theorem 1 [29]: Assuming ‖ · ‖ to be an inner product
induced norm, fixm ∈ (1,∞), let X have at least c < n distinct
points, and define the sets (∀k)

Ik = {i|1 ≤ i ≤ c; dik = ‖xk − vi‖ = 0} (8)

Ĩk = {1, 2, · · · , c} − Ik. (9)

Then, (U,v) ∈Mfc ×Rcp is globally minimal for Jm only
if (φ denotes an empty set)

Ik = φ⇒ uik = 1

/⎡
⎣ c∑

j=1

(
dik

djk

)2/(m−1)
⎤
⎦ (10)

or

Ik �=φ⇒ uik = 0 ∀i ∈ Ĩk and
∑
i∈Ik

uik = 1 (11)

vi =
n∑

k=1

(uik)mxk

/
n∑

k=1

(uik)m ∀i. (12)

Bezdek proposed the iterative method presented here [29] to
minimize Jm(U,v).

1) Fix c, 2 ≤ c < n; choose any inner product norm metric
for Rp; and fix m, 1 ≤ m <∞. Initialize U(0) ∈Mfc

(e.g., randomly choose its elements from the values
between 0 and 1).

2) Then, at step l(l = 1, 2, . . .), calculate the c fuzzy cluster
centers v(l)

i using (12) and U(l).
3) Update U(l) using (10) or (11).
4) Compare U(l) and U(l−1) using a convenient matrix

norm: If ‖U(l) − U(l−1)‖ ≤ εL, stop; otherwise, return
to Step 2.

3) Example of SVD-QR-T by FCM: We use the example
given here to illustrate the application of SVD-QR-T by FCM
to MIMO-WSN channel selection.

Step 1: Assume that the estimated channel gain is

H =

⎡
⎢⎢⎢⎣

0.6211 0.7536 0.6595
0.5602 0.6596 0.1834
0.2440 0.2141 0.6365
0.8220 0.6021 0.1703
0.2632 0.6049 0.5396

⎤
⎥⎥⎥⎦

which is the same as that in MASTS. By matrix
computation, we get

V =

⎡
⎣−0.5856 −0.5075 −0.6321
−0.6574 −0.1589 0.7366
−0.4743 0.8469 −0.2406

⎤
⎦

diag = (Σ) = (2.0017, 0.6347, 0.2572).

Use FCM to divide diag(Σ) into two clusters,
we get

v =
[

2.0010
0.4445

]

U =
[

1.0000 0.0190 0.0114
0.0000 0.9810 0.9886

]
.

Entry 1.0000 at U means that the membership
degree of 2.0017 belonging to the cluster with center
2.0010 is 1.0000. Therefore, the cluster with higher
center is composed of only 2.0017; then, 2.0017 is
chosen, and rt = 1.

Step 2: Obtain V11 and V21 from V, i.e.,

V11 = −0.5856

V21 =
[−0.6574
−0.4743

]
.

Based on [VT
11V

T
21], get E by QR as

E =

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦ .

As rt = 1, choose the first column of E as

E(:, rt) =

⎡
⎣ 0

1
0

⎤
⎦

Step 3: Analyzing E(:, rt), 1 appears on the second row;
thus, the second column of H is selected to construct
Hs, which is

Hs =

⎡
⎢⎢⎢⎣

0 0.7536 0
0 0.6596 0
0 0.2141 0
0 0.6021 0
0 0.6049 0

⎤
⎥⎥⎥⎦ .
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This implies that the channels to be selected are
those that connect the second transmitting sensor
and all the receiving sensors, i.e., the cluster head
would select transmitter 2 and all the receivers to
be active while not employing other transmitting
sensors.

As we may see, the row index in which 1 appears in
E(:, rt) particularly determines which transmitters to be
selected, so, with regard to SVD-QR-T by FCM, rt×Mr

channels are selected to be active.
Note that the transmitting nodes are reduced due to the typi-

cally doubled power consumption in transmit mode [30], [31].
In any case that the receiving sensors spend more energy than
the transmitters, we may simply apply the preceding approach
into a transposed channel gain matrix HT , and some receivers
will be turned off.

III. PERFORMANCE ANALYSIS

In the previous section, we have illustrated our proposed
channel-selection approaches step by step. In this section, we
would like to discuss the capacity, bit error rate (BER), and
multiplexing gain of virtual MIMO after applying the MASTS
and SVD-QR-T by FCM approaches with and without water
filling.

A. Capacity

When both channel state information at the transmitter
(CSIT) and channel state information at the receiver (CSIR) are
known, the water-filling technique can be utilized to optimally
allocate power Pi at the independent parallel channel i [23].
The sum of capacities on each of these independent parallel
channels is the maximal capacity of the virtual MIMO. This
capacity can be expressed as

C = max∑
Pi≤P

r∑
i=1

B log2

(
1 +

Pi

σ2
λi

)
(13)

where P is the total power constraint for transmitting sensors,
r is the rank of H, and λi is the eigenvalue of HHT . Since
the SNR at the ith channel at full power is SNRi = λiP/σ

2,
the capacity (13) can also be given in terms of the power
allocation Pi as

C = max∑
Pi≤P

r∑
i=1

B log2

(
1 +

Pi

P
SNRi

)
(14)

where

Pi

P
=
{

1/SNR0 − 1/SNRi, SNRi ≥ SNR0

0, SNRi < SNR0
(15)

for some cutoff value SNR0. The final capacity is given as

C =
∑

SNRi≥SNR0

B log2

(
SNRi

SNR0

)
. (16)

The value of SNR0 must numerically be found, owing to the
nonexistence of a closed-form solution for continuous distri-
butions of SNR [32]. Due to the randomness of the channel
gain matrix, we employ Monte Carlo simulations to analyze
the capacity performances on MASTS and SVD-QR-T by FCM
with five steps.

1) Use Jake’s model [33] to randomly generate an indepen-
dent Mt ×Mr Rayleigh channel model.

2) Follow the MASTS and SVD-QR-T by FCM channel
selection algorithms, respectively, to select the channels.

3) Obtain eigenvalue λig and its rank rg for Hg . Note that
λig is totally different from the λi of H. Similarly, we can
obtain λis and rs for Hs.

4) Assuming B = 1 Hz, calculate the capacity for the three
virtual MIMO systems based on (13)–(16).

5) Apply Monte Carlo simulations 10 000 times, and obtain
the average value for different values of the SNR.

The simulation result is shown in Fig. 6(a). It shows that,
when the SNR is lower than 5 dB, SVD-QR-T by FCM provides
a larger capacity than MASTS, but both of them are smaller
than virtual MIMO without channel selection. Nevertheless,
MASTS grows larger than a full virtual MIMO when the SNR
reaches around 8.5 dB. It clearly shows that MASTS can offer
the largest capacity at high SNR.

It is not always the case that both CSIT and CSIR are known.
If only CSIR is obtained, water-filling power optimization
cannot be applied, and we may simply allocate equal power to
each transmitter; therefore, the capacity becomes

C =
r∑

i=1

B log2

(
1 +

SNRi

Mt

)
. (17)

Here, we also apply Monte Carlo simulations 10 000 times
to obtain the average capacity for these three systems, respec-
tively, which is shown in Fig. 6(b).

It shows that SVD-QR-T by FCM provides a higher capacity
than a virtual MIMO without channel selection if the SNR is
less than 10 dB and a higher capacity than that of MASTS if
the SNR is less than 2.5 dB. MASTS outweighs virtual MIMO
without channel selection in capacity from 0 dB, and this
advantage is more obvious, along with the increase in SNR. The
advantage of MASTS in capacity at high SNR lies in the fact
that the maximum channel gain is one of the selection goals.
The advantage of SVD-QR-T by FCM over virtual MIMO
without channel selection at low SNR is due to the optimized
power allocation.

B. BER

Assuming binary phase-shift keying (BPSK) is used for mod-
ulation and maximal ratio combining is employed for diversity
combination, then the BER is [34]

Pb =
(

1 − μ

2

)L L−1∑
k=0

(
L−1+k

k )(
1+μ

2 )k (18)
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Fig. 6. Capacity for a 4 × 4 virtual MIMO (a) with and (b) without water
filling.

where

μ =

√
P
σ2

1 + P
σ2

. (19)

However, for clarity and mathematical simplicity, in our
study, we do not apply any STC. Since no diversity gain is
adopted, BER can be denoted as

Pb =
1
r

r∑
i=1

⎛
⎝1 −

√
SNRi

1+SNRi

2

⎞
⎠ . (20)

The Monte Carlo simulation results for BER are shown in
Fig. 7. In Fig. 7(a), water filling is adopted. SVD-QR-T by FCM
offers lower BER than virtual MIMO without channel selection
when the SNR is higher than about 7 dB. It also provides the
lowest BER after the SNR grows to 13 dB. MASTS achieves
the lowest BER when the SNR is in the range of 1.3–13.3 dB.

Fig. 7. BER for a 4 × 4 virtual MIMO employing BPSK (a) with and
(b) without water filling.

Fig. 7(b) shows the situation without water filling. The ad-
vantage of SVD-QR-T by FCM is better demonstrated in this
situation, whereas MASTS outperforms virtual MIMO without
channel selection when the SNR is lower than around 16 dB.
This is because SVD-QR-T by FCM chooses the best subset of
equivalent parallel channels, so that the SNRi allocated at each
parallel is larger than that of MASTS and full virtual MIMO, as
P/σ2 grows larger.

C. Multiplexing Gain

The maximal multiplexing gain is the number of equivalent
multiple parallel spatial channels [35]. It is also referred to as
the degrees of freedom to communicate [36], which is related
to the row and column numbers of H, Hg , and Hs. It has been
derived in [36] that the maximal multiplexing gain provided by
Mr ×Mt MIMO is

MG = min(Mt,Mr). (21)
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However, the accurate multiplexing gain is

MG = rank(H) (22)

since it is possible that H is not of full rank. As SVD-QR-T
by FCM selects rt transmitters and all receivers, the maximal
multiplexing gain offered by SVD-QR-T by FCM is

MGs = min(rt,Mr). (23)

Note that rt ≤ r ≤Mr; therefore, the accurate multiplexing
gain for SVD-QR-T by FCM is

MGs = rt. (24)

Concerning MASTS, all transmitting and receiving sensors are
active, and the maximal multiplexing gain is

MGg = rank(Hg). (25)

If water filling is applied, less multiplexing gain will be
offered, as some singular values with SNR lower than SNR0

will be cut off.
Under the premise that H is of full rank, we obtain the

multiplexing gain simulation result in Fig. 8. In case of water
filling, Fig. 8(a) shows that, when Mt = Mr = 10, the multi-
plexing gains for MASTS and SVD-QR-T by FCM are 4 and
3.5, respectively, if the SNR is 0 dB. They increase to 8.2 and 5,
respectively, if the SNR becomes 20 dB in Fig. 8(b). Note that,
although, along the increase in SNR, the multiplexing gain of
both algorithms increases, this characteristic is more obvious
for MASTS. In case of no water filling, the SNR does not have
an impact on the multiplexing gain. The simulation result is
shown in Fig. 8(c).

IV. CONCLUSION

This paper is a preliminary work on the virtual MIMO
channel-selection problem in practice. Two approaches with
concrete examples are proposed from the aspect of pure physi-
cal design and cross-layer consideration, respectively. We have
not only presented the channel-selection algorithms but have
also provided a detailed performance analysis with Monte Carlo
simulations. We demonstrate that, under the same total trans-
mission power constraint, either with or without water filling,
the virtual MIMO after MASTS channel selection can offer
higher capacity than full virtual MIMO at moderate-to-high
SNR, whereas SVD-QR-T by FCM can provide the lowest BER
performance at moderate-to-high SNR. The major limitation of
this work is that the proposed two approaches are based on a
quasi-static channel environment and feasible CSI.

Future research tracks might concern the following: 1) the
extension of the proposed algorithm to integrate with STC
to exploit spatial diversity to further optimize system perfor-
mances and 2) application of channel-selection approaches to
radar sensor networks [37].

Fig. 8. Multiplexing gain with water filling at (a) SNR = 0 dB and (b) SNR =
20 dB, and (c) without water filling.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 13:47 from IEEE Xplore.  Restrictions apply. 

110 of 816



LIANG AND LIANG: CHANNEL SELECTION IN VIRTUAL MIMO WIRELESS SENSOR NETWORKS 2257

REFERENCES

[1] S. Cui and A. Goldsmith, “Energy-efficiency of MIMO and cooperative
MIMO techniques in sensor networks,” IEEE J. Sel. Areas Commun.,
vol. 22, no. 6, pp. 1089–1098, Aug. 2004.

[2] S. K. Jayaweera, “Virtual MIMO-based cooperative communication for
energy-constrained wireless sensor networks,” IEEE Trans. Wireless
Commun., vol. 5, no. 5, pp. 984–989, May 2006.

[3] A. del Coso, U. Spagnolini, and C. Ibars, “Cooperative distributed MIMO
channels in wireless sensor networks,” IEEE J. Sel. Areas Commun.,
vol. 25, no. 2, pp. 402–414, Feb. 2007.

[4] Y. Yuan, Z. He, and M. Chen, “Virtual MIMO-based cross-layer design
for wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 55, no. 3,
pp. 856–864, May 2006.

[5] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor
networks: A hybrid, energy-efficient approach,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Hong Kong, Mar. 2004, pp. 629–640.

[6] T. J. Kwon and M. Gerla, “Clustering with power control,” in Proc. Mil.
Commun. Conf., Atlantic City, NJ, Nov. 1999, pp. 1424–1428.

[7] S. Bandyopadhyay and E. Coyle, “An energy-efficient hierarchical cluster-
ing algorithm for wireless sensor networks,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), San Francisco, CA, Apr. 2003, pp. 1713–1723.

[8] A. D. Amis, R. Prakash, T. H. P. Voung, and D. T. Huynh, “Max-
min d-cluster formation in wireless ad hoc networks,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Tel-Aviv, Israel, Mar. 2000,
pp. 32–41.

[9] Q. Liang, “Clusterhead election for mobile ad hoc wireless network,” in
Proc. IEEE Int. Symp. PIMRC, Beijing, China, Sep. 2003, pp. 1623–1628.

[10] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit
beamforming,” in Handbook of Antennas in Wireless Communications,
L. C. Godara, Ed. Boca Raton, FL: CRC, 2001.

[11] Q. Ling and T. Li, “Blind MIMO channel estimation based on structured
transmit delay,” in Proc. IEEE ICASSP, Toulouse, France, May 2006,
pp. 761–764.

[12] T. Li, Q. Ling, and Z. Ding, “Space-time diversity design for blind esti-
mation and equalization over frequency selective channels,” in Proc. IEEE
ICASSP, Philadelphia, PA, Mar. 2005, pp. iii/441–iii/444.

[13] D. A. Gore and A. J. Paulraj, “MIMO antenna subset selection with space-
time coding,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2580–
2588, Oct. 2002.

[14] A. Gorokhov, D. A. Gore, and A. J. Paulraj, “Receive antenna selection
for MIMO flat-fading channels: Theory and algorithms,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2687–2696, Oct. 2003.

[15] A. F. Molisch, M. Z. Win, and J. H. Winters, “Capacity of MIMO systems
with antenna selection,” in Proc. Int. Conf. Commun., 2001, pp. 570–574.

[16] D. A. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of
transmit antennas for a low rank matrix channel,” in Proc. Int. Conf.
Acoust., Speech, Signal Process., 2000, pp. 2785–2788.

[17] S. Sandhu, R. U. Nabar, D. A. Gore, and A. Paulraj, “Near op-
timal antenna selection of transmit antennas for a MIMO channel
based on Shannon capacity,” in Proc. 34th Asilomar Conf., Nov. 1999,
pp. 567–571.

[18] R. W. Heath, Jr. and A. Paulraj, “Antenna selection for spatial multiplexing
systems based on minimum error rate,” in Proc. IEEE Int. Control Conf.,
2001, pp. 2276–2280.

[19] I. Bahceci, T. M. Duman, and Y. Altunbasak, “Antenna selection for
multiple-antenna transmission systems: Performance analysis and code
construction,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2669–2681,
Oct. 2003.

[20] Y. J. Choi, J. Kim, and S. Bahk, “Downlink scheduling with fairness and
optimal antenna assignment for MIMO cellular systems,” in Proc. Global
Telecommun. Conf., 2004, vol. 5, pp. 3165–3169.

[21] Y. J. Choi, J. Kim, and S. Bahk, “Optimal antenna assignment considering
QoS under MIMO environments,” in Proc. IEEE Int. Conf. Commun.,
Jun. 2004, vol. 7, pp. 4216–4221.

[22] J. B. Kruskal, “On the shortest spanning subtree and the traveling sales-
man problem,” in Proc. Amer. Math. Soc., 1956, vol. 7, pp. 48–50.

[23] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2001.

[24] D. B. West, Introduction to Graph Theory, 2nd ed. New Delhi, India:
Prentice–Hall, 2005.

[25] X. Cheng et al., “Strong minimum energy topology in wireless sensor net-
works: NP-completeness and heuristics,” IEEE Trans. Mobile Comput.,
vol. 2, no. 3, pp. 248–256, Jul.–Sep. 2003.

[26] X. Cheng et al., “Polynomial-time approximation scheme for minimum
connected dominating set in ad hoc wireless networks,” Networks, vol. 42,
no. 4, pp. 202–208, 2003.

[27] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to nonlinear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873–1896, 1989.

[28] Q. Liang and L. Wang, “Redundancy reduction in wireless sensor net-
works using SVD-QR,” in Proc. IEEE Mil. Commun. Conf., Atlantic City,
NJ, Oct. 2005, pp. 1857–1861.

[29] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function
Algorithms. New York: Plenum, 1981.

[30] S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware routing in
mobile ad hoc networks,” in Proc. ACM/IEEE MOBICOM, 1998,
pp. 181–190.

[31] M. Stemm and R. Katz, “Measuring and reducing energy consumption
of network interfaces in hand-held devices,” in Proc. 3rd Int. Workshop
Mobile Multimedia Commun., Sep. 1996, pp. 1–7.

[32] M.-S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading chan-
nels under different adaptive transmission and diversity-combining tech-
niques,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1165–1181,
Jul. 1999.

[33] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-
Hill, 2001.

[34] G. L. Stüber, Principles of Mobile Communication, 2nd ed. Norwell,
MA: Kluwer, 2001.

[35] R. Heath, Jr. and A. Paulraj, “Switching between multiplexing and diver-
sity based on constellation distance,” in Proc. Allerton Conf. Commun.,
Control Comput., Oct. 2000, pp. 212–221.

[36] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental
tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49,
no. 5, pp. 1073–1096, May 2003.

[37] J. Li and P. Stoica, “MIMO radar-diversity means superiority,” in Proc.
14th Ann. Workshop Adaptive Sensor Array Process., Lexington, MA,
Jun. 2006.

Jing Liang (S’06) received the B.S. and M.S.
degrees from Beijing University of Posts and Tele-
communications, Beijing, China, in 2003 and 2006,
respectively, both in electrical engineering. She is
currently working toward the Ph.D. degree in elec-
trical engineering with the Department of Electrical
Engineering, University of Texas, Arlington.

Her current research interests include radar sen-
sor networks, collaborative and distributed signal
processing, wireless communications, wireless net-
works, and fuzzy logic systems.

Qilian Liang (M’01–SM’05) received the B.S. de-
gree from Wuhan University, Wuhan, China, in 1993,
the M.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 1996, and
the Ph.D. degree from the University of Southern
California, Los Angeles, in May 2000, all in elec-
trical engineering.

Since August 2002, he has been with the Depart-
ment of Electrical Engineering, University of Texas,
Arlington (UTA), where he is currently an Associate
Professor. Prior to that, he was a Member of Techni-

cal Staff with Hughes Network Systems Inc., San Diego, CA. He is the author of
more than 130 journal and conference proceeding papers and six book chapters.
He is also the holder of six pending U.S. patents. His research interests include
sensor networks, wireless communications, wireless networks, communication
systems and communication theory, signal processing for communications,
fuzzy logic systems and applications, and collaborative and distributed signal
processing.

Dr. Liang was the recipient of the 2002 IEEE TRANSACTIONS ON FUZZY

SYSTEMS Outstanding Paper Award, the 2003 U.S. Office of Naval Research
Young Investigator Award, the 2005 UTA College of Engineering Outstanding
Young Faculty Award, and the 2007 U.S. Air Force Summer Faculty Fellowship
Program Award.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 13:47 from IEEE Xplore.  Restrictions apply. 

111 of 816



KUPS: Knowledge-Based
Ubiquitous and Persistent
Sensor Networks for Threat
Assessment

QILIAN LIANG, Senior Member, IEEE
University of Texas at Arlington

XIUZHEN CHENG, Member, IEEE
The George Washington University

We propose a knowledge-based ubiquitous and persistent

sensor network (KUPS) for threat assessment, in which

“sensor” is a broad characterization. It refers to diverse data

or information from ubiquitous and persistent sensor sources

such as organic sensors and human intelligence sensors. Our

KUPS for threat assessment consists of two major steps: situation

awareness using fuzzy logic systems (FLSs) and threat parameter

estimation using radar sensor networks (RSNs). Our FLSs

combine the linguistic knowledge from different intelligent

sensors, and our proposed maximum-likelihood (ML) estimation

algorithm performs target radar cross section (RCS) parameter

estimation. We also show that our ML estimator is unbiased and

the variance of parameter estimation matches the Cramer-Rao

lower bound (CRLB) if the radar pulses follow the Swerling II

model. Simulations further validate our theoretical results.
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I. INTRODUCTION AND MOTIVATION

In current and future military operational
environments, such as global war on terrorism
(GWOT) and maritime domain awareness (MDA),
warfighters require technologies evolved to support
information needs regardless of location and
consistent with the user’s level of command or
responsibility and operational situation. To support
this need, the U.S. Department of Defense (DoD)
has developed the concept of network centric warfare
(NCW), defined as “military operations that exploit
state-of-the-art information and networking technology
to integrate widely dispersed human decision makers,
situational and targeting sensors, and forces and
weapons into a highly adaptive, comprehensive system
to achieve unprecedented mission effectiveness” [1].
The DoD has defined three levels of data fusion

for NCW. the level 1 data fusion combines data from
single or multiple sensors and sources to provide the
best estimate of objects and events in the battlespace
in terms of their position, kinematics (e.g. tracks),
identity, or identification features. In [14], decision
fusion rules were studied in multi-hop wireless
sensor networks. In [10], a fuzzy logic approach for
postdetection signal integration and detection was
proposed, and a functional paradigm for fuzzy data
fusion was presented in [25]. However, too often
in level 1 data fusion, the characteristics of objects
that are not of interest will be similar to those of
threat objects. The conventional approach to false
alarm control is to reduce sensitivity of the radar in
areas of clutter, using sensitivity time control (STC)
[26]. In [11], we proposed a maximum-likelihood
(ML) automatic target recognition (ATR) algorithm
using constant frequency (CF) waveform design
and diversity, assuming perfect delay and Doppler.
In [12], we applied linear frequency modulation
(LFM) waveform design and diversity to ATR with
delay-Doppler uncertainty. Level 2 data fusion focuses
on situation assessment. This requires recognition of
objects/entities in the regions of interest, as well as
recognizing activities of these objects, and inferring
their relationships. Level 3 data fusion is threat
assessment, which requires inferring the intent of
objects/entities, or groups of objects, in the regions
of interest. Higher level data fusion also needs lower
level data fusion results. In level 2/3 data fusion,
some works have been reported. A situation/threat
assessment fusion system was proposed in [3].
Other approaches include multiple attribute decision
making [4], Bayesian networks [21], etc. In [6], an
intelligent threat assessment processor using genetic
algorithms and fuzzy logic was proposed. In [20],
threat assessment was studied in tactical airborne
environments. In [9], neural network was applied to
threat assessment for automated visual surveillance.
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In [5], an intelligent assistant to provide automatic
situation and threat advice in the Air Defence Ground
Environment was proposed. In [2], a situation and
threat assessment model based on group analysis was
studied.
Despite these above advances, current shortfalls

in warfighting functionality result from limitations
in technology. For example, accurate and timely
information about battlespace objects and events
is not available to support warfighter decision
making (including reliable location, tracking, combat
identification, and targeting information). While
massive amounts of data will be generated by
penetrating persistent sensors, warfighters require
technologies that not only integrate information
from diverse sources but also provide indications
of information significance in ways that support
the user’s tactical decision needs regardless of
location and are consistent with the user’s level of
command or responsibility and operational situation.
Assuming the availability of object track and identity
information, automated decision tools that transform
this information into actionable knowledge for
the decision maker are required. The tools and
technologies to resolve these shortfalls must address
data fusion, particularly at levels 2/3 [1]. In this
paper, we propose a knowledge-based ubiquitous
and persistent sensor network (KUPS) for threat
assessment.
The rest of this paper is organized as follows. In

Section II, we introduce the new concept of KUPS,
and in Section III, we propose knowledge-based
situation awareness using intelligence (INT) sensors.
In Section IV, we propose a fine target recognition
and threat assessment scheme that employs an ML
estimation algorithm for threat target radar cross
section (RCS) parameter estimation using radar sensor
networks (RSNs). Finally, we conclude this paper and
discuss future research directions in Section V.

II. INTRODUCTION TO KNOWLEDGE-BASED
UBIQUITOUS AND PERSISTENT SENSOR
NETWORKS: A NEW CONCEPT

In this paper, we propose an NCW model entitled
knowledge-based ubiquitous and persistent sensor
network (KUPS), in which “sensor” is a broad
characterization concept. It means ubiquitous and
persistent sensors sources such as the following.

1) Organic sensors (e.g., radar, electro-optic and
infrared, acoustic, and nonacoustic) deployed on air,
ground, surface, or unattended platforms.
2) Signal intelligence (SIGINT) including

electronic intelligence (ELINT) and communication
intelligence (COMINT). For example, it can assign
meaningful metadata to each collection, and the
metadata is the standardized characterization of data

providing descriptors (such as stability, activity,
membership, or structure).
3) Human intelligence (HUMINT), e.g., to identify

specific people/cells/groups and relationships.
4) Measurement and signatures intelligence

(MASINT), e.g., to provide specific weapon system
identifications, chemical compositions and material
content.
5) Imagery intelligence (IMINT), e.g., to track

vehicles through urban area.
6) Open source intelligence (OSINT), e.g., to

provide text data collection.

All these sources of information need to be integrated
via “sensor networking” to accomplish a mission. In
this paper, we apply KUPS to threat assessment, and
the organic sensors we use are pulse Doppler radars.
Our KUPS for threat assessment is a hierarchical

and recursive architecture which consists of two major
steps.

Step 1, Situation Awareness: Performing
knowledge-based situation awareness using INT
sensors (e.g. SIGINT, HUMINT sensors). Fuzzy
rules are used to represent the linguistic knowledge
uncertainties from HUMINT sensors, and fuzzy logic
systems (FLSs) are used to perform knowledge-based
decision making on situation awareness (e.g., threat or
nonthreat). If it is assessed as a nonthreat, stops; if it
is assessed as a potential threat to issue an indication
& warning (I&W), then go to Step 2 for further target
recognition and threat assessment.
Step 2, Fine Target Recognition and Threat

Assessment: Performing target RCS value estimation
using RSNs. We propose an ML estimation algorithm
to estimate target RCS parameter value using RSNs.
Based on the estimated RCS parameter, the KUPS
will advise what kind of target this threat is. The ML
estimation algorithm can help to estimate the RCS
parameter μ (parameter in a Rayleigh distribution
for fluctuating target). However, the same RCS
parameters may mean different targets, threats or
nonthreats. For example, for μ = 2, the target can
be a small flighter aircraft, a small pleasure boat, a
bicycle [26], or any other similar size target. This
example illustrates that RCS-based level 1 data fusion
(e.g., [11, 12]) without considering other context
such as geographical information (from OSINT) has
very clear disadvantages. So we have to use Step 1
to make the decision first, and only an I&W requires
further classification for further action. Sometimes it
may be a false alarm based on fine target recongition,
therefore Step 2 will make final threat assessment.

Step 2 results can be feedback to Step 1 recursively
to further tune the parameters in FLS design. Fig. 1
depicts the relationship between Steps 1 and 2. We
discuss these two steps in the following sections.
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Fig. 1. Relations of Steps 1 and 2.

III. KNOWLEDGE-BASED SITUATION AWARENESS
USING INT SENSORS

In knowledge-based situation assessment using
INT sensors, fuzzy rules are used to represent the
linguistic and numerical knowledge uncertainties
from INT sensors, and FLSs are used to perform
knowledge-based decision making on threat
assessment. We give a brief introduction on FLSs first.

A. Overview of Fuzzy Logic Systems

In general, an FLS is a nonlinear mapping of an
input data (feature) vector to a scalar output [16].
Fig. 2 shows the structure of an FLS [16]. When an
input is provided to an FLS, the inference engine
computes the output set corresponding to each rule.
The defuzzifier then computes a crisp output from
these rule output sets. Consider a p-input 1-output
FLS, using singleton fuzzification, center-of-sets
defuzzification [18, 16], and “IF-THEN” rules of the
form

Rl : IF x1 is F
l
1 and x2 is F

l
2 and ¢ ¢ ¢

and xp is F
l
p, THEN y is G

l:

Assuming singleton fuzzification, when an input
x0 = fx01, : : : ,x0pg is applied, the degree of firing
corresponding to the lth rule is computed as

¹Fl1
(x01) ?¹Fl2 (x

0
2) ? ¢ ¢ ¢ ?¹Flp(x

0
p) = T

p
i=1¹Fli

(x0i) (1)

where ? and T both indicate the chosen t-norm
(minimum or product operation) [16], and ¹Fli (x

0
i) is

Fig. 2. Structure of FLS.

the membership grade of fuzzy set Fli for input x
0
i.

There are many kinds of defuzzifiers [16, 18]. In
this paper, we focus, for illustrative purpose, on the
center-of-sets defuzzifier [18]. It computes a crisp
output for the FLS by first computing the centroid
cGl of every consequent set G

l, and then computing
a weighted average of these centroids. The weight
corresponding to the lth rule consequent centroid is
the degree of firing (firing strength) associated with
the lth rule, T pi=1¹Fli (x

0
i), so that

ycos(x
0) =

PM
l=1 cGlT

p
i=1¹Fli

(x0i)PM
l=1T

p
i=1¹Fli

(x0i)
(2)

where M is the number of rules in the FLS. Readers
can refer to [16, 18] for details on FLS. Reference
[16] provides a very good tutorial on FLS, and
[18] gives an introduction to and directions on FLS
development [18].

B. Knowledge-Based Situation Awareness using FLSs

In our FLS design for situation awareness, we
consider the following knowledge-based antecedents.

1) The first antecedent is the number of switches
from the nonmaneuvering set (constant behavior
in speed, acceleration, and direction, etc.) to the
maneuvering set (varying behavior in speed,
acceleration, and direction, etc). When a target is
beginning a maneuver from a nonmaneuvering class,
the tracking system can switch the algorithms applied
to the problem from a nonmaneuvering set to the
maneuvering set. The errors in distance from where
the tracker estimates the position of a target between
the actual position can be very large when the
incorrect motion models are applied to the problem.
Additionally, when the tracker does finally catch up
to the target after the maneuver, the track will “jump”
across the operator’s scope giving a very unrealistic
and unreliable picture of what that target is actually
doing. So a threat target will quite often switch from
a nonmaneuvering set to the maneuvering set, and
vice versa, to avoid being tracked all the time. This
knowledge can be used as an antecedent for situation
awareness.
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TABLE I
Fuzzy Rules used in KUPS

Rule # Ante 1 Ante 2 Ante 3 Consequent

1 low low low weak
2 low low moderate medium
3 low low high strong
4 low moderate low very weak
5 low moderate moderate weak
6 low moderate high medium
7 low high low very weak
8 low high moderate weak
9 low high high medium
10 moderate low low medium
11 moderate low moderate strong
12 moderate low high very strong
13 moderate moderate low weak
14 moderate moderate moderate medium
15 moderate moderate high strong
16 moderate high low very weak
17 moderate high moderate weak
18 moderate high high medium
19 high low low medium
20 high low moderate strong
21 high low high very strong
22 high moderate low weak
23 high moderate moderate medium
24 high moderate high strong
25 high high low very weak
26 high high moderate weak
27 high high high Moderate

Note: Ante 1 is number of switches from nonmaneuvering set to
maneuvering set or vice versa. Ante 2 is frequency of appearance
of such type of target. Ante 3 is importance of geolocation of
target. Consequent is the possibility that target is a threat.

2) The second antecedent is the frequency of
appearance of such type of target based on some
a priori knowledge such as archival radar data.
Generally threat targets are new compared to archival
radar data.
3) The third antecedent is the importance of

geolocation of this target based on the geographical
information systems (GISs). Examples of important
geolocations include large metroplexes, landmarks,
military bases, airports, etc. Threats happen quite
often in such areas.

The above three antecedents are all knowledge
based and it can be collected from the INT sensors.
A typical rule using the above three antecedents can
be:

IF the number of switches from nonmaneuvering
set to the maneuvering set is high, and the
frequency of appearance of such target is low,
and the importance of geolocation of such type
of target is high, THEN the possibility that an
I&W needs to be issued is very strong.

The linguistic variables used to represent each
antecedent are divided into three levels: low, moderate,

Fig. 3. MFs used to represent linguistic labels. (a) MFs for
antecedents. (b) MFs for consequent.

and high. The consequent–the possibility that an
I&W needs to be issued–is divided into 5 levels,
very strong, strong, medium, weak, very weak. So
we need to set up 33 = 27 (because every antecedent
has 3 fuzzy subsets, and there are 3 antecedents) rules
for this FLS. Table I summarizes the fuzzy rules we
use in this paper. We use trapezoidal membership
functions (MFs) to represent low, and high, and
triangle MFs to represent moderate. We show these
MFs in Fig. 3.
For input (x1,x2,x3), the output is computed using

y(x1,x2,x3) =

P27
l=1¹F1l

(x1)¹F2l (x2)¹F3l (x3)c
l
avgP27

l=1¹F1l
(x1)¹F2l (x2)¹F3l (x3)

(3)

where ¹Fil (xi) (i= 1,2,3) represents the antecedent i
membership degree (in the lth rule) when the input is
xi and the membership functions are plotted in Fig. 3.
By repeating these calculations for 8xi 2 [0,10], we
obtain a hypersurface y(x1,x2,x3). This equation
represents the nonlinear mapping between three
inputs and one output of the FLS. Since it’s a 4-D
surface (x1,x2,x3,y), it’s impossible to be plotted
visually.
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Fig. 4. Threat assessment surface for fixed importance
of geolocation of this target (x3). (a) When x3 = 1.

(b) When x3 = 9.

If we have x3 = 1, and two other antecedents
x1 and x2 are variables, the output is computed
using

y(x1,x2,1) =

P27
l=1¹F1l

(x1)¹F2l (x2)¹F3l (1)c
l
cosP27

l=1¹F1l
(x1)¹F2l (x2)¹F3l (1)

: (4)

This equation represents the nonlinear mapping
between three inputs (one of which is fixed) and one
output of the FLS. By repeating these calculations
for 8x1 2 [0,10] and 8x2 2 [0,10], we obtain a
hypersurface y(x1,x2,1), as plotted in Fig. 4(a). In
contrast, if we have x3 = 9, and two other antecedents
x1 and x2 are variables, we obtain another surface
y(x1,x2,9), as plotted in Fig. 4(b). Observe that from
Fig. 4, the importance of geolocation of a target (x3)
makes a big difference in situation awareness, and
the number of switches from nonmaneuvering set
to the maneuvering set or vice versa (x1) and the
frequency of appearance of such target (x2) also play
a very important role even when the importance of
geolocation (x3) is the same.

IV. FINE TARGET RECOGNITION AND THREAT
ASSESSMENT

A. Target RCS Value Estimation using RSNs

1) RCS and RCS Voltage for Fluctuating Target:
Most radar analysis and measurement programs
emphasize RCS measurements, which are proportional
to received power. RCS is the fictional area over
which the transmitter power density must be
intercepted to collect a total power that would account
for the received power density. Typical values of
RCS for targets of interest range from 0:01 m2 to
hundreds of square meters [26]. Fluctuating target
modeling is more realistic in which the target RCS
is drawn from either the Rayleigh/exponential or
chi-square of degree four probability density function
(pdf). The Rayleigh/exponential model describes
the behavior of a complex target consisting of many
scatters, none of which is dominant. The fourth-degree
chi-square model targets have many scatters of similar
strength with one dominant scatter. Based on different
combinations of pdf and decorrelation characteristics
(scan-to-scan or pulse-to-pulse decorrelation), four
Swerling models are used [24]. In this paper, we
focus on “Swerling II” model which is an exponential
distribution with pulse-to-pulse decorrelation.
The pulse-to-pulse decorrelation implies that each
individual pulse results in an independent value for
RCS. Sometimes the RCS voltage value (square
root of RCS) is of interest, particularly for use in
simulations to model the composite echo from a
multiple-scatter target. The RCS voltage value is
the square root of RCS, so the pdf of RCS voltage
follows a Rayleigh distribution [24]. In this paper,
we apply radar sensor networks to estimate the RCS
value.
2) Introduction to Radar Sensor Networks: In

[11], we performed the following theoretical studies
on CF pulse waveform design and diversity in
RSNs: 1) the conditions for waveform coexistence,
2) interferences among waveforms in RSN, and 3)
waveform diversity combining in RSN.
For RSNs, the waveforms from different radars

interfere with each other. We choose the waveform for
radar i as

xi(t) =

r
1
T
exp[j2¼(¯+ ±i)t], ¡T=2· t· T=2

(5)

where ¯ is the RF carrier frequency in radians per
second, and ±i is a frequency shift for radar i. To
minimize the interference from one waveform to the
other, optimal values for ±i should be determined
to have the waveforms orthogonal to each other,
i.e., let the cross-correlation between xi(t) and xn(t)
be 0. We showed that choosing ±i = i=T in (5) can
have orthogonal waveforms, i.e., the waveforms can
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Fig. 5. Waveform diversity combining by clusterhead in RSN.

coexist if the carrier spacing is 1=T between two radar
waveforms.
In RSN, the radar sensors are networked

together in an ad hoc fashion. They do not rely
on a preexisting fixed infrastructure, such as a
wireline backbone network or a base station. They are
self-organizing entities that are deployed on demand
in support of various event surveillance, battlefield,
disaster relief, search and rescue, etc. Scalability
concern suggests a hierarchical organization of
RSNs with the lowest level in the hierarchy being
a cluster. As argued in [15], [8], [7], [22], in
addition to helping with scalability and robustness,
aggregating sensor nodes into clusters has additional
benefits:

1) conserving radio resources such as bandwidth,
2) promoting spatial code reuse and frequency

reuse,
3) simplifying the topology, e.g., when a mobile

radar changes its location, it is sufficient for the
nodes in attended clusters to update their topology
information,
4) reducing the generation and propagation of

routing information,
5) concealing the details of global network

topology from individual nodes.

In RSN, each radar can provide its waveform
parameters such as ±i to its clusterhead radar, and the
clusterhead radar can combine the waveforms from its
cluster members.
In RSN with M radars, the received signal for

clusterhead (assume it’s radar 1) is

r1(u, t) =
MX
i=1

®(u)xi(t¡ ti)exp(j2¼FDi t)+ n(u, t)

(6)

where xi(t) is the transmitted CF waveform, ®(u)
stands for voltage of RCS, FDi is the Doppler shift
of target relative to waveform i, ti is the delay of
waveform i, and n(u, t) is the additive white Gaussian
noise (AWGN). In [11], we proposed a RAKE
structure for waveform diversity combining, as
illustrated by Fig. 5.
According to this structure, the received r1(u, t)

is processed by a bank of matched filters, then the
output of branch 1 (after integration and before taking

the envelope) is [11]

Z1(u; t1, : : : , tM ,FD1 , : : : ,FDM )

=

Z T=2

¡T=2
r1(u, t)x

¤
1(t¡ t1)dt (7)

=

Z T=2

¡T=2

"
MX
i=1

®(u)xi(t¡ ti)exp(j2¼FDi t) + n(u, t)

#
x¤1(t¡ t1)dt

(8)

where
R T=2
¡T=2 n(u, t)x

¤
1(t¡ t1)dt can easily be proved to

be AWGN. Let

n(u, t1)
¢
=
Z T=2

¡T=2
n(u, t)x¤1(t¡ t1)dt: (9)

Assuming t1 = t2 = ¢ ¢ ¢= tM = ¿ , then according to
interference analysis in [11],

Z1(u;¿ ,FD1 , : : : ,FDM )¼
MX
i=2

®(u)sinc[¼(i¡ 1+FDiT)]

+
®(u) sin[¼FD1 (T¡ j¿ j)]

T¼FD1
+ n(u,¿ ):

(10)

Similarly, we can get the output for any branch m
(m= 1,2, : : : ,M),

Zm(u;¿ ,FD1 , : : : ,FDM )¼
MX

i=1,i 6=m

®(u)sinc[¼(i¡m+FDiT)]

+
®(u) sin[¼FDm (T¡ j¿ j)]

T¼FDm
+ n(u,¿ ):

(11)

Therefore Zm(u;¿ ,FD1 , : : : ,FDM ) consists of three parts,
signal (reflected signal from radar m waveform):
®(u)E sin[¼FDm(T¡ j¿ j)]=T¼FDm , interferences from
other waveforms:

PM
i=1,i 6=m®(u)Esinc[¼(i¡m+FDiT)],

and noise: n(u,¿).
We can have three special cases for

Zm(u;¿ ,FD1 , : : : ,FDM ).

1) When FD1 = ¢ ¢ ¢= FDM = 0,

Zm(u;¿ ,0,0, : : : ,0)¼
®(u)(T¡ j¿ j)

T
+ n(u,¿) (12)

which means if there is no Doppler mismatch, there
will be no interference from other waveforms.
2) If ¿ = 0, then (11) becomes

Zm(u;0,FD1 , : : : ,FDM )¼
MX

i=1,i 6=m
®(u)sinc[¼(i¡m+FDiT)]

+®(u)sinc[¼FDmT] + n(u): (13)

3) If ¿ = 0, and FD1 = ¢ ¢ ¢= FDM = 0, then (11)
becomes

Zm(u;0,0,0, : : : ,0)¼ ®(u)+ n(u): (14)
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Doppler mismatch happens quite often in target search
where target velocity is not known yet. However,
in target recognition, generally high-resolution
measurements of targets in range (¿ = 0) and Doppler
are available, so (14) will be used for RCS value
estimation.

How to combine all the Zms (m= 1,2, : : : ,M)
is very similar to the diversity combining in
communations to combat channel fading, and the
combination schemes may be different for different
applications. In this paper, we are interested in
applying RSN waveform diversity to estimate the RCS
parameter °2, and we propose an ML algorithm for
RCS parameter estimation.
3) Maximum Likelihood Algorithm for RCS

Parameter Estimation: For the Swerling II model,
the RCS voltage j®(u)j follows a Rayleigh distribution
and the I and Q subchannels of ®(u) follow zero-mean
Gaussian distributions with a variance °2 (the RCS
average power value). Assume

®(u) = ®I(u) + j®Q(u) (15)

and n(u) = nI(u)+ jnQ(u) follows a zero-mean
complex Gaussian distribution with a variance ¾2 for
the I and Q subchannels.
According to (14),

jZm(u;0,0,0, : : : ,0)j ¼ j®(u) + n(u)j: (16)

Since ®(u) and n(u) are zero-mean complex Gaussian
random variables, ®(u) + n(u) is a zero-mean Gaussian
random variable with a variance °2 +¾2 for the I and

Q subchannels, which means ym
¢
= jZm(u;0,0, : : : ,0)j

follows a Rayleigh distribution with parameterp
°2 +¾2,

f(ym) =
ym

°2 +¾2
exp

·
¡ y2m
2(°2 +¾2)

¸
: (17)

The mean value of ym is
p
¼(°2 +¾2)=2, and its

variance is (4¡¼)(°2 +¾2)=2. The variance of
signal is (4¡¼)°2=2 and the variance of noise is
(4¡¼)¾2=2.
Let y

¢
=[y1,y2, : : : ,yM], then the pdf of y is

f(y) =
MY
m=1

f(ym) (18)

=
MY
m=1

ym
°2 +¾2

exp
·
¡ y2m
2(°2 +¾2)

¸
(19)

let
μ
¢
=°2 (20)

then (19) can be expressed as

f(y) =
MY
m=1

ym
μ+¾2

exp
·
¡ y2m
2(μ+¾2)

¸
: (21)

Therefore the ML algorithm to estimate the RCS
average value (μ) can be represented as

μ̂ML(y) = arg sup
μ2R+

f(y)

= arg sup
μ2R+

MY
m=1

ym
μ+¾2

exp
·
¡ y2m
2(μ+¾2)

¸
:

(22)

Maximizing f(y) is equivalent to maximizing logf(y)
(natural logarithm),

logf(y) =
MX
m=1

·
log
³ ym
μ+¾2

´
¡ y2m
2(μ+¾2)

¸
: (23)

Since it is a continuous function for ym > 0 and μ > 0,
a necessary condition for the ML estimation is

@

@μ
logf(y)j

μ=μ̂ML(y)
=
PM

m=1 y
2
m¡ 2M(μ+¾2)
2(μ+¾2)2

= 0

(24)
which has the unique solution

μ̂ML(y) =
PM
m=1 y

2
m

2M
¡¾2: (25)

Considering μ ¸ 0,

μ̂ML(y) = max

"PM
m=1 y

2
m

2M
¡¾2,0

#
: (26)

Since

@2

@μ2
logf(y)j

μ=μ̂ML(y)
=¡ 4M3

(
PM
m=1 y

2
m)2

< 0 (27)

this solution gives the unique maximum of logf(y).
The expectation of μ̂ML(y) is

Eμ[μ̂ML(y)] =
Z 1

0

PM

m=1 y
2
m

2M
f(ym)dym¡¾

2 (28)

=

Z 1

0

PM

m=1 y
2
m

2M
ym

μ+¾2
exp

·
¡ y2m
2(μ+¾2)

¸
dym¡¾2

= μ: (29)

Therefore it’s an unbiased estimator.
Fisher’s information for this case can be computed

via

Iμ =¡Eμ

·
@2

@μ2
logf(y)

¸

=¡Eμ

"
M(μ+¾2)¡

PM
m=1 y

2
m

(μ+¾2)3

#
: (30)

The mean value of ym is
p
¼(μ+¾2)=2, and its

variance is (4¡¼)(μ+¾2)=2. So the Cramer-Rao
lower bound (CRLB) is

Varμ[μ̂(y)]¸
1
Iμ
=
(μ+¾2)2

M
: (31)
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Fig. 6. Variance of RCS ML estimator with different number of
radars in RSN.

Since (@=@μ) logf(y) in (24) is of the form
k(μ)[μ̂ML(y)¡Eμ[μ̂(y)] for

k(μ) =
M

(μ+¾2)2
(32)

we conclude that μ̂ML(y) can achieve the CRLB
theoretically [17]. From (31), it’s clear that CRLB
is inversely proportional to the number of radars M
in RSN, which means RSN with larger M will have
much lower CRLB. This conclusion is drawn based on
the assumption that the radar pulses are independent
(in time and space) and follow a Rayleigh distribution,
which is the Swerling II model [24].
4) Simulations: For fluctuating target with an

RCS parameter μ = 2 (Rayleigh distribution), we
ran Monte Carlo simulations for 106 realizations at
each SNR value, and we applied the ML estimation
algorithm to estimate the parameter μ̂ for each
realization. In Fig. 6, we plotted the variance of the
RCS ML estimator with different number of radars in
RSN. Observe the following.

1) The actual variance of μ̂ matches exactly
with the CRLB for different numbers of radars in
RSN, which validates our theoretical results: our
ML estimator on the RCS parameter is an unbiased
estimator and the variance of the parameter estimation
matches CRLB.
2) The actual variance of μ̂ reduces as M

increases, and numerically it is reversely proportional
to M as we have shown in Section IVA.

B. Threat Assessment

Based on the estimated RCS value (for fine target
recognition) and situation awareness-related I&W,
threat can be assessed. For example, if an I&W
was issued in Step 1 (situation awareness) on an
unidentified flying object, we proceed with Step 2.
In Step 2, based on Step 2 RCS value estimation,

the target, for example, could be recognized as
a bird, a missile, or other because a bird has an
average RCS value of 0:01 m2 and a conventional
unmanned winged missle has an average RCS
value of 0:5 m2 [24]. A bird means the I&W is
a false alarm, and a missile means the I&W is a
threat and immediate actions need to be taken. The
threat assessment results can be feedback to Step 1
to tune the design parameters of the FLS using
training methods (for example, the steepest descent
algorithm [13]).

V. CONCLUSIONS AND FUTURE WORKS

We have proposed a KUPS for threat assessment,
of which “sensor” is a broad characterization concept,
and it can be organic sensors, HUMINT sensors,
SIGINT sensors, etc. Our KUPS for threat assessment
consists of two major steps: situation awareness
based on FLSs, fine target recognition (using RSNs),
and threat assessment. Our FLSs can combine the
linguistic knowledge from different intelligent sensors
which contains lots of uncertainties. We propose an
ML estimation algorithm for target RCS parameter
estimation. Theoretically we show that our ML
estimator is unbiased and the variance of parameter
estimation matches the CRLB. Simulations further
validate these theoretical results.
The proposed techniques will increase the

sensitivity and performance of existing and future
NCW, enhancing ship self-defense modes against
stealthy, sea skimming, and antiship cruise missiles.
In future works, we will also infer intent of
objects/entities, or groups of objects, in the regions of
interest. We will also study methods for constructing
and learning a wide variety of models of threat
behavior and methods for reasoning with uncertain
and incomplete information for assessing threats from
object activities.
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Throughput and Energy-Efficiency-Aware
Protocol for Ultrawideband Communication

in Wireless Sensor Networks: A
Cross-Layer Approach

Qingchun Ren, Student Member, IEEE, and Qilian Liang, Senior Member, IEEE

Abstract—In this paper, we propose an efficient MAC protocol: the throughput maximized MAC protocol (TM-MAC), inspired by the

availability that a number of ultrawideband (UWB) transmission parameters can be tuned to better match the requirements of data flow.

In TM-MAC, we implement a concurrent multiuser access scheme instead of a mutual exclusion method such as TDMA and random

access. For multiuser interference, we establish a model to adaptively adjust the data transmission rate to generate the expected

signal to interference noise ratio (SINR) at the receiver side for reliable communications. We also analyze the relationship among the

theoretical maximum channel capacity, achievable maximum channel capacity, and data transmission rate. According to network

topology, TM-MAC redivides each piconet into several subsets in which communication pairs can make communication simultaneously

and achieve the maximum throughput using the highest data rate. In subset formation, we propose a general analytical framework that

captures the unique characteristics of shared wireless channel and throughput variance, as well as allows the modeling of a large class

of systemwide throughput maximization via the specification of the per-link utilization function. For algorithm essential parameters

design, we consider the influence of traffic type on the system performance. Heavy tailed distribution, compared to Poisson distribution

for most existing work, is exploited to accurately model the real traffic to achieve the adaptation of our algorithm. Simulation results

show that our algorithm can maximize throughput to achieve short latency.

Index Terms—Wireless sensor networks, ultrawideband communication, MAC protocl, network throughput, energy efficiency,

multiuser access control, multiuser interference, mutual exclusion.

Ç

1 INTRODUCTION

RECENT developments in integrated circuit technology
have brought about the construction of a small and

low-cost sensor node with signal processing and wireless
communication capabilities. A wireless sensor network
(WSN) can be thought of as an ad hoc network consisting
of sensor nodes that are linked by a wireless medium to
perform distributed sensing tasks. Distributed WSNs have
increasing applications as they hold the potential to
renovate many segments of our economies and lives from
environment monitoring to manufacture and business asset
management [1].

Within the past 40 years, advances in analog, digital

electronics, and ultrawideband (UWB) signal theory have

enabled system designers to propose some practical UWB

communication systems such as in [2]. Currently, numerous

companies and government agencies are investigating the

potential of UWB to deliver on its promises. A wide range

of UWB applications have been demonstrated [3], [4].

According to the Federal Communications Commission

(FCC), a UWB system is defined as any radio system that
has a 10-dB bandwidth larger than 20 percent of its center
frequency or has a 10-dB bandwidth equal to or larger than
500 MHz [5]. Two different UWB communications systems
—impulse-based systems (I-UWB) and multicarrier systems
(MC-UWB))—have been pursued recently. UWB has
several features that differentiate it from conventional
narrowband systems [6]:

. Large instantaneous bandwidth enables fine time
resolution for network time distribution, precision
location capability, or use as a radar.

. Short duration pulses are able to provide robust
performance in dense multipath environments by
exploiting more resolvable paths.

. Low-power spectral density allows coexistence
with existing users and has a Low Probability of
Intercept (LPI).

. Data rate may be traded for power spectral density
and multipath performance.

However, no existing wireless network successfully
takes those above advantages because of the lack of an
efficient medium access control technology. As a general
principle, the role of the MAC module is to allow multiple
users to share a common resource. Chandra et al. [7]
defined a set of parameters that characterize a MAC
independently of the underlying transmission technique
and multiple access method. They are
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. throughput, defined as the percentage of channel
capacity used during data transmission,

. delay, that is, the average time spent by a packet in a
MAC queue, and

. degree of fairness that states that access to the
medium is fair if all nodes have a similar chance of
obtaining medium access.

Conventional wireless MAC protocols assume that
simultaneous transmissions result in transmission errors
and thus employ mutual exclusion mechanisms to avoid
them. Moreover, from a layered architecture aspect, the
functions executed by MAC should be defined without
taking into account the underlying physical layer, which is
seen by MAC as a black box offering the service of
transferring bits in the form of signals appropriately for
the channel. Following this approach, there are some MAC
protocols that appeared for UWB communication systems.
In the European funded project Ultra-wideband Concepts
for Ad-hoc Networks (U.C.A.N.) [8], a TDMA-based MAC
protocol is proposed. This MAC protocol is an adaptation
for UWB from the IEEE 802.15.3 [9] draft standard for the
narrow-band wireless personal area network (WPAN).
Ding et al. [10] studied the impact of channel acquisition
time with different MAC protocols including centralized
TDMA and distributed CSMA/CA methods. In [11], a
single transceiver approach for UWB and a companion
MAC layer based on busy tone multiple access (BTMA) was
proposed. BTMA reduces the time and energy spent on
collision as compared to handshaking protocols.

However, the design of an efficient MAC protocol for
UWB systems should investigate some possible MAC
enhancements that will take into account the inherent
advantages of UWB technology. In [12], a scheme providing
distributed medium access through pulse sense was
proposed, which is similar to carrier sense in the narrow-
band system. Moreover, UWB is flexible in the reconfigura-
tion process of transmission data rate and power. Thus,
another approach for MAC protocol design is proposed.
Opposite to mutual exclusion MAC protocols, this kind of
MAC protocol for UWB systems tries to allow simultaneous
transmission and to adapt to multiuser interference. Cuomo
et al. [13] outlined key issues to design a multiaccess
scheme based on UWB. They selected a distributed
mechanism to handle radio resource sharing and presented
a general framework of radio resource sharing to UWB
wireless ad hoc networks. A UWB-tailored MAC algorithm
—the uncoordinated, wireless, baseborn medium access for
UWB communication networks (ðUWBÞ2) is proposed in
[14]. ðUWBÞ2 takes advantage of the multiple access
capabilities offered by time hopping (TH) codes and relies
for the access to a common channel on the high multiple
user interference (MUI) robustness provided by the proces-
sing gain of impulse radio (IR).

In this paper, inspired by the availability that a number of
transmission parameters can be tuned to better match
the requirements of data flow for UWB communication, we
propose a MAC protocol: throughput maximized MAC
protocol (TM-MAC). In TM-MAC, we implement concurrent
multiuser access instead of mutual exclusion methods such
as TDMA and random access. Cross-layer design techniques

are exploited by combining the MAC layer and physical
layer together for the optimization tasks on network
throughput and energy efficiency. On a MAC layer,
according to the network topology, TM-MAC redivides
each piconet into several throughput-maximized subsets,
in which communication pairs can make communication
simultaneously and achieve the maximum throughput using
the highest data rate. For subset formation, we propose a
general analytical framework that captures the unique
characteristics of shared wireless channel and throughput
variance, as well as allows the modeling of a large class of
systemwide throughput maximization via the specification
of per-link utilization function. On a physical layer, we
analyze the relationship among the theoretical maximum
channel capacity, the achievable maximum channel capacity,
and the data transmission rate. For multiuser interference,
we establish a model to adaptively adjust the data rate to
generate the expected signal to interference noise ratio
(SINR) at the receiver side.

The remainder of this paper is organized as follows: In
Section 2, we summarize our motivations for our work.
Then, we analyze the impact of simultaneous transmissions
on throughput in Section 3. Section 4 describes the details of
our TM-MAC algorithm. Simulation results are given in
Section 5. Section 6 concludes the paper.

2 OUR MOTIVATIONS

2.1 Energy Constraint

The biggest challenge for the designers of WSNs is to
develop systems that will run unattended for years. This
calls for not only robust hardware and software but also
lasting energy resources. However, the current generation of
sensor nodes is battery powered, where available energy is
limited, and replacing or recharging batteries may be
impractical or uneconomical in many cases. Battery lifetime
is a major constraint. Even though future generations can be
powered by ambient energy sources (sunlight, vibrations,
etc.) [15], the current provided is very low. Thus, energy
consumption is still heavily constrained. From both per-
spectives, protocols and applications designed for WSNs
should be highly efficient and optimized in terms of energy.

Generally, a sensor node consists of a microprocessor,
data storage, sensors, analog-to-digital converters (ADCs), a
data transceiver, an energy source, and controllers that tie
those pieces together [1]. Moreover, using multiple access
instead of mutual exclusion access methods, one of the
main energy wasting sources is the idle waiting for next
arrival data packets, which is caused by burst traffic.
Consequently, communications, not only transmitting but
also receiving or merely scanning channel for communica-
tion, can use up to half of the energy [16].

One approach implements energy reservation through
reducing the amount of information exchanged over the
network and considers the problem of reducing power
consumption on wireless interfaces. The research in [17]
points out a bit rate of 100 kilobits per second (Kbps) over
5 meters with no more than 1 mW power consumption.
Hence, UWB is the best choice in terms of energy efficiency
for energy-constrained WSNs. For the energy constraint
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problem for generic WSNs, we have done some work in [18]
and [19]. Our proposed energy-efficient MAC protocols not
only reserve energy to extend network lifetime but also own
the capability to solve the accumulative clock drift problem
without network synchronization. In this paper, we extend
our previous work to UWB communication systems.

2.2 Physical Layer Properties

The Shannon channel capacity theory defines the theoretical
maximum data transmission rate, at which error-free digits
can be transmitted over a bandwidth-limited channel in the
presence of noise, usually expressed in the form as the
following:

C ¼Wlog2 1þ S

N

� �
; ð1Þ

where C is the channel capacity in bits per second, W is the
bandwidth in hertz, and S

N is the signal-to-noise ratio (SNR).
In UWB communication systems, even though band-

width is finite, the bandwidth is at least 500 MHz or the
transmitted signal has a 10 dB bandwidth larger than
20 percent of its center frequency based on the FCC
standard. Compared with the narrowband system, informa-
tion-theoretic results in [20] and [21] show that the
Shannon-capacity of a multipath fading with an Additive
White Gaussian Noise (AWGN) wideband channel is a
linear function of SNR, as shown in (2):

C ¼ � � SNR: ð2Þ

Moreover, for the I-UWB system, the data transmission
rate R can be formulated as follows:

R ¼ 1

NsNhTc
; ð3Þ

where Ns is the number of pulses transmitted at the pulse
repetition time, Nh is the number of frames (pulses) per
information bit, and Tc is the bin duration.

Note that UWB is flexible in the reconfiguration process
of transmission data rate and power due to the availability
of a number of transmission parameters such as Ns, Nh, and
Tc, which can be tuned to better match the requirements of
data flow. Therefore, for a given level of interference at a
receiver, a sender can tune its rate by adjusting the code in
order to achieve the desired bit error rate (BER) in UWB
systems.

2.3 Systemwide Optimization through the
Cross-Layer Approach

Lessons learned from developing network protocols for
WSNs in the last couple of years show that using the
traditional layered networking approach has several draw-
backs in the resulting performance and efficiency of
systems. Quite often, significant improvements are possible
for network protocols, but they require a significant amount
of information to be passed along the layers of the system.
Although in principle this approach allows independence
among various protocols, it incurs significant overhead in
parameter transfer. Moreover, improvements performed
on a specific layer can cause impairments and even be
counterproductive for other layers. Therefore, optimization

can be more effective when taking into account the overall
system and using all available knowledge. In other words,
the cross-layer design approach is a viable approach for
resource-constrained WSNs.

3 THEORETIC ANALYSIS ON THE VARIANCE OF

NETWORK THROUGHPUT

3.1 Network Model

Due to the limited transmission range of current UWB
signals, UWB technology is considered for short-range
communications. The network model assumed in this paper
is that of “piconet” or clustered architecture. A piconet is a
collection of devices consisting of one master or piconet
controller (PNC) device and the remaining slave devices.
The PNC is responsible for scheduling the communication
between slaves. Each piconet can have only one PNC and
up to 255 slaves. A device can be a PNC in only one piconet,
but it can be a slave in multiple piconets simultaneously. In
this network, we assume that all nodes have the same
communication and computing capabilities. Since cluster-
ing method design is not the target of this paper, we assume
that we can set up this hierarchical clustering topology for
a randomly deployed network through certain existing
methods such as the energy-efficient self-organization
(ESO) [22] algorithm.

3.2 Physical Layer Model

The UWB physical model, on which the design of our
protocol is based, is described in this section. The most
common and traditional way of emitting a UWB signal is by
radiating pulses that are very short in time. IR transmits
extremely short pulses, giving rise to wide spectral occupa-
tion in the frequency domain (bandwidth from near DC to a
few gigahertz). The way by which the information data
symbols modulate the pulses may vary. Pulse Position
Modulation (PPM) and Pulse Amplitude Modulation (PAM)
are commonly adopted modulation schemes [23], [24]. In
addition to modulation, in order to shape the spectrum of the
generated signal, data symbols are encoded using pseudo-
random or pseudonoise (PN) codes. Fig. 1 reports an
example of signal waveform, each characterized by a
TH code word. Here, Tf is the frame duration and Tf ¼ NhTc.

During information propagation, we consider the multi-
path-affected UWB radio channel. The presence of multiple
paths between the transmitter and the receiver makes the
channel exhibit time-variant properties. Due to the distor-
tion, the received signal often has little resemblance with
the transmitted waveform. Two popular UWB channel
models are used in most research. They are the S-V model
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Fig. 1. UWB signal waveform with PPM, the model of Win-Scholtz [25].
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[26] and the IEEE 802.15.3a [27] model. We use the IEEE
802.15.3a model in this paper. The impulse response of a
channel is described as

hðtÞ ¼
XLðtÞ
j¼1

�jðtÞ�ðt� �jðtÞÞ; ð4Þ

where �ðtÞ is the Dirac function. �jðtÞ and �jðtÞ are the
channel gain and the delay measured at time t for the
jth path. LðtÞ is the number of paths observed at time t.

Then, the signal rðtÞ at the receiver side can be
expressed as follows:

rðtÞ ¼ xðtÞ � hðtÞ þ !ðtÞ þ nðtÞ

¼
XLðtÞ
j¼1

�jðtÞxðt� �jðtÞÞ þ !ðtÞ þ nðtÞ;
ð5Þ

where xðtÞ is the transmitted signal, !ðtÞ is the multiuser
interference, and nðtÞ is AWGN noise.

Supposing there are N pairs of communicating UWB
terminals, with each pair consisting of one transmitter and
one receiver, and using one pseudorandom code, N links
are active and the SINR at the ith link’s receiver is formed
as follows [13]:

SINRi ¼
Pigii

Rið�i þ Tf�2
PN

k¼1;k6¼i PkgkiÞ
ði ¼ 1; 2; � � � ; NÞ; ð6Þ

whereRi is the binary bit rate of the ith link, Pi is the average
power emitted by the ith link’s transmitter, gij is the path
gain from the ith link’s transmitter to the jth link’s receiver,
�i is the background noise energy plus interference from
other non-UWB systems, and �2 is a dimensional parameter
depending on the shape of monocycle.

Even though the parameters characterizing the channel
impulse response in (5) are time varying, we can generally
assume, however, that this rate of variation is slow
compared to the pulse rate. In other words, we can assume
the channel to be stationary within an observation time T ,
which is larger than the average pulse repetition period.
Under this assumption, (5) can be rewritten as follows:

rðtÞ ¼
XLðtÞ
j¼1

�jxðt� �jðtÞÞ þ !ðtÞ þ nðtÞ: ð7Þ

In this case, the total multipath gain g, which measures the
total amount of energy collected over LðtÞ pulses, is
determined as follows:

g ¼
XLðtÞ
j¼1

j�j j 2: ð8Þ

Note that g � 1 and is related with the attenuation
suffered by the transmitted pulses during propagation. In
multipath environments, g decreases with distance accord-
ing to the path-loss model [28] as follows:

g ¼ g0

d�
; ð9Þ

where g0 is the reference value for power gain evaluated
at d0 ¼ 1m and � is the exponent of power or energy
attenuation law.

3.3 The Impact of Simultaneous Transmissions on
Network Throughput

Within a network, piconets can be treated as independent of
each other since the distance among piconets is long enough
to permit us to ignore the interference among them (the
piconet formation scheme can ensure that this assumption
is held). Thus, the analysis on the change of network
throughput can be simplified into a set of independent
analysis on the change of throughput for individual
piconets. Then, combining all results together linearly, we
can obtain the impact of simultaneous transmission on the
aggregate throughput. In the following parts, the discus-
sions focus on the impact of simultaneous transmissions on
the throughput within a piconet.

According to the noisy channel coding theorem: If the
data transmission rate is less than the channel capacity, there
exist channel codes (and decoders) that make it possible to
achieve reliable communication. Otherwise, it is not possible
to make the probability of error tend toward zero with any
code. In this paper, the theoretic maximum channel capacity
(Ct�max) is defined as the largest channel capacity implied
by the channel state, and the achievable maximum channel
capacity (Ca�max) is defined as the largest channel capacity
that is acquired using the highest data rate to make reliable
communication. From (2) and (6), it is noted that C is in
inverse proportion to R, that is, C / 1

R . We derive the data
rate referring to Ca�max, noted as Ra�max, to achieve our
goal—trying to not only enhance the data rate to shorten the
transmission latency but also ensure reliable communica-
tion. The value of Ra�max is calculated as follows:

Ra�max;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Pigii

�i þ Tf�2
PN

k¼1;k6¼i Pkgki

s
: ð10Þ

For estimating the throughput of a piconet in which there
are N pairs of communication terminals making commu-
nication simultaneously with data packets Ra�max, the
throughput ðTHputÞ of this piconet is calculated as follows:

THput ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii

�i þ Tf�2
PN�1

k¼1;k6¼i Pkgki

s
: ð11Þ

For an existing piconet, if we add m more pairs of
communication terminals, what is the influence on the
throughput of this piconet? Through analyzing the change
of throughput when adding a different number of commu-
nication pairs or picking up the same number of commu-
nication pairs but located at different positions, we try to
obtain the criterion for the formation of a simultaneous
transmission subset.

In order to simplify the description, we let Ui ¼4
Tf�

2
PN

k¼1;k 6¼i Pkgki. Without losing generality, we let the
newly added communication pairs be pair N þ 1 to
pair N þm. For existing communication pairs (that is, pair 1
to pair N), the new achieved channel capacity C0a�max;i is

C0a�max;i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Pigii

�iþUiþTf�2
PNþm

k¼Nþ1Pkgki

s
ði¼ 1; � � � ; NÞ: ð12Þ

Moreover, the achieved channel capacity for new
communication pairs Ca�max;i is

808 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 6, JUNE 2008

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 13:51 from IEEE Xplore.  Restrictions apply. 

125 of 816



Ca�max;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Pigii

�i þ Tf�2
PNþm

k¼1;k6¼i Pkgki

s

ði ¼ N þ 1; � � � ; N þmÞ:
ð13Þ

Based on the results in (12), (13), and (11), the influence
of adding more simultaneous transmissions on the through-
put of a piconet is expressed as the change of piconet
throughput, denoted as 4THput and calculated using (14):

4THput ¼TH 0put � THput

¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii

�i þ Ui þ Tf�2
PNþm

k¼Nþ1 Pkgki

s

þ
XNþm
i¼Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii

�i þ Tf�2
PNþm

k¼1;k6¼i Pkgki

s

�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii
�i þ Ui

s
:

ð14Þ

We also obtain the relationship between the new data

rate R0max;i and the original data rate Rmax;i for node i

ði ¼ 1; � � � ; NÞ, as shown in (15). Note that adding some

communication pairs into an existing network will decrease

the highest data rate, which ensures reliable communica-

tion since
Tf�

2
PNþm

k¼Nþ1
Pkgki

�Pigii
is always positive:

1

R02a�max;i
¼ 1

R2
a�max;i

þ
Tf�

2
PNþm

k¼Nþ1 Pkgki

�Pigii
: ð15Þ

From (14) and (15), we observe that, when adding more
communication pairs, the change of piconet throughput is
related to the negative influence caused by degrading the
highest data rate for existing communication pairs and the
positive influence due to permitting more communication
pairs to work concurrently. Thus, from a networkwide
perspective, letting more nodes work concurrently does not
definitely mean to upgrade or degrade the throughput of a
piconet. There is a watershed for it. That is, when the
negative influence is equal to or smaller than the positive
influence of adding some communication pairs into a net that
existed, the network performance in terms of throughput
will be improved or at least will not be degraded. Conse-
quently, we can formulate the criterion that guarantees the

network throughput to be improved when allowing more

simultaneous communication pairs as follows:

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii
�i þ Ui

s
�
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii

�i þ Ui þ Tf�2
PNþm

k¼Nþ1 Pkgki

s

�
XNþm
i¼Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pigii

�i þ Tf�2
PNþm

k¼1;k 6¼i Pkgki

s
:

ð16Þ

First, we consider the N ¼ 1 and m ¼ 1 scenario as our
analysis basis. We assume that the distance between
transmitters and receivers is the same for each communica-
tion pair (that is, dii ¼ d), thus each communication pair can
use the same power to transmit. Moreover, the noise floor
for communication is fixed. Thus, (14) is changed to

4THput ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Pg0

�d�22 þ Tf�2Pg0ðd22

d12
Þ�

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pg0

�d�11 þ Tf�2Pg0ðd11

d21
Þ�

s

�
ffiffiffiffiffiffiffiffiffiffi
�Pg0

�d�11

s
:

ð17Þ

In this case,4THput is a function of the distance between

the original existing communication pair’s transmitter and

the added communication pair’s receiver ðd12Þ, the distance

between the added communication pair’s transmitter and

the original existed communication pair’s receiver ðd21Þ,
that is, 4THput ¼ fðd12; d21Þ. We define the throughput

change rate of a piconet as
4THput

THput
. Based on (17), we plot the

piconet throughput change rate versus the strength of

multiuser interference. Fig. 2 shows the hypersurface for

8d12, d21 2 ½0; 20�. Table 1 shows the parameters we use.
Note that, to ensure the throughput to be enhanced when

adding one or more communication pairs, the shortest
distance for d12 and d21 should be at least equal to a
threshold dmin, which is related with the choice of
transmission power ðP Þ, environment noise strength ð�Þ,
environment exponential ð�Þ, symbol time ðTfÞ, monocycle
shape ð�2Þ, and power gain ðg0Þ evaluated at d0 ¼ 1m,
except the distance between the transmitter and the receiver
of the originally existing communication pair. That is,

dmin ¼
1

ð
ffiffi
1
�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�þTf�2P
g0

d
�
max

r
Þ2
� �

0
BBB@

1
CCCAðg0Tf�

2P Þ�1

8>>><
>>>:

9>>>=
>>>;

1
�

: ð18Þ
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Fig. 2. Relationship between the throughput change rate and the

strength of multiuser interference.

TABLE 1
Typical Values for Parameters in (17)
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4 THROUGHPUT-MAXIMIZED MAC PROTOCOL

(TM-MAC) DESIGN

We have proposed an energy-efficient MAC protocol,

ASCEMAC, in [18] for WSNs. ASCEMAC intelligently

forces nodes to power on and off their batteries alternately

to implement communication, as well as to reduce energy

consumption on collision and idle listening to extend

network lifetime. However, for UWB communication

systems, TDMA-based and contention-based mutual ex-

clude media access control schemes are not the best choice

anymore in terms of spectrum efficiency. Motivated by this

challenge, we propose our algorithm: throughput-max-

imized MAC protocol especially for UWB communication

systems.
TM-MAC divides the system time into four phases: Traffic-

Rate and Failure-Rate (TRFR) Phase, Schedule-Broadcast Phase,

On-Phase, and Off-Phase. TRFR message, TRFR-Phase dura-

tion design, matching schedule establishment and mainte-

nance, schedule interval design, and time-slot allocation

mechanisms for TM-MAC are the same as in ASCEMAC.

Although, in TM-MAC, during the On-Phase, the further

divided supertime slots are occupied by subsets individually.

TM-MAC, based on the network topology, is responsible for

further dividing a network into a set of subsets in which

communication pairs can make communication simulta-

neously. Consequently, TM-MAC cannot only inherit the

advantages of ASCEMAC but also maximizes network

throughput.

4.1 Introduction to ASCEMAC

ASCEMAC leverages the characteristics of the free-running

timing method and the advantages of the fuzzy logic system

on uncertain problems. In ASCEMAC, the timing-resche-

duling scheme and time-slot allocation algorithm provide

an approach to remove the tight dependency on network

synchronization for energy-efficient MAC protocols, which

is a critical constraint for network upgrading and expand-

ing. Furthermore, considering the heterogeneous nature of

WSN, a traffic-strength-based and network-density-based

designing model is built. This model equips the system with

the capability to determine essential algorithm parameters

adaptively, which greatly influences system performance in

terms of energy reservation and communication capability.

In addition, adaptive methods for parameter adjustment are

utilized. In opposition to existing network synchronization

schemes, ASCEMAC is a control-center-exhaustion scheme.

It is data-gathering nodes whose energy is more abundant

and easier to recharge than data-collection nodes that are in

charge of most working loads to form a matching operation

among nodes.

ASCEMAC protocol divides system time into four
phases: TRFR-Phase, Schedule-Phase, On-Phase, and Off-Phase
(Fig. 3).

. TRFR-Phase. It is preserved for data-collection nodes
to send TRFR messages (Fig. 4) to data-gathering
nodes.

. Schedule-Phase. It is preserved for data-gathering
nodes to locally broadcast phase-switching schedules.

. Off-Phase. It is preserved for data-collection nodes to
power off their radios. In this phase, there is no
communication, but data storing and sensing may
happen.

. On-Phase. It is preserved for data-collection nodes to
power on their radios to carry on communication.

At the end of each On-Phase, nodes go on “vacation”—Off-
Phase—for a period of time. Thus, new arrivals during an
On-Phase can be served in first-in, first-out (FIFO) order.
Although new arrivals occurring during an Off-Phase, rather
than going into service immediately, wait until the end of
this Off-Phase, they are then served in the On-Phase and in
FIFO order. Interarrival time and service time for data
packets are independent and follow general distribution
F ðtÞ and GðsÞ individually. For the average interarrival time
1
	 , we have 0 < 1

	 ¼
R1

0 tdF ðtÞ. Similarly, for the average
service time 
, we have 0 < 
 ¼

R1
0 sdGðsÞ.

According to the received schedule messages (Fig. 5),
nodes set up their own phase-switching schedules, which
ensure them to switch to the same phase simultaneously.

ASCEMAC utilizes two techniques to make its scheme
robust and feasible to use the free-running timing method
[29], which allows nodes to run on their own clocks and
makes a contribution to save the energy used by setting up
and maintaining the global or common timescale. First,
schedule messages are broadcasted. Leveraging the prop-
erty of broadcast, schedule messages can reach all data-
collection nodes at the same time once ignoring the
difference of propagation time of them (it is reasonable
since the propagation time within a cluster is between 0.1
and 1 microseconds). Moreover, nodes go to the On-Phase
immediately after receiving schedule messages. Second, in a
schedule message, all time references, such as On-Duration
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Fig. 3. System time scheme structure.

Fig. 4. TRFR message format.

Fig. 5. Schedule message packet format for ASCEMAC.
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and Off-Duration, are relative values rather than absolute
values. This property can eliminate errors introduced by
sending time and access time.

Note that, based on schedule messages and nodes’ local
clocks, phase-switching schedules are supposed to be
established at each node to ensure matching operations if
there is no clock drift. However, mismatching operations
among nodes are unavoidable since there are always clock-
drifts caused by unstable and inaccurate frequency stan-
dards. Therefore, it is possible that transmitters have
powered on their radios to send messages, but the receivers’
radios are still powered off. Those mismatching operations
cause communication to fail. Moreover, with the accumu-
lative clock drift becoming bigger and bigger, the impact on
communications turns more and more serious. The solution
in ASCEMAC is to rebroadcast the schedule message,
which forces data-collection nodes to remove accumulative
clock drifts and to reestablish matching schedules.

Although, how can data-collection nodes know the time
of next schedule broadcast so as to power on their radios?
The solution is that ASCEMAC includes reschedule interval
information in the schedule messages. To preestimate the
value of the schedule interval, a rescheduling-FLS is
designed to monitor the influence of accumulative clock
drifts, the variance of traffic strength, and the service
capability on communications. Then, ASCEMAC can adjust
the schedule interval and power-on/off duration adaptively.
ASCEMAC uses

Ti ¼ �i � Ti�1 ð19Þ

as the interval adjustment function, where Ti is the interval
for the ith schedule broadcast and �i is the ith adjustment
factor determined by our rescheduling-FLS.

Hence, each node within a cluster is synchronized to a
reference packet (schedule message) that is injected into the
physical channel at the same instant. Furthermore, after the
same period of time specified by Tn, all nodes switch to the
Off-Phase and stay there for a Tf period. Finally, all nodes
switch back to the On-Phase. Phase is circulatedly switched
in this way (see Fig. 6).

4.2 Optimizing Piconet Throughput

The network is represented as a directed graph G ¼ ðV ;EÞ.
V is the set of nodes in a piconet. e ¼ ðu; vÞ is an edge in E if
and only if nodes u and v are the transmitter and receiver of
a communication pair. Fig. 7 shows an example, in which
nodes A, C, E, G, I, and K are transmitters, whereas B, D,
F , H, J , and L are receivers. If a receiver is located within
another transmitter’s communication range or interference
untolerable range formulate by (18), throughput degrada-
tion will not be avoided when they communicate simulta-
neously. This interference is denoted by dotted lines.

In our algorithm, the interference caused by the newly
added communication pairs is intolerable when the created
throughput is smaller than the original one. Otherwise, it is
tolerable. We consider all communication pairs in a piconet
to generate the interference tolerable graph G0 ¼ ðV 0; E0Þ
according to (18). V 0 � E, that is, each point in G0 is a
communication pair in G. e0 ¼ ðu0; v0Þ is an edge in E0 if
and only if the achieved throughput is bigger than the
throughput generated by those two terminals separately.
According to the network topology, we utilize the conclu-
sion acquired in (18) to detect the intolerable interference
from other communication pairs. Fig. 8a presents the
inference tolerable graph for the graph in Fig. 7.

We generate the potential subset to form graph G00. G00 ¼
ðV1; V2; E

00Þ is a bit-partite graph such that V1 ¼ V 0 and each
point in V2 presents all cliques and subcliques in G0. e00 ¼
ðu00; v00Þ is an edge in E00 if and only if u00 2 V1, v00 2 V2, and
u00 belongs to one of the cliques in G0 represented by v00.
Fig. 8b represents the potential group formation graph for
the inference tolerable graph shown in Fig. 8a.

Each clique in G0 represents a potential subset of
communication pairs making simultaneous communication
to enhance throughput. We represent each point in V1 as an
one-off source that is granted and must to be used once in a
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Fig. 6. Flow chart for (a) data-gathering nodes and (b) data-collection

nodes to establish and maintain matching schedules in ASCEMAC.

Fig. 7. Network graph G.
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supertimeslot. Then, the subset formation in a piconet
represents the optimal classification for all nodes within a
piconet, and a point in V2 is permitted to occupy the channel
mutually excluded if and only if it can contribute to achieve
higher throughput and one-off source is still available.

Let Iij be an indicator function such that Iij ¼ 1 if the

point j 2 V2 is allocated with channel by point i 2 V1 and

Iij ¼ 0 otherwise. Let TH 0put;j be the subthroughput gener-

ated by point j. Then, the channel allocation problem can be

represented as a set of the following linear constraints:

8i;
X
j

Iij ¼ 1;

8j; 8i; rj ¼TH 0put;j �
X
i

Iij;
ð20Þ

where rj is the subthroughput generated by point j in V2

and the unit for it is pks=sec. Note that this set of constraints

captures the location-dependent interference on piconet

throughput characteristics of UWB communication systems.
The utility function UðrÞ for a throughput r is defined as

UðrÞ ¼ r: ð21Þ

Since our goal for subset optimization is to improve

piconet throughput as much as possible, maximizing the

piconet throughput problem can be modeled by the

following equations:

Maximize
X
j

UðrjÞ:

Subject to

8i;
X
j

Iij ¼ 1;

8j; 8i; rj ¼TH 0put;j �
X
i

Iij:
ð22Þ

4.3 Essential Parameters Design

The studies in [18] and [19] have shown that essential

algorithm parameters such as power-on/off duration and

schedule-broadcast interval, which greatly influence system

performance in terms of energy reservation and commu-

nication capability. How to adaptively determine the value

for those essential parameters of TM-MAC is the main task

in this section.

4.3.1 Off-Phase Duration (Tf )

It is now recognized [30], [31] that traffic in wired and

wireless communication networks is better described by

heavy-tailed distributions rather than by Poisson, Gaussian,

or other classical distributions with exponentially decreas-

ing tails. In this paper, we model network arrivals as a

Pareto distribution, a heavy-tailed distribution. The prob-

ability mass function is given in (23):

fðxÞ ¼ �k�x���1; 1 < � < 2; k > 0; x 	 k; ð23Þ

and its cumulative distribution function is given by

F ðxÞ ¼ 1� k

x

� ��
; ð24Þ

where k represents the smallest value the random variable
can take.

In this case, we establish an embedded-Markov chain to
express the packet arrive process for each user. NðtÞ is the
number of data packets in buffer at time t. N�n stands for the
queue length when the nth data packet arrives (the current
arrival data packet not included). Even though the queue
length of each user does not own a Markov property
anymore, N�n , n 	 0 forms a Markov chain, an embedded-
Markov chain. The average arrival interval (1

	 ) is given as

1

	
¼
Z 1
k

xdF ðxÞ ¼ �k

�� 1
: ð25Þ

During Off-Phase, there are about Tf;i � 	i data packets

that arrived at node i. We assume that the buffer size for

node i is Bs. Then, the duration, denoted by ti, within which

node i’s buffer can be fully filled with arrived data packets,

is given by ti ¼ Bs

	i
. Considering the first criteria, Tf;i for

node i should be no longer than ti. In this algorithm, we let

Tf;i ¼ ti ¼
Bs

	i
¼ Bs

�iki
�i � 1

� �
: ð26Þ

We assume that Bs is a constant, �i ¼ � for all users,
while ki follows a uniform distribution at range ½0; k��. Note
that the cumulative density function for Tf;i is given as

FTf;iðtf;iÞ ¼ PfTf;i � tf;ig ¼ FK
tf;ið�� 1Þ

�Bs

� �
: ð27Þ

Since

FKðkÞ ¼
k

k�
; ð28Þ

then

FTf;iðtf;iÞ ¼
tf;ið�� 1Þ
�k�Bs

: ð29Þ

Since, within a cluster, there are multiple nodes that have
various traffic arrival rates, the duration for all nodes will
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Fig. 8. (a) Interference tolerable graph G0 and (b) Potential Group
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not be the same. If we let the Off-Phase duration for an entire
cluster Tf;tot be equal to the ith user, Tf;tot ¼ Tf;i. Moreover,
for a new arrival to an idle system, rather than going into
service immediately, it waits for the end of the vacation
period and arrivals are served following a first-come-first-in
order. Therefore, the longer Tf;tot is, the longer the data
packets waiting in the buffer for transmission are. We
leverage the GI�=G=1 with the vacation model to model our
system. Through analysis, we try to get the relationship
between the average waiting time ( �Wj) for the jth user and
Tf;tot, that is, �Wj ¼ fjðTf;totÞ.

Based on this conclusion, we try to get the probability
(pj) for data packets out of date for jth when the Off-Phase
duration is equal to Tf;tot, given in (31):

pj ¼ Pf �Wj 	Wmaxg ¼ 1� FTf;totðf�1
j ðWmaxÞÞ: ð30Þ

Since Tf;tot ¼ Tf;i, (31) is rewritten as follows:

pij ¼ Pf �Wij 	Wmaxg ¼ 1� FTf;iðf�1
j ðWmaxÞÞ; ð31Þ

where pij is the probability of data packets out of date for a
jth user when letting an ith user’s Off-Phase duration for the
entire cluster.

For a system with an Off-Phase duration Tf;i and total
data packets out of date probability �jpj, we represent our
objective function as

argmax
i

JðTf;iÞ ¼ argmax
i
f�Tf;i � �

X
j

pijg; ð32Þ

where � and � are systems parameters that respectively
represent the “latency constant” and the “penalty constant,”
which are tuned to achieve the desired trade-off between
maximizing the energy reservation period and minimizing
the buffer overflowing rate.

4.3.2 On-Phase Duration (Tn)

During On-Phase, normal nodes start to send data packets
through competition. Users, who have data packets to send,
access the channel to make communication. If we let the
duration for the On-Phase of nodes be Tn;tot, the total
number of data packets (Ni) arrived is given in (33) since
the traffic arrival process is independent of the data
transmission process. Generally, there are two parts for
Ni: one is the data packets arrived during the Off-Phase,
denoted by Nf;i, and the other is the data packets arrived
during the On-Phase, denoted by Nn;i:

Ni ¼ Nf;i þNn;i ¼ 	iðTf;tot þ Tn;totÞ: ð33Þ

In our On-Phase duration and Off-Phase duration design, we
not only try to extend the power-off time to reserve energy
(through avoiding more idle listening), but also need to
ensure that the data packets are up to date. Considering that
the active duration (Tn;i) should be long enough for all
received data packets to be sent out, then we have

Rb;iTn;i ¼ 	iðTn;i þ Tf;totÞ: ð34Þ

Solving (34) for Rb;i, we get

Rb;i ¼
	iðTn;i þ Tf;totÞ

Tn;i
: ð35Þ

From another aspect of obtaining a satisfied data
successful transmission rate to acquiring data rate, that
is, R̂b;i for node i acquired in (10), we define the objective
function for Tf as

UðTn;iÞ ¼
X
j

jRb;j � R̂b;jj: ð36Þ

Then, the optimum task is shown as follows:

Tn;tot ¼ argmin
i
UðTn;iÞ: ð37Þ

5 PERFORMANCE EVALUATION

We performed extreme simulations to evaluate the perfor-
mance of our algorithm, TM-MAC. A network with an
number of communication pairs, which is composed of a
transmitter and a receiver, is set up, and the radio range
(radius) of nodes is 20 m. For each communication pair, the
distance between the transmitter and the receiver is fixed at
1 m. Those communication pairs are deployed randomly in
an area of 50� 50 m2 and have no mobility. This network
can be treated as one piconet in a large-scale system. Other
parameters for a physical layer are the same, as in Table 1.

We deploy five to 40 communication pairs separately in
the same region. Then, we form simultaneous transmission
subsets using our TM-MAC. We observe that the number
of various subsets generated is 1-pair subset, 2-pair subset,
3-pair subset, and 4-pair subset, which means that, in a
subset, there is one communication pair, two communica-
tion pairs, three communication pairs, and four commu-
nication pairs. We run Monte Carlo simulations and make
an average operation on those results to remove the
randomness of simulation results. The results are shown
in Table 2. We also observed the chance for each
communication pair to be classified into different subsets
(see Table 3).

Note that in Tables 2 and 3, three to four percent of
communication pairs are being classified into 1-pair, 2-pair,
or 3-pair subset. With increasing node density, there is a
greater chance to form a 4-pair subset, that is, there is a
10 percent higher probability for a 40-communication-pairs
scenario than for a five-communication-pairs scenario.

Within a piconet, we made simulations to check the
actual throughput achieved by a different subset. Under
various node densities from five to 40 communication
pairs, we plot throughput versus total communication pairs
within the same piconet we set up (See Fig. 9a). Note that a
subset, within which there are more communication pairs
making communication simultaneously, acquires higher
throughput. In a 40-communication-pairs scenario, the
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throughput achieved by a four-pair subset is 119.309 Kbps,
which is around two times the throughput achieved by a
1-pair subset. Moreover, with the node density increase, the
largest throughput that can be achieved is decreased since
the interference coming from other users is increased.

We compared our TM-MAC against IEEE 802.15.3a,
which uses a mutually excluded scheme to implement
media access control—the TDMA scheme. We check the
achieved throughput, the transmission time needed for a
certain traffic load, and the longest latency for data packets

for our TM-MAC and IEEE 802.15.3a (See Figs. 9b, 10a, and
10b). Note that our TM-MAC can achieve higher through-
put than IEEE 802.15.3a at around 5.97 percent to
25.358 percent. Given same amount of traffic to networks,
which run TM-MAC and IEEE 802.15.3a separately, the
transmission time needed for TM-MAC is shorter than the
one for 80.215.3a. The reduced ratio for various node
densities from 40 communication pairs to five communica-
tion pairs is located within the range from 10.358 percent to
32.18 percent. Since IEEE 802.15.3a uses the mutually
excluded scheme for media access control, the communica-
tion for various communication pairs is carried out serially,
while, for TM-MAC, some communication pairs can make
communication simultaneously. The longest latency for
TM-MAC is shorter than IEEE 802.15.3a. The decreased
ratio is from 18.554 percent to 65.869 percent.

6 CONCLUSIONS

In this paper, we proposed a MAC protocol: the throughput
maximized MAC protocol (TM-MAC). In TM-MAC, we
implemented a multiuser access way instead of a mutual
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exclusion method such as TDMA and random access. Since
the cross-layer design approach is a good solution to reach
the target of highly energy-efficient WSNs, we combined a
MAC layer and a physical layer together to optimize the
throughput of a network. On a MAC layer, according to the
network topology, TM-MAC redivides each piconet into
several subsets in which communication pairs can make
communication simultaneously and achieve the maximum
throughput using the highest data rate. For subset forma-
tion, we proposed a general analytical framework that
captures the unique characteristics of a shared wireless
channel and a throughput variance and allows the model-
ing of a large class of systemwide throughput maximizing
models via the specification of per-link utilization functions.
On a physical layer, we analyzed the relationship among
the theoretical maximum channel capacity, the achievable
maximum channel capacity, and the data rate. For a
multiuser interference, we established a model to adap-
tively adjust the data rate to ensure certain SNR at the
receiver side.

Simulation results demonstrate that TM-MAC can im-
plement throughput maximization to achieve short latency
and transmit the same number of data packets over a
network during a shorter period.
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Abstract We study a diversity scheme based on waveform

design and space-time adaptive processing to improve

the detection performance of radar sensor networks in the

presence of certain types of interference. To reduce the

interference between radar sensors and maximize the signal-

to-interference-plus-noise ratio, we use an orthogonality

criterion to design waveforms for radar sensors. Besides,

performance of radar sensor networks depends largely on

clutter which is extended in both angle and range and is

spread in Doppler frequency. By using the space-time

adaptive processing, effects of clutter can be suppressed. We

also propose a receiver for diversity combining and, as an

application example, we investigate the detection perfor-

mance of radar sensor networks using the proposed diversity

scheme. Simulation results for both non-fluctuating targets

and fluctuating targets show that the performance of the

proposed scheme is superior to that of the single radar with

the spatial-temporal diversity only.

Keywords Waveform design � Space-time adaptive

processing � Diversity � Target detection � Radar sensor

networks

1 Introduction

Radar sensor network (RSN) consists of collaboratively

operating radar sensors which have capabilities of sensing,

signal processing and wireless communication. Sensors are

deployed ubiquitously on airborne unmanned vehicles and

networked together in an ad-hoc fashion to perform various

tasks such as surveillance, battlefield, disaster relief, search

and rescue, etc. RSN has advantages compared to a single

radar in improving the system sensitivity, reducing obscu-

ration effects and vulnerability, and increasing the detection

performance. However, some challenging problems such as

networking between sensors, canceling effects of interfer-

ence, power efficient communication, and reducing com-

plexity of signal processing schemes need to be considered.

Only few work on these aspects has been done. Kadambe

[1] recently proposed a minimax entropy-based technique

to reduce the processing complexity in the RSN. In [2],

relative merits of the RSN and the balance between

increased performance, complexity and cost were dis-

cussed. In this paper, we propose a method to design the

waveform to cancel the interference between sensors

and maximize the signal-to-interference-plus-noise ratio

(SINR). In literature on the waveform design, Fitzgerald [3]

demonstrated the inappropriateness of waveform selection

based on measurement quality alone: the interaction

between the measurement and the track can be indirect, but

must be taken into account. Bell [4] used the information

theory to design waveform for the measurement of extended

radar targets exhibiting resonance phenomena. Baum [5]

used the singularity expansion method to design some dis-

criminant waveforms. However, these design methods were

used for the single radar only. In [6], the RSN for automatic

target recognition was studied, but clutter and jammer were

not considered.
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Performance of the RSN depends largely on clutter

which is extended in both angle and range and is spread in

Doppler frequency because of motion of the platform and

target. Space-Time Adaptive Processing (STAP) or spatial-

temporal diversity has become an excellent technique to

suppress effects of clutter. STAP refers to the simultaneous

processing of the spatial samples from an array antenna and

the temporal samples provided by the echoes from multiple

pulses of a coherent processing interval. A considerable

amount of work has been done to develop STAP for pro-

cessing data from airborne or space-borne radars to reliably

detect moving targets of interest in the presence of strong

clutter returns and jamming [7–9]. By combining wave-

form design and spatial-temporal diversity, we can perform

spatial-temporal-frequency diversity in RSN. Our studies

show that the proposed diversity scheme can improve the

detection performance with a low false alarm probability.

The rest of this paper is organized as follows. In Sect. 2,

we propose a method to design waveforms. Spatial-tem-

poral diversity and interference analysis are discussed in

Sect. 3. In Sect. 4, we propose a diversity combining

scheme and analyze detection performance for non-fluc-

tuating targets as well as fluctuating targets. Simulation

results and performance analysis are discussed in Sect. 5,

and in Sect. 6, we conclude the paper.

2 Waveform Design

Sensors in the RSN may interfere with one another and SINR

may be very low if waveforms are not properly chosen.

Consider the constant frequency pulse waveform for radar i:

xiðtÞ ¼
ffiffiffiffi
E

T

r
expðj2pðf þ DiÞtÞ; 0� t� T : ð1Þ

where E is the waveform energy, T is the waveform pulse

duration and Di is a frequency shift for radar sensor i. To

minimize the interference between radar sensors, we need

to find a set of frequency shifts fDigM�1
i¼0 (M is the number

of radar sensors) for which the waveforms are orthogonal.

Let covðk; lÞ denote the cross-correlation between the

waveforms xkðtÞ and xlðtÞ.

covðk; lÞ ¼
ZT

0

xkðtÞx�l ðtÞdt;

¼EsincððDk � DlÞTÞ expðjpðDk � DlÞTÞ:

ð2Þ

If pðDk � DlÞT ¼ ip, the waveforms xkðtÞ and xlðtÞ are

orthogonal. A set of frequency shifts fDigM�1
i¼0 therefore can

be chosen such that:

Di ¼ Dk � Dl ¼
i

T
; i ¼ 0; 1; . . .;M � 1: ð3Þ

Based on (3), we are sure that the waveforms can co-exist

if the frequency shift is i/T between two waveforms, i.e.,

orthogonality among waveforms can be achieved by sep-

arating frequencies of waveforms by multiplying an integer

with the inverse of the waveform pulse duration.

3 Spatial-Temporal Diversity and Interference

Analysis

3.1 Spatial-Temporal Diversity

At each sensor, we use a receiver with an array antenna,

depicted in Fig. 1, which consists of an N-element uniform

linear array with inter-element spacing hi and K pulse

repetition interval (PRI) time taps. Consider a signal

siðtÞ ¼ A expðjXitÞ impinging on the array. If the angle of

arrival wave relative to the array is h, the signal observed at

the nth array element is

gnðtÞ ¼A exp jðXiðt �
nhi

c
sin hÞ þ /0Þ

� �
;

n ¼ 0; 1; . . .;N � 1 ð4Þ

where the phase offset /0 accounts for the absolute phase

at the first element. We consider N samples formed from N

array elements at time t0 and map these N element samples

into a vector form to have a snapshot of the array at a fixed

time.

g¼A1 1 expð�j2phi

ki
sinhÞ . . . expð�j2pðN�1Þhi

ki
sinhÞ

� �0
¼A1asðhiÞ

ð5Þ

Here, A1¼AexpðjðXitþ/0ÞÞ;hi¼ hi

ki
sinh is the normalized

angle, ð:Þ0 denotes the transpose operation, and asðhiÞ is the

spatial steering vector.

asðhiÞ ¼ 1 expð�j2phiÞ . . . expð�j2pðN � 1ÞhiÞ
� �0

:

ð6Þ

Since the target is in motion, the normalized Doppler shift

at the target induced on sensor i at angle h is

f di ¼
2viT

ki
sin h

¼ bhi

ð7Þ

where vi is the velocity of sensor i and b ¼ 2viT
hi
¼ 4viT

ki
j
hi¼ki

2

.

Each vector of array outputs from successive pulses due to

the target will have a temporal linear phase progression,

i.e., at the kth PRI, snapshot of the target takes the form

[9, 10]
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eðhi; f diÞ ¼ expðj2pðk � 1Þf diÞasðhiÞ; k ¼ 1; 2; . . .;K:

ð8Þ

If K pulses are to be processed in a coherent pulse interval,

the KN dimensional space-time steering vector corre-

sponding to a possible target at look angle h and Doppler

frequency f di is given by

eðhi; f diÞ ¼ btðf diÞ � asðhiÞ; ð9Þ

where � denotes the Kronecker product and btðf diÞ is the

K-dimensional Doppler steering vector

btðf diÞ ¼ 1 expðj2pf diÞ . . . expðj2pðK � 1Þf diÞ
� �0

:

ð10Þ

By introducing the complex weighting vector wi, the output

response of the space-time beamformer can be maximized

for any desired angle of arrival. More specifically, let xi

and yi denote the received data and beamformer output at

sensor i, respectively.

yi ¼ w0ixi: ð11Þ

In any case, the optimum weight vector, wi 2 CNK ; that

maximizes SINR, satisfies

wi ¼ R�1
i eðhi; f diÞ; ð12Þ

where Ri 2 CNK�NK is the interference-plus-noise covari-

ance matrix.

3.2 Interference Analysis

In this section, we focus on clutter and jamming. Note that

the interference between sensors can be canceled by the

orthogonality of waveforms and noise can be modeled by

the normal process.

(1) Clutter: Clutters generate unwanted radar returns that

may interfere with the desired signal. In many

scenarios, the dominant interference is not noise, but

clutter. Consequently, the signal-to-clutter ratio (SCR)

is often of more important than the signal-to-noise ratio

(SNR). The integrated clutter can be generally approx-

imated as the sum of Nc elemental clutter patches. For

clutter patch i, the space-time data vector [9] is

pi ¼ cibtðf dci
Þ � asðhciÞ

¼ ciui

ð13Þ

where ci is a complex scalar random variable that

accounts for the amplitude and phase of the ith clutter

patch, ui ¼ btðf dci
Þ � asðhciÞ; and btðf dci

Þ and asðhciÞ
are the temporal vector and spatial vector of clutter

signal from clutter patch i, respectively. f dci
and hci

are the normalized Doppler shift and angle of arrival

of clutter patch i, respectively. The total clutter vector

equals to

xc ¼
XNc

i¼1

pi

¼
XNc

i¼1

cibtðf dci
Þ � asðhciÞ

¼
XNc

i¼1

ciui:

ð14Þ

The covariance matrix of the clutter is given by

Rc ¼Efxcx0cg

¼
XNc

i¼1

XNc

j¼1

Efcic
0
jguiu

0
j

ð15Þ

where Efxg denotes the expectation of the random

variable x.
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(2) Jamming: Jamming signals are generated by hostile

interfering signal sources that seek to degrade the

performance of radar sensors by mechanisms such as

degrading SINR by increasing the noise level or

generating false detection to overwhelm the radar

with false targets. One of the most common forms of

jamming is a simple noise jammer that radiates a

relatively high-power waveform at the victim sensor

from a specific platform. A commonly employed

model for Nj jamming signals [7]

xja ¼
XNj

m¼1

zm � ajðhmÞ ð16Þ

where zm contains voltage samples of the mth jammer

waveform taken at PRI. The different jammer wave-

forms are uncorrelated with each other.

4 Diversity Combining and Target Detection

Sensors in the network are assigned waveforms with spe-

cific parameters and they can provide their parameters

about waveforms to the cluster-head which collects and

combines waveforms from cluster members. The received

signal at sensor i consists of the desired signal and

interference

xiðu; tÞ ¼ aiðuÞeðhi; f diÞsiðt � siÞ þ diðu; tÞ ð17Þ

where the pair of variables (u,t) is for a random process,

e.g., x(u,t) is a random process and only variable u is for the

random variable, e.g., aiðuÞ is a random variable.

diðu; tÞ ¼ xciðu; tÞ þ xjaiðu; tÞ þ xiniðu; tÞ þ ni(u,t) presents

the overall interference, i.e., the sum of the clutter vector

xciðu; tÞ, the jammer vector xjaiðu; tÞ, the interference

between sensors xiniðu; tÞ, and the background white

noise niðu; tÞ. aiðuÞ is a random variable that models the

radar cross section (RCS), eðhi; f diÞ is a spatial-temporal

steering vector that models the target return for a specific

angle-Doppler, and siðt � siÞ is the return of waveform

with delay si. The data at the output of the ith sensor is the

multiplication of the received data xiðu; tÞ and the spatial-

temporal weight vector wi :

yiðu; tÞ ¼w
0

ixiðu; tÞ;
¼w

0

i aiðuÞeðhi; f diÞsiðt � siÞ þ di

� 	
;

¼ aiðuÞsiðt � siÞLiðhi; f diÞ þ Di;

ð18Þ

where Di,w
0
idi and Liðhi; f diÞ,w

0
ieðhi; f diÞ: Assuming the

RSN with M sensors, the received signal r(u,t) at the

cluster-head is

rðu; tÞ ¼
XM

i¼1

yiðu; tÞ;

¼
XM

i¼1

aiðuÞsiðt � siÞLiðhi; f diÞ þ Di


 �
:

ð19Þ

Note that aiðuÞ can be modeled using non-zero constants

for non-fluctuating targets and four Swerling target models

for fluctuating targets [11]. At the cluster-head, we propose

a receiver as shown in the Fig. 2 to combine waveforms.

According to this receiver, the received signal rðu; tÞ is

processed by a bank of matched filters. After integration,

the output of the branch 1 is given by

Z1ðuÞ ¼
ZT

0

rðu; tÞs�1ðt � s1Þdt

������
������;

¼
XM

i¼1

aiðuÞLiðhi; f diÞ
ZT

0

siðt � siÞs�1ðt � s1Þdt

������
þ
XM

i¼1

ZT

0

s�1ðt � s1ÞDidt

������; ð20Þ

¼ Z11ðuÞ þ Z12ðuÞj j; ð21Þ

where ðÞ� denotes the conjugate operation. Z11ðuÞ and

Z12ðuÞ are defined as below

Z11ðuÞ,
XM
i¼1

aiðuÞLiðhi; f diÞ
ZT

0

siðt � siÞs�1ðt � s1Þdt

¼
XM
i¼2

aiðuÞLiðhi; f diÞ
ZT

0

siðt � siÞs�1ðt � s1Þdt

þ Ea1ðuÞL1ðh1; f d1Þ: ð22Þ
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),( tur Diversity 
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)( 11 ts
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Fig. 2 Receiver at the clusterhead for diversity combining
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Z12ðuÞ,
XM
i¼1

ZT

0

s�1ðt � s1ÞDidt: ð23Þ

Based on (3), Z11ðuÞ can be rewritten as

Z11ðuÞ ¼ Ea1ðuÞL1ðh1; f d1Þ: ð24Þ
Assuming that waveforms are designed properly. Hence,

the interference between sensors is negligible. Since the

detection performance of RSN is greatly affected by the

clutter, we consider the clutter the primary interference

source. The overall interference can be given by

di ¼ciðf dci
; hciÞ þ ni;

¼
XNc

j¼1

cijuij þ ni;
ð25Þ

where uij ¼ btðf dcij
Þ � asðhcijÞ: Thus, Z12ðuÞ becomes

Z12ðuÞ ¼
XM

i¼1

ZT

0

w
0

idis
�
1ðt � s1Þdt: ð26Þ

Since cij is a complex random variable, we assume cij is a

complex Gaussian random variable. Hence, it is not

difficult to prove that Z12 is a complex Gaussian noise

n(u). The output of the branch 1 becomes

Z1ðuÞ � jEa1ðuÞL1ðh1; f d1Þ þ nðuÞj: ð27Þ

Similarly, the output of the ith branch (i ¼ 1; 2; . . .;M) is

ZiðuÞ � jEaiðuÞLiðhi; f diÞ þ nðuÞj: ð28Þ

Based on (28), we can recognize that the output of the ith

branch is composed of the signal from sensor i and noise.

Note that when computing ZiðuÞ, we still have to estimate

the interference-plus-noise covariance matrix.

The purpose of detection problem is to figure out the

presence and motion of the desired targets such as mis-

siles, tanks, fighter aircrafts, other tactical weapons from

the enemy, illegal intruders at the border of the country,

over-speeded vehicles or strange ships at sea, etc. Here,

we apply the spatial-temporal-frequency diversity to

improve the detection performance and use a maximum

likelihood criterion to analyze the detection performance

of RSN for both non-fluctuating targets and fluctuating

targets. The detection problem in RSN can be formulated

as follows:

H0 :Target is not present

H1 :Target is present
ð29Þ

4.1 Non-fluctuating Targets

Non-fluctuating targets can be modeled as the Swerling 0

or equivalently Swerling V [11, 12]. The radar cross

section (RCS) aiðuÞ of non-fluctuating targets is constant

and unknown. We assume that aiðuÞ ¼ aðuÞ; i ¼ 1; 2; ::;M.

Under hypothesis H0; ZiðuÞ follows the Rayleigh distribu-

tion whose probability density function (pdf) is

f zijH0ð Þ ¼ 2zi

r2
exp �z2

i

r2

 �
: ð30Þ

Under hypothesis H1; ZiðuÞ follows the Rician distribution

whose pdf with the parameter mi is

f ðzijH1Þ ¼
2zi

r2
exp �z2

i þ m2
i

r2

 �
I0

2mizi

r2

 �
; ð31Þ

where mi ¼ EaðuÞLiðhi; f diÞ; r2=2 is the noise power for

each branch I, Q, and I0ð:Þ is the zero-order modified

Bessel function of the first kind. We assume that

Z1; Z2; . . .;Zm are independent random variables. Let

z,½Z1; Z2; . . .; ZM�; the joint pdf of the random vector z

for each hypothesis:

f ðzjH0Þ ¼
YM
i¼1

2zi

r2
exp �z2

i

r2

 �
; ð32Þ

f ðzjH1Þ ¼
YM
i¼1

2zi

r2
exp �z2

i þ m2
i

r2

 �
I0

2mizi

r2

 �
: ð33Þ

4.2 Fluctuating Targets

In practice, RCS is normally fluctuating. Based on different

combinations of pdf and decorrelation (pulse to pulse or

scan to scan), Swerling [11] proposed four Swerling

models. He also showed that the statistics associated with

Swerling I and II models are applied to targets consisting of

many small RCS scatters of comparable RCS values, while

the statistics associated with Swerling III and IV models

are applied to targets consisting of one large scatter and

many small equal RCS scatters [12]. In this paper, we focus

on the Swerling II model. The magnitude jaðuÞj of Swer-

ling II targets fluctuates independently from pulse to pulse

according to a chi-square probability density function with

two degree of freedom.

aðuÞ ¼ aIðuÞ þ jaQðuÞ; ð34Þ

where aiðuÞ and aQðuÞ follow Gaussian distribution with

the variance q2=2 for each branch I, Q. Under

hypothesis H0; ZiðuÞ follows the Rayleigh distribution

whose pdf is

f ðzijH0Þ ¼
2zi

r2
exp �z2

i

r2

 �
: ð35Þ

Under hypothesis H1; ZiðuÞ follows the Rayleigh

distribution whose pdf is given by
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f ðzijH1Þ ¼
2zi

r2
i

exp �z2
i

r2
i

 �
; ð36Þ

where ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðELiðhi; f diÞÞ2q2 þ r2

q
: We assume that

Z1; Z2; . . .;Zm are independent random variables. Let

z,¼½Z1; Z2; . . .; ZM�; the joint pdf of the random vector z

for each hypothesis:

f ðzjH0Þ ¼
YM
i¼1

2zi

r2
exp �z2

i

r2

 �
; ð37Þ

f ðzjH1Þ ¼
YM
i¼1

2zi

r2
i

exp �z2
i

r2
i

 �
: ð38Þ

5 Simulation Results and Discussion

5.1 Data Model

We use the modified Joint Domain Localized algorithm

proposed by Adve et al. [13] to determine the space-time

weights at sensors. The data generation scheme uses the

physical model presented by Ward [8]. As mentioned in the

section III, the clutter is modeled as a sum of the contri-

butions of many discrete far field sources. Here, amplitude

of each discrete source is a complex Gaussian random

variable whose average power is set by a chosen clutter-to-

noise ratio (CNR). The normalized Doppler shift associated

with each clutter source depends on the velocity of the

platform. Thermal noise is modeled as a Gaussian white

noise process. The average power is set to unity allowing

the clutter and target powers to be referenced to the white

noise power. Simulations do not consider the effects of

jammers. Parameters used in simulations are listed in the

Table 1 [13]. The interference-plus-noise covariance

matrix Rd is given

Rd ¼ Rn þ pcðkÞRc ð39Þ

where Rn is the covariance of noise, Rc is the clutter

covariance computed in (15), and pcðkÞ is a random vari-

able used to model the clutter power of the kth range cell.

pc(k) often follows Weibull or gamma distribution. Since,

in homogeneous environments, the average clutter power

does not depend on k, we assume the average CNR equals

50 dB.

5.2 Detection Performance Analysis

In RSN, each sensor transmits a known waveform. This

waveform is reflected back from the target toward the

receiving sensor. RSN’s tasks are to detect the existence of

the target and to estimate its unknown parameters, e.g.,

range, speed and direction. Figure 3a presents the proba-

bility of miss-detection PMD as a function of SCNR and

PFA ¼ 10�6 while Fig. 3b presents the miss-detection

probability PMD as the function of false alarm probability

Table 1 Parameters used in simulations

Parameters Values

Array elements 8

Pulses 8

Element spacing ki=2

Pulse Repetition Frequency (PRF) 1024 Hz

The number of clutter sources 181

Target normalized Doppler shift 1/3

Thermal noise power Unity

Clutter to noise ratio (CNR) 50 dB

The number of Doppler bins in LPR 3

The number of Angle bins in LPR

(LPR: Local Processing Region)

3
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Fig. 3 Non-fluctuating target models
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PFA, SCNR = 8 dB and SCNR = 10 dB for non-fluctuat-

ing targets. Similarly, Fig. 4a presents the probability of

miss-detection PMD as a function of SCNR and PFA ¼ 10�6

while Fig. 4b presents the miss-detection probability PMD

as the function of false alarm probability PFA, SCNR = 10

dB and SCNR = 12 dB for fluctuating targets.

Based on these results, we recognize that the probability

of miss-detection PMD at the same SCNR decreases when

the number of radar sensors in the network increases, e.g.,

at SCNR = 10 dB, PMD of the 5-radar RSN is much lower

than that of the 2-radar RSN. It is desirable for PMD to be as

low as possible. In the real world, PMD less than 10% is

reasonable. We can observe that it is very difficult to

achieve this PMD with a single radar at low PFA and if

possible, the SCNR must be very high. However, the

5-radar RSN can maintain very low PMD at a low PFA.

We also notice that it requires more SCNR with fluc-

tuating targets than with non-fluctuating targets to achieve

the same PMD. For example, when we use 5 radar sensors

and PMD is about 10%, SCNR is 9.3 dB for fluctuating

targets but less than 9 dB for non-fluctuating targets. At the

same values of PMD and SCNR, PFA for non-fluctuating

targets is lower than for fluctuating targets. Therefore,

depending on specific scenarios, we can choose PFA and

SCNR logically in order to get the desired detection

performance.

6 Conclusions

We investigated and applied the spatial-temporal-fre-

quency diversity to improve the detection performance of

RSN. We also proposed a receiver for diversity combining

in RSN. The probability of miss-detection as a function of

the false alarm probability and the signal-to-clutter-plus-

noise is analyzed for both non-fluctuating targets and

fluctuating targets. Simulation results showed that the

detection performance of the proposed diversity scheme-

based radar sensor network is much better than that of

single radar system using the spatial-temporal diversity

only.
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Abstract

Based on the zero correlation zone (ZCZ) concept, we present the definitions and properties of a

set of new ternary codes –ZCZ sequence-Pair Set (ZCZPS), and propose a method to use the opti-

mized punctured sequence-pair along with Hadamard matrix to construct an optimized punctured ZCZ

sequence-pair set (OPZCZPS) which has ideal autocorrelation and cross correlation properties in the

zero correlation zone. Considering the moving target radar system, the correlation properties of the

codes will not be severely affected when Doppler shift is not large. We apply the proposed codes as

pulse compression codes to radar system and the simulation results show that optimized punctured ZCZ

sequence-pairs outperform other conventional pulse compression codes, such as the well known polyphase

code–P4 code.

Index Terms : ternary, zero correlation zone, optimized punctured ZCZ sequence-pair, phase coded

waveform
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1 Introduction

Pulse compression is known as a technique to raise the signal to maximum sidelobe (signal-to-sidelobe) ratio

to improve the target detection and range resolution abilities of the radar system. This technique allows a

radar to simultaneously achieve the energy of a long pulse and the resolution of a short pulse without the

high peak power which is required by a high energy short duration pulse [1]. One of the waveform designs

suitable for pulse compression is phase-coded waveform design. The phase-coded waveform design is that a

long pulse of duration T is divided into N subpulses each of width Ts. Each subpulse has a particular phase,

which is selected in accordance with a given code sequence. The pulse compression ratio equals the number

of subpulses N = T/Ts ≈ BT, where the bandwidth is B ≈ 1/Ts. In general, a phase-coded waveform with

longer code word, in other words, higher pulse compression ratio, can have lower sidelobe of autocorrelation,

relative to the mainlobe peak, so its main peak can be better distinguished. The relative lower sidelobe

of autocorrelation is very important since range sidelobes are so harmful that they can mask main peaks

caused by small targets situated near large targets. In addition, the cross-correlation property of the pulse

compression codes should be considered in order to reduce the interference among radars when we choose a

set of pulse compression codes to work in a Radar Sensor Network (RSN).

Much time and effort was put for designing sequences with impulsive autocorrelation functions (ACFs)

and cross correlation functions (CCFs) for radar target ranging and target detection. On one hand, for

aperiodic sequences, it is known that for most binary sequences of length N(N > 13) the attainable sidelobe

levels are approximately
√
N [2] [3] and the mutual peak cross correlations of the same-length sequences are

much larger and are usually in the order of 2
√
N to 3

√
N . Later, set of binary sequences of length N with

autocorrelation sidelobes and cross-correlation peak values of approximately
√
N are studied in paper [4].

Besides, the small set of Kasami sequences and the Bent sequences could achieve maximum correlation values

of approximately
√
N . In addition to binary sequences, polyphase codes, with better Doppler tolerance and

lower range sidelobes such as the Frank and P1 codes, the Butler-matrix derived P2 code, the linear-frequency

derived P3 and P4 codes were provided and intensively analyzed in [5] [6] [7]. Quadiphase [8] code could

also reduce poor fall-off of the radiated spectrum and mismatch loss in the receiver pulse compression filter

of biphase codes. Nevertheless, the range sidelobe of the polyphase codes can not be low enough to avoid
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masking returns from targets. Hence, considerable work has been done to reduce range sidelobes for the

radar system. By suffering a small S/N loss, the authors in [11] present several binary pulse compression

codes to greatly reduce sidelobes. In the previous paper [12], pulse compression using a digital-analog hybrid

technique is studied to achieve very low range sidelobes for potential application to spaceborne rain radar. In

the paper[13], time-domain weighting of the transmitted pulse is used and is able to achieve a range sidelobe

level of -55 dB or better in flight tests. These sidelobe suppression methods, however, degrade the receiving

resolution because of wider mainlobe.

On the other hand, for periodic sequences, the lowest periodic ACF that could be achieved for binary

sequences, as in the case of m-sequences [9] or Legendre sequences, is |Ri(τ �= 0) = 1|. GMW [10] has the

same periodic ACF properties, but posses larger linear complexity. Considering the non-binary case, it is

possible to find perfect sequences, such as two valued Golomb sequences, Ipatov ternary sequences, Frank

sequences, Chu sequences, and modulatable sequences. However, it should be noted that for both binary and

non-binary cases, it is impossible for the sequences to have perfect ACF and CCF simultaneously although

ideal CCFs could be achieved alone. One can synthesize a set of non-binary sequences with impulsive ACF

and the lower bound of CCF: Rij =
√
N, ∀τ, i �= j [14][15], which is governed by Welch bound and Sidelnikov

bound.

So far in the previous work, range sidelobes could hardly reach as low as zero. In addition, it has also

been well proven that it is impossible to design a set of codes with ideal impulsive autocorrelation function

and ideal zero cross-correlation functions, since the corresponding parameters have to be limited by certain

bounds, such as Welch bound [14], Sidelnikov bound [15], Sarwate bound [16], Levenshtein bound [17],

etc. To overcome these difficulties, the new concepts, generalized orthogonality (GO), also called Zero

Correlation Zone (ZCZ) is introduced. Based on ZCZ [18][19][20] concept, we propose a set of ternary

codes– ZCZ sequence-pair set, which can reach zero autocorrelation sidelobe during Zero Correlation Zone

and zero mutual cross correlation peaks during the whole period. We also present and analyze a method to

construct such ternary codes and subsequently apply them to a radar detection system. The method is that

optimized punctured sequence-pair joins together with Hadamard matrix to construct optimized punctured

ZCZ sequence-pairs set. An example is presented, investigated and studied in the radar targets detection
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simulation system for the performance evaluation of the proposed ternary codes. Because of the outstanding

property performance and well target detection performance in simulation system, the newly proposed codes

can be useful candidates for pulse compression application in radar system.

The rest of the paper is organized as follows. Section 2 introduces the definitions and properties of ZCZPS.

In Section 3, the optimized punctured ZCZPS is introduced, and a method using optimized punctured

sequence-pair and Hadamard matrix to construct such codes is given and proved. In Section 4, the properties

and ambiguity function of optimized punctured ZCZPS are simulated and analyzed. The performance of

optimized punctured ZCZPS is investigated in radar targets detection system by comparing with P4 code

in section 5. In Section 6, conclusions are drawn on optimized punctured ZCZPS.

2 The Definitions and Properties of ZCZ Sequence-pair Set

Zero Correlation Zone (ZCZ)is a new concept provided by Fan et.al [20] [21] in which the autocorrelation

and cross correlation sidelobes are zero while the time delay is kept within ZCZ instead of the whole period

of time domain. There has been considerable interest in constructing [22][23][24][25][26] new classes of ZCZ

sequences in ZCZ and studying their properties [27].

Here, we introduce sequence-pair into the ZCZ concept to construct ZCZ sequence-pair set. We consider

ZCZPS (X,Y), X is a set of K sequences of length N and Y is a set of K sequences of the same length N :

x(p) ∈ X p = 0, 1, 2, ...,K − 1 (1)

y(q) ∈ Y q = 0, 1, 2, ...,K − 1 (2)

The autocorrelation function (ACF) (here we use autocorrelation to stand for the cross correlation be-

tween two different sequences of a sequence-pair to distinguish the cross correlation between two different

sequence-pairs) of sequence-pair (x(p),y(p)) is defined by:

Rx(p)y(p)(τ) =
N−1∑
i=0

x
(p)
i y

(p)∗
(i+m) mod N , 0 ≤ m ≤ N − 1 (3)

The cross correlation function of two sequence-pairs (x(p),y(p)) and (x(q),y(q)), p �= q is defined by:

Cx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+m) mod N , 0 ≤ m ≤ N − 1 (4)
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Where τ = mTs is the time delay and Ts is the bit duration.

For pulse compression sequences, some properties are of particular concern in the optimization for any

design in engineering field. They are the peak sidelobe level, the energy of autocorrelation sidelobes and the

energy of their mutual cross correlation [4]. Therefore, the peak sidelobe level which represents a source of

mutual interference and obscures weaker targets can be presented as maxK |Rx(p)y(p)(τ)| = 0, τ is among the

zero correlation zone for ZCZPS. Another optimization criterion for the set of sequence-pairs is the energy

of autocorrelation sidelobes joined together with the energy of cross correlation. By minimizing the energy,

it can be distributed evenly, and the peak autocorrelation sidelobe and the cross correlation level can be

minimized as well [4]. Here, the energy of ZCZPS can be employed as:

E =
K−1∑
p=0

Z0∑
τ=1

R2
x(p)y(p)(τ) +

K−1∑
p=0

K−1∑
q=0,q �=p

Z0∑
τ=0

Cx(p)y(q)(τ) (5)

According to (5), it is obvious to see that the energy can be kept low while minimizing the autocorrelation

sidelobes and cross correlation values of any two sequence-pairs within Zero Correlation Zone.

Hence, the ZCZPS can be constructed by minimizing the autocorrelation sidelobe of a sequence-pair and

cross correlation value of any two sequence-pairs in ZCZPS.

Definition 2-1 Assume (X,Y) to be a sequence-pair set of K sequence-pairs and each sequence-pair is of

N bit length. If all the sequence-pairs in the set satisfy the following equation:

Rx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+m) mod (N) =

N−1∑
i=0

y
(p)
i x

(q)∗
(i+m) mod (N)

=




λN, for m = 0, p = q

0, for m = 0, p �= q

0, for 0 < |m| ≤ Z0

(6)

where p, q = 1, 2, 3, ...,K − 1, i = 0, 1, 2, ..., N − 1, 0 < λ ≤ 1 and τ = mTs. Then (x(p),y(p)) is called a ZCZ

sequence-pair, ZCZP is an abbreviation, and (X,Y) is called a ZCZ sequence-pair set, ZCZPS(N,K,Z0)

is an abbreviation.
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3 Optimized Punctured ZCZ Sequence-pair Set

3.1 Definition of Optimized Punctured ZCZ Sequence-pair Set

Matsufuji and Torii have provided some methods of constructing ZCZ sequences in [28] [31]. In this section, a

set of novel ternary codes, namely the optimized punctured ZCZ sequence-pair set, is constructed by applying

the optimized punctured sequence-pair [32] to the Zero Correlation Zone. Here, optimized punctured ZCZPS

is a specific kind of ZCZPS.

Definition 3-1 [32] Sequence u = (u0, u1, ..., uN−1) is the punctured sequence for v = (v0, v1, ..., vN−1),

uj =




0, if uj is punctured

vj , if uj is Non-punctured
(7)

Where P is the number of punctured bits in sequence u. Suppose vj ∈ (−1, 1) and uj ∈ (−1, 0, 1), u is

P -punctured binary sequence, (u,v) is called a punctured binary sequence-pair.

Definition 3-2 [32] The autocorrelation of punctured sequence-pair (u,v) is defined as

Ruv(τ) = Ruv(mTs) =
N−1∑
i=0

uiv(i+m) mod N , 0 ≤ m ≤ N − 1 (8)

If the punctured sequence-pair has the following autocorrelation property:

Ruv(mTs) =




E, if m ≡ 0modN

0, otherwise
(9)

the punctured sequence-pair is called an optimized punctured sequence-pair [32]. Where, E =
∑N−1

i=0 uivi =

N − P , is the energy of punctured sequence-pair.

Definition 3-3 If (X,Y) in Definition 2-1 is constructed by optimized punctured sequence-pair and a

certain matrix, such as Hadamard matrix or an orthogonal matrix, where

x
(p)
i ∈ (−1, 1), i = 0, 1, 2, ..., N − 1

y
(q)
i ∈ (−1, 0, 1), i = 0, 1, 2, ..., N − 1
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Then

Rx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+m) mod N =




λN, for m = 0, p = q

0, for m = 0, p �= q

0, for 0 < |m| ≤ Z0

(10)

where 0 < λ ≤ 1 and τ = mTs, then (X,Y) can be called an optimized punctured ZCZ sequence-pair set.

OPZCZPS(N,K,Z0) is an abbreviation.

3.2 Design of Optimized Punctured ZCZ Sequence-pair Set

Based on an optimized punctured binary sequence-pair of odd length and a Hadamard matrix, an optimized

punctured ZCZPS can be constructed on following steps:

Step 1: Considering an optimized punctured binary sequence-pair (u,v) of odd length, the length of

each sequence is N1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),

v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),

i = 0, 1, 2, ..., N1 − 1, N1 is odd

Step 2: A Hadamard matrix B (the Hadamard matrix is made up of a set of Walsh sequences) of order

N2 is used here. N2, the length of each sequence, is equal to the number of the sequences in the matrix.

Here, any Hadamard matrix order is possible and b(p) is the row vector of the matrix.

B = [b(0);b(1); ...;b(N2−1)],

b(p) = (b(p)
0 , b

(p)
1 , ..., b

(p)
N2−1),

Rb(p)b(q) =




N2, if p = q

0, if p �= q

Step 3: Doing bit-multiplication on the optimized punctured binary sequence-pair and each row of the
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Hadamard matrix B, then sequence-pair set (X,Y) is obtained,

b(p) = (b(p)
0 , b

(p)
1 , ..., b

(p)
N2−1), p = 0, 1, ..., N2 − 1,

x
(p)
j = uj mod N1b

(p)
j mod N2

, 0 ≤ p ≤ N2 − 1, 0 ≤ j ≤ N − 1,

X = (x(0);x(1); ...;x(N2−1)),

y
(p)
j = vj mod N1b

(p)
j mod N2

, 0 ≤ p ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y(0);y(1); ...;y(N2−1))

Here, the optimized punctured binary sequence-pairs are of odd lengths and the lengths of Walsh sequence

are 2n, n = 1, 2, .... It is easy to see that gcd(N1, N2) = 1, common divisor of N1 and N2 is 1, then

N = N1 ∗ N2. The sequence-pair set (X,Y) is the optimized punctured ZCZPS and N1 − 1 is the Zero

Correlation Zone Z0. The length of each sequence in optimized punctured ZCZPS is N = N1 ∗ N2 that

depends on the product of length of optimized punctured sequence-pair and the length of Walsh sequence in

Hadamard matrix. The number of sequence-pairs in optimized punctured ZCZPS rests on the order of the

Hadamard matrix. The sequence x(p) in sequence set X and the corresponding sequence y(p) in sequence

set Y construct a sequence-pair (x(p),y(p)) that can be used as a pulse compression code.

The correlation property of the sequence-pairs in optimized punctured ZCZPS is:

Rx(p)y(q)(τ) = Ruv(m mod N1)Rb(p)b(q)(m mod N2)

=




EN2, if m = 0 and p = q

0, if 0 < |m| ≤ N1 − 1 and p = q

0, if 0 ≤ |m| ≤ N1 − 1 and p �= q

(11)

where N1 − 1 is the Zero Correlation Zone Z0 and τ = mTs.

Proof:

1) When p = q,

τ = 0, Ruv(0) = E,Rb(p)b(q)(0) = N2, Rx(p)y(q)(0) = Ruv(0)Rb(p)b(q)(0) = EN2;

0 < |τ | ≤ (N1 − 1)Ts, Ruv(τ) = 0, Rx(p)y(q)(τ) = Ruv(m mod N1)Rb(p)b(q)(m mod N2) = 0;
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2) When p �= q,

τ = 0, Rb(p)b(q)(0) = 0, Rx(p)y(q)(0) = Ruv(0)Rb(p)b(q)(0) = 0;

0 < |τ | ≤ (N1 − 1)Ts,

Ruv(τ) = 0, Rx(p)y(q)(τ) = Ruv(m mod N1)Rb(p)b(q)(m mod N2) = 0.

According to Definition 2-1, the OPZCZPS constructed by the above method is a ZCZPS.

4 Properties of Optimized Punctured ZCZ Sequence-pair Set

Considering the optimized punctured ZCZPS constructed by the method mentioned in the last section, the

autocorrelation and cross correlation properties can be simulated and analyzed. For example, the optimized

punctured ZCZPS (X,Y) is constructed by 31-length optimized punctured binary sequence-pair (u,v),u =

[+ + + + − − − + − + − + + + − − − − + − − + − − + + + − + + −],v = [+ + + + 000 + 0 + 0 + + +

0000 + 00 + 00 + + + 0 + +0] (using ′+′ and ′−′ symbols for ′1′ and ′ − 1′) and Hadamard matrix H of

order 4. We follow the three steps presented in Section 3.2 to construct the optimized punctured ZCZPS.

The number of sequence-pairs here is 4, and the length of each sequence is 31 ∗ 4 = 124. The first row of

each matrix X = [x(1);x(2);x(3);x(4)] and Y = [y(1);y(2);y(3);y(4)] constitute a certain optimized punctured

ZCZP (x(1),y(1)). Similarly, the second row of each matrix X and Y constitute another optimized punctured
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ZCZ sequence-pair (x(2),y(2)) and so on.

x(1) = [+ + + + −−− + − + − + + + − −−− + −− + −− + + + − + + − + + + + −−−

+ − + − + + + −−−− + −− + −− + + + − + + − + + + + −−− + − + − + + +

−−−− + −− + −− + + + − + + − + + + + −−− + − + − + + + −−−− + −−

+ −− + + + − + +−],

y(1) = [+ + + + 000 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0 + + + +000

+0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0 + + +

0000 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0 + + + 0000 + 00

+00 + + + 0 + +0];

x(2) = [+ − + −− + −−−−−− + −− + − + + + −−− + + − + + + −−− + − + + − +

+ + + + + − + + − + −−− + + + −− + −−− + + + − + −− + −−−−−− + −

− + − + + + −−− + + − + + + −−− + − + + − + + + + + + − + + − + −−− +

+ + −− + −−− ++],

y(2) = [+ − + − 000 − 0 − 0 − + − 0000 + 00 − 00 + − + 0 + −0 − + − +000

+0 + 0 + − + 0000− 00 + 00 − + − 0 − +0 + − + −000− 0 − 0 − + −

0000 + 00 − 00 + − + 0 + −0 − + − +000 + 0 + 0 + − + 0000− 00

+00 − + − 0 − +0].

Here, optimized punctured ZCZ sequence-pairs (x(1),y(1)) and (x(2),y(2)) are studied as two examples in

the following parts.

4.1 Autocorrelation and Cross Correlation Properties

The autocorrelation property and cross correlation property of 124-length sequence-pairs in the optimized

punctured ZCZ sequence-pair set (X,Y) are shown in Figs. 1 and 2.

From the Figs. 1 and 2, the peak autocorrelation sidelobe of ZCZPS can be as low as 0 while the time

delay is kept within Z0 = N1 − 1 = 30 (Zero Correlation Zone) and the cross correlation value is kept as
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low as 0 during the whole time domain. And it is always true that the cross correlation values of optimized

punctured ZCZPS are zero over the whole period and the sidelobe of autocorrelation of ZCZPS could be

kept as low as 0 among ZCZ.

We still have to confess that the energy loss of the proposed codes is no less than 1.7 db due to reference

mismatch. However, the perfect periodic ACF and CCF achieved simultaneously during the ZCZ zone and

the codes’ structure could make up for it. It is known that a suitable criterion for evaluating code of length

N is the ratio of the peak signal mainlobe divided by the peak signal sidelobe (PSR) of their autocorrelation

function, which can be bounded by [33]

[PSR]dB ≤ 20log2N = [PSRmax]dB (12)

The only aperiodic uniform phase codes that can reach the PSRmax are the Barker codes whose length is

equal or less than 13. Considering the periodic sequences, the m-sequences or Legendre sequences could

achieve the lowest periodic ACF of |Ri(τ �= 0) = 1|. For non-binary sequences, it is possible to find perfect

sequences of ideal ACF. Golomb codes are a kind of two-valued (biphase) perfect codes which obtain zero

periodic ACF but result in large mismatch power loss. The Ipatov code shows a way of designing code pairs

with perfect periodic autocorrelation (the cross correlation of the code pair) and minimal mismatch loss.

In addition, zero periodic autocorrelation function for all nonzero shifts could be obtained by polyphase

codes, such as Frank and Zadoff codes. However, for both binary and non-binary periodic sequences, it is

not possible for the sequences to have perfect ACF and CCF simultaneously although ideal CCFs could be

achieved alone. Comparing with the above codes, the proposed ternary codes could obtain perfect periodic

ACF during the ZCZ and the reference sequence is made of (-1,0,1) which is much less complicated than

other perfect ternary codes such as Ipatvo code. The reference code for Ipatov code is of a three-element

alphabet which might not always be integer.

Nevertheless, considering multi targets in the system, multiple peaks of the autocorrelation function of the

proposed codes might affect on the range resolution. The range resolution could be limited as Ts < τ < N1Ts

or τ > NTs. Here, Ts is one bit duration, N1 is the length of an optimized punctured sequence-pair and

N is the length of an optimized punctured ZCZ sequence-pair. In the Fig. 1, N1 = 31. Otherwise, some

digital signal processing methods could also be introduced to distinguish the peaks. On the another hand,

11
152 of 816



there may also be the concern that multiple peaks of single transmitting signal reflected from one target

may affect determining the main peak of ACF. As a matter of fact, the matched filter here could shift at

the period of ZCZ length to track each peak instead of shifting bit by bit after the first peak is acquired.

Hence, in this way could it be working more efficiently. Alike the tracking technology in synchronization of

CDMA system, checking several peaks instead of only one peak guarantee the precision of PD and avoidance

of PFA. In addition, those obtained peaks could be averaged before the detection in order to reduce the

effect of random noise in the channel so that the detection performance could be improved.

To sum up, the new code could achieve perfect ACF and CCF in the ZCZ simultaneously according to

Fig. 1 and 2, and its PSR can be as large as infinite.

4.2 Ambiguity Function

When the transmitted impulse is reflected by a moving target, the reflected echo signal includes a linear

phase shift which corresponds to a Doppler shift Fd [33]. As a result of the Doppler shift Fd, the main peak

of the autocorrelation function is reduced. The SNR is degraded and the sidelobe structure is also changed

because of the Doppler shift.

The ambiguity function which is usually used to analyze the radar performance within Doppler shift and

time delay is defined in [33]:

A(τ, FD) ≡ |
∫ ∞

−∞
x(s)ej2πFDsx∗(s− τ)ds| ≡ |Â(τ, FD)| (13)

where τ is the time delay between transmitting signal and matched filter, and FD is the Doppler shift.

In [29], PAF (Periodic Ambiguity Function) is introduced by Levanon as an extension of the periodic

autocorrelation for Doppler shift. And the single-periodic complex envelope is [30]:

Aperiodic(τ, FD) ≡ | 1
T

∫ T

0

x(s+
τ

2
)ej2πFDsx∗(s− τ

2
)ds| ≡ |Âperiodic(τ, FD)| (14)

Where T is one period of the signal.

We are studying sequence-pairs in this research, so we use different codes for transmitting part and

receiving part. The single-period ambiguity function for ZCZPS can be rewritten as

Apair(τ, FD) ≡ |Âpair(τ, FD)| = | 1
T

∫ T

0

x(p)(s+
τ

2
)ej2πFDsy(q)∗(s− τ

2
)ds| (15)
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Where p, q = 0, 1, 2...,K − 1, T = NTs is one period of the signal and Ts is one bit duration. At the same

time, when p = q, equation (15) can be used to analyze the autocorrelation property within Doppler shift;

and when q �= p, equation (15) can be used to analyze the cross correlation performance within Doppler

shift. Equation (15) is plotted in Fig. 3 in a three-dimensional surface plot to analyze the radar performance

of optimized punctured ZCZPS within Doppler shift. Here, maximal time delay is 1 unit (normalized to

length of the code, in units of NTs) and maximal Doppler shift is 5 units for cross correlation and 3 units

for autocorrelation (normalized to the inverse of the length of the code, in units of 1/NTs).

In Fig.3(a), there is relative uniform plateau suggesting low and uniform sidelobes. This low and uniform

sidelobes minimize target masking effect in Zero Correlation Zone of time domain, where Z0 = 30, −30τc ≤

τ ≤ 30τc. From Fig. 3(b), considering cross correlation property between any two optimized punctured ZCZ

sequence-pairs of the ZCZPS, we can see that the optimized punctured ZCZPS is tolerant of Doppler shift

when Doppler shift is not large. When the Doppler shift is zero, or the target is not moving, cross correlation

sidelobe of our proposed code is zero in the whole time domain.

Since synchronizing techniques develop exponentially in the industrial world, time delay between trans-

mitting signal and matched filter can, to some extent, be precisely estimated. Therefore, it is necessary to

investigate the property of our proposed code when we have the output of the matched filter at the expected

time τ = 0. When τ = 0, the ambiguity function can be expressed as:

|Âpair(0, FD)| = | 1
T

∫ T

0

x(p)(s)y(q)∗(s)e(j2πFDs)ds| (16)

And the Doppler shift performance without time delay is presented in the Fig. 4.

Fig. 4(a) illustrates that without time delay of matched filter but having the Doppler shift less than 1

unit, the autocorrelation value of optimized punctured ZCZPS falls sharply during one unit, and the trend

of the amplitude over the whole frequency domain decreases as well. Fig. 4(b) shows that there are some

convex surfaces in the cross correlation performance. From Figs.4(a) and 4(b), when Doppler frequencies

equal to multiples of the pulse repetition frequency (PRF = 1/PRI = 1/Ts), all the ambiguity values

turn to zero except when Doppler frequency is equal to 2 PRF for cross correlation. That is the same as

many widely used pulse compression binary code such as the Barker code. Overall, the ambiguity function

performances of optimized punctured ZCZP can be as efficient as conventional pulse compression binary
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code.

5 Application to Radar System

According to [33], PD (Probability of Detection), PFA (Probability of False Alarm) and PM (Probability of

Miss) are three probabilities of most interest in the radar system. Note that PM = 1 − PD. Therefore, we

simulated the above three probabilities of using 124-length optimized punctured ZCZ sequence-pair in radar

system in this section. The performance of radar system using 124-length P4 code is also studied in order

to compare with the performance of optimized punctured ZCZ sequence-pairs of corresponding length. In

the simulation model, 105 times of Monte-Carlo simulation has been run for each SNR value. The Doppler

shift frequency is a random variable that is kept less than 1 unit (normalized to the inverse of the length of

the code, in units of 1/NTs), and the expected peak time of the output of the matched filter is at τ = 0.

From Fig. 5, the probabilities of miss target detection PM of the system using 124-length optimized

punctured ZCZP are lower than 124-length P4 code especially when the SNR is not high. When SNR is

higher than 18 dB, both probabilities of miss targets of the system approach zero. However, the probabilities

of miss targets of P4 code fall more quickly than optimized punctured ZCZP.

We plotted the detection probability PD versus false alarm probability PFA of the coherent receiver. We

have simulated the performance at different SNR values. Because of the limited space, we only chose SNR

at 12 db and 14 dB. Fig. 6 shows performance of 124-length optimized punctured ZCZP and performance

of the same length P4 code when the SNR is 12dB and 14dB. Within the same SNR value either 12dB or

14dB, the detection probabilities of optimized punctured ZCZ sequence-pair are much larger than detection

probabilities of P4 code, and meanwhile PFA of the first code are also smaller than PFA of the latter code.

Stating differently, optimized punctured ZCZ sequence-pair has higher target detection probability while

keeping a lower false alarm probability. Furthermore, observing Fig. 6, 124-length optimized punctured

ZCZ sequence-pair even has much better performance at 12dB SNR than P4 code of corresponding length

at 14dB SNR.
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6 Conclusions

The definition and properties of a set of newly provided ternary codes–ZCZ sequence-pair set were discussed

in this paper. Based on optimized punctured sequence-pair and Hadamard matrix, we have investigated

a constructing method for a specific ZCZPS–optimized punctured ZCZPS made up of a set of optimized

punctured ZCZPs along with studying its properties. The significant advantage of the optimized punctured

ZCZPS is a considerably reduced sidelobe as low as zero in the zero correlation zone and zero mutual cross

correlation value in the whole time domain. According to the radar system simulation results shown in Figs.

5 and 6, it is easy to observe that 124-length optimized punctured ZCZPS has better performance than

P4 code of the same length when the target is not moving very fast in the system. A general conclusion

can be drawn that the optimized punctured ZCZPS consisting of optimized punctured ZCZ sequence-pairs

can effectively increase the variety of candidates for pulse compression codes. Because of the ideal cross

correlation properties of optimized punctured ZCZPS, our future work would focus on the application of the

optimized punctured ZCZPS in multiple radar systems.
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Figure 1: Periodic autocorrelation property of optimized punctured ZCZPS
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Figure 2: Periodic cross correlation property of optimized punctured ZCZPS
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Figure 3: Ambiguity function of 124-length ZCZPS: (a) autocorrelation (b) cross correlation
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Figure 4: Doppler shift of 124-length ZCZPS (τ=0): (a) autocorrelation (b) cross correlation
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Abstract

In this paper, we perform a number of theoretical studies on constant frequency (CF) pulse waveform design and diversity in radar
sensor networks (RSN): (1) the conditions for waveform co-existence, (2) interferences among waveforms in RSN, (3) waveform diversity
combining in RSN. As an application example, we apply the waveform design and diversity to automatic target recognition (ATR) in
RSN and propose maximum-likehood (ML)-ATR algorithms for non-fluctuating target as well as fluctuating target. Simulation results
show that our waveform diversity-based ML-ATR algorithm performs much better than single-waveform ML-ATR algorithm for non-
fluctuating targets or fluctuating targets. Conclusions are drawn based on our analysis and simulations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The network of radar sensors should operate with multi-
ple goals managed by an intelligent platform network that
can manage the dynamics of each radar to meet the com-
mon goals of the platform, rather than each radar to oper-
ate as an independent system. Therefore, it is significant to
perform signal design and processing and networking
cooperatively within and between radar sensors. In this let-
ter, we will study waveform design and diversity for radar
sensor networks.

In the existing works on waveform design and selection,
Bell (1993) used information theory to design radar wave-
form for the measurement of extended radar targets exhib-
iting resonance phenomena. In (Baum, 1991) singularity
expansion method was used to design some discriminant
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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waveforms such as K-pulse, E-pulse, and S-pulse. Sowelam
and Tewfik (2000) developed a signal selection strategy for
radar target classification, and a sequential classification
procedure was proposed to minimize the average number
of necessary signal transmissions. All the above studies
and design methods were focused on the waveform design
or selection for a single active radar or sensor. In (Skolnik,
2001) cross-correlation properties of two radars are briefly
mentioned and the binary coded pulses using simulated
annealing (Deng, 1996) are highlighted. However, the
cross-correlation of two binary sequences such as binary
coded pulses (e.g. Barker sequence) are much easier to
study than that of two analog radar waveforms. In this
paper, we will focus on the waveform diversity and design
for radar sensor networks using constant frequency (CF)
pulse waveform.

The rest of this paper is organized as follows. In Section
2, we study the co-existence of radar waveforms. In Section
3, we analyze the interferences among radar waveforms. In
Section 4 we propose a RAKE structure for waveform
165 of 816
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diversity combining and propose maximum-likelihood
(ML) algorithms for automatic target recognition (ATR).
In Section 5, we provide simulation results on ML-ATR.
In Section 6, we conclude this paper and provide some
future works.

2. Co-existence of radar waveforms

For radar sensor networks, the waveforms from differ-
ent radars will interfere with each other. We choose con-
stant frequency (CF) pulse waveform for radar i as

xiðtÞ ¼
ffiffiffiffi
E
T

r
exp½j2pðbþ diÞt�; �T=2 6 t 6 T=2 ð1Þ

which means there is a frequency shift di for radar i. To
minimize the interference from one waveform to the other,
optimal values for di should be determined to have the
waveforms orthogonal to each other, i.e., let the cross-cor-
relation between xi(t) and xn(t) be 0Z T=2

�T=2

xiðtÞx�nðtÞdt ¼ E
T

Z T=2

�T=2

exp½j2pðbþ diÞt�

� exp½�j2pðbþ dnÞt�dt

¼ Esinc½pðdi � dnÞT � ð2Þ

If we choose

di ¼
i
T

ð3Þ

where i is a dummy index, then (2) can have two casesZ T=2

�T=2

xiðtÞx�nðtÞdt ¼
E i ¼ n

0 i 6¼ n

�
ð4Þ

So choosing di ¼ i
T in (1) can have orthogonal waveforms,

i.e., the waveforms can co-exist if the carrier spacing is 1/T
between two radar waveforms. However, orthogonality
among the reflected waveforms (echoes) may not hold be-
cause of time delay and doppler shift ambiguity during
transmission and reflection, so we need to study the inter-
ferences of waveforms in RSN.

3. Interferences of waveforms in radar sensor networks

3.1. RSN with two radar sensors

We are interested in analyzing the interference from one
radar to another if there exist time delay and doppler shift.
For a simple case where there are two radar sensors (i and
n), the ambiguity function of radar i (considering interfer-
ence from radar n) is

Aiðti; tn; F Di ; F DnÞ ¼
����
Z 1

�1
½xiðtÞ expðj2pF Di tÞ:

þxnðt � tnÞ expðj2pF Dn tÞ�x�i ðt � tiÞdt

����
ð5Þ
6

Z T=2þminðti ;tnÞ

�T=2þmaxðti ;tnÞ
xnðt � tnÞ

�����
expðj2pF Dn tÞx�i ðt � tiÞdt

�����
þ
Z T=2

�T=2þti

xiðtÞ
����

expðj2pF Di tÞx�i ðt � tiÞdt

����
¼
Z T=2þminðti;tnÞ

�T=2þmaxðti ;tnÞ
xnðt � tnÞ

�����
expðj2pF Dn tÞx�i ðt � tiÞdt

�����
þ E sin½pF DiðT � jtijÞ�

TpF Di

����
���� ð6Þ

To make analysis easier, we assume ti = tn = s, then (6) can
be simplified as

Aiðs; F Di ; F DnÞ � jEsinc½pðn� iþ F Dn T Þ�j

þ E sin½pF DiðT � jsjÞ�
T pF Di

����
���� ð7Þ
3.2. RSN with M radar sensors

It can be extended to an RSN with M radars. Assuming
time delay s for each radar is the same, then the ambiguity
function of radar 1 (considering interferences from all the
other M � 1 radars with CF pulse waveforms) can be
expressed as

A1ðs; F D1
; . . . ; F DM Þ �

XM

i¼2

jEsinc½pði� 1þ F Di T Þ�j

þ E sin½pF D1
ðT � jsjÞ�

TpF D1

����
���� ð8Þ
4. Waveform diversity and combining with application to

ATR

In RSN, The radar sensors are networked together in an
ad hoc fashion. Scalability concern suggest a hierarchical
organization of radar sensor networks with the lowest level
in the hierarchy being a cluster. In RSN, each radar can
provide their waveform parameters such as di to their clus-
terhead radar, and the clusterhead radar can combine the
waveforms from its cluster members. In RSN with M
radars, the received signal for clusterhead (assume it is
radar 1) is

r1ðu; tÞ ¼
XM

i¼1

aðuÞxiðt � tiÞ expðj2pF Di tÞ þ nðu; tÞ ð9Þ

where a(u) stands for complex radar cross section (RCS)
and its magnitude can be modeled using non-zero con-
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stants for non-fluctuating target and four Swerling target
models for fluctuating target (Richards, 2005); F Di is the
doppler shift of target relative to waveform i; ti is delay
of waveform i, and n(u, t) is additive white Gaussian noise
(AWGN). RCS may vary with aspect angle, and the radars
have been assumed to be calibrated in such that RCS can
be extracted in terms of meaningful units. In this paper,
we propose a RAKE structure for waveform diversity com-
bining, as illustrated by Fig. 1.

According to this structure, the received r1(u, t) is pro-
cessed by a bank of matched filters, then the output of
branch 1 (after integration) is

jZ1ðu; t1; . . . ; tM ; F D1
; . . . ; F DM Þj

¼
Z T=2

�T=2

r1ðu; tÞx�1ðt � t1Þds

����
���� ð10Þ

¼
Z T=2

�T=2

XM

i¼1

aiðuÞxiðt � tiÞ
"�����

expðj2pF Di tÞ þ nðu; tÞ�x�1ðt � t1Þdt
�� ð11Þ

where
R T=2

�T=2
nðu; tÞx�1ðt � t1Þdt can easily be proved to be

AWGN, so

jnðu; t1Þj,
Z T=2

�T=2

nðu; tÞx�1ðt � t1Þdt

����
���� ð12Þ

follows Rayleigh distribution. Assuming t1 = t2 = � � � =
tM = s, then based on (8),

jZ1ðu; s; F D1
; . . . ; F DM Þj �

XM

i¼2

jaðuÞEsinc½pði� 1þ F Di T Þ�j

þ aðuÞE sin½pF D1
ðT � jsjÞ�

TpF D1

����
����

þ jnðu; sÞj ð13Þ

Similarly, we can get the output for any branch m

(m = 1,2, . . . ,M),

jZmðu; s;F D1
; . . . ;F DM Þj �

XM

i¼1;i6¼m

jaðuÞEsinc½pði�mþ F Di T Þ�j

þ aðuÞE sin½pF DmðT � jsjÞ�
T pF Dm

����
����

þ jnðu; sÞj ð14Þ

If s = 0, and F D1
¼ � � � ¼ F DM ¼ 0, then (14) becomes

jZmðu; 0; 0; 0; � � � ; 0Þj � jEaðuÞj þ jnðuÞj ð15Þ
Doppler mismatch happens quite often in target search
where target velocity is not yet known. In the study of
ATR in this paper, we assume that there is no delay and
doppler uncertainty, so (15) will be used.

ATR has been extensively studied. In statitical
approaches, conditional Gaussian (with Rayleigh in magni-
tude) models have been used for ATR with SAR data by
O’Sullivan et al. (2001), DeVore and O’Sullivan (2002,
2003, 2004). Their models are Gaussian when one condi-
tions on parameters such as aspect angle. Conditional
Gaussian was also used for ATR with range profile data
by Jacobs and O’Sullivan (2000). DeVore and O’Sullivan
also tried out a Rician model (Devore et al., 2000) although
it didn’t perform well in their particular SAR application.
Besides, Rician model was also used by Ehrman and Lan-
terman (2004a,b, 2003a,b) on ATR via comparing the RCS
of targets detected by passive radar system to the simulated
RCS of known targets. All these studies are for single radar
system. We are interested in studying ATR using RSN and
comparing it against the signle radar system.
4.1. ML-ATR for non-fluctuating targets

For non-fluctuating target, the magnitude of RCS am(u)
is just a constant a for a given target. In (15), jn(u,s)j fol-
lows Rayleigh distribution since n(u,s) is a Gaussian ran-
dom variable for given s, so jZm(u; 0,0, . . . , 0)j follows
Rician distribution because signal Ejaj is a constant. Let
ym , jZm(u; 0,0, . . . , 0)j, then the probability density func-
tion (pdf) of ym is

f ðymÞ ¼
2ym

r2
exp �ðy

2
m þ k2Þ
r2

� �
I0

2kym

r2

� �
ð16Þ

where

k ¼ Ejaj; ð17Þ

r2 is the noise power (with I and Q sub-channel power r2/
2), and I0(Æ) is the zero-order modified Bessel function of
the first kind. Let y , [y1,y2, . . . ,yM], then the pdf of y is

f ðyÞ ¼
YM
m¼1

f ðymÞ ð18Þ

Our ATR is a multiple-category hypothesis testing prob-
lem, i.e., to decide a target category (e.g. aircraft, ship, mo-
tor vehicle, bird, etc.) based on r1(u, t). Assume there are
totally N categories and category n target has RCS an, so
the ML-ATR algorithm to decide a target category C can
be expressed as

C ¼ arg maxN
n¼1f ðyjk ¼ EjanjÞ ð19Þ

¼ arg maxN
n¼1

YM
m¼1

2ym

r2
exp �ðy

2
m þ E2janj2Þ

r2

" #

� I0

2Ejanjym

r2

� �
ð20Þ
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4.2. ML-ATR for fluctuating targets

Fluctuating target modeling is more realistic in which
the target complex RCS (magnitude) is drawn from either
the Rayleigh or chi-square of degree four pdf (Richards,
2005). In this paper, we will focus on ‘‘Swerling 2’’ model
(Swerling, 1960) which is Rayleigh distribution with
pulse-to-pulse decorrelation. For Swerling 2 model, the
magnitude of complex RCS ja(u)j follows Rayleigh distri-
bution and its I and Q sub-channels follow zero-mean
Gaussian distributions with variance c2. Assume

aðuÞ ¼ aIðuÞ þ jaQðuÞ ð21Þ

and n(u) = nI(u) + jnQ(u) follows zero-mean complex
Gaussian distribution with variance r2 for the I and Q
sub-channels. According to (11), (14), and (15),

jZmðu; 0; 0; 0; . . . ; 0Þj � jEaðuÞ þ nðuÞj ð22Þ

is a more accurate approximation. Since a(u) and n(u) are
zero-mean complex Gaussian random variables, so
Ea(u) + n(u) is a zero-mean Gaussian random variable with
variance E2c2 + r2 for the I and Q sub-channels, which
means ym , jZm(u; 0,0, . . . , 0)j follows Rayleigh distribu-

tion with parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2c2 þ r2

p
:

f ðymÞ ¼
ym

E2c2 þ r2
exp � y2

m

E2c2 þ r2

� �
ð23Þ
Table 1
RCS values at microwave frequency for 5 targets

Index n Target RCS (m2)

1 Bird 0.01
2 Conventional unmanned winged missile 0.5
3 Small single-engine aircraft 1
4 Small flighter aircraft or 4 passenger jet 2
5 Large flighter aircraft 6
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Fig. 2. Probability of ATR error for 5 targets. (a)
Let y , [y1,y2, � � � ,yM], then the pdf of y is

f ðyÞ ¼
YM
m¼1

f ðymÞ ð24Þ

Assume there are totally N categories and category n target
has complex RCS an(u) (with variance c2

n), so the ML-ATR
algorithm to decide a target category C can be expressed as

C ¼ arg maxN
n¼1f ðyjc ¼ cnÞ ð25Þ

¼ arg maxN
n¼1

YM
m¼1

ym

E2c2
n þ r2

exp � y2
m

E2c2
n þ r2

� �
ð26Þ
5. Simulations

Radar sensor networks will be required to detect a broad
range of target classes. Too often, the characteristics of
objects that are not of interest (e.g., bird) will be similar to
those of threat objects (e.g., missile). Therefore, new tech-
niques to discriminate threat against undesired detections
(e.g. birds, etc.) are needed. We applied our ML-ATR to this
important application, to recognize a target from many tar-
get classes. We assume that the domain of target classes is
known a priori (N in Sections 4.1 and 4.2), and that the
RSN is confined to work only on the known domain.

For non-fluctuating target recognition, our targets have 5
classes with different RCS values, which are summarized in
Table 1 Skolnik, 2001. For fluctuating target recognition,
we assume the fluctuating targets follow ‘‘Swerling 2’’ model
(Rayleigh with pulse-to-pulse decorrelation), and assume the
RCS value listed in Table 1 to be the standard deviation (std)
cn of RCS an(u) for target n. We applied the ML-ATR algo-
rithms in Section 4.1 (for non-fluctuating target case) and
Section 4.2 (for fluctuating target case) to classify an
unknown target as one of these 5 target classes. At each aver-
age SNR value, we ran Monte-Carlo simulations for 105

times for each target. In Fig. 2a and b, we plot the average
probability of ATR error for all 5 targets recognition (non-
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fluctuating and fluctuating targets). Our RSN with wave-
form diversity can have average probability of ATR error
much less than 10%. However, the single radar system has
probability of ATR error much higher than 10%. Observe
that even if the single radar works at much higher SNR, it
still could not achieve low probability of ATR error because
the single radar system is not very sensitive to the SNR. This
clearly demonstrates that waveform diversity in RSN can
tremendously improve the ATR performance, and break
the performance floor of single radar system.

6. Conclusions

We have studied constant frequency pulse waveform
design and diversity in radar sensor networks. We showed
that the waveforms can co-exist if the carrier frequency
spacing is 1/T between two radar waveforms. We made
analysis on interferences among waveforms in RSN and
proposed a RAKE structure for waveform diversity com-
bining in RSN. As an application example, we applied
the waveform design and diversity to automatic target rec-
ognition (ATR) in RSN and proposed maximum-likehood
(ML)-ATR algorithms for non-fluctuating target as well as
fluctuating target. Simulation results show that RSN using
our waveform diversity-based ML-ATR algorithm per-
forms much better than single radar system for non-fluctu-
ating targets and fluctuating targets recognition.
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In this paper, we introduce a new method for packet transmission delay analysis and
prediction in mobile ad hoc networks. We apply a fuzzy logic system (FLS) to coordi-
nate physical layer and data link layer. We demonstrate that type-2 fuzzy membership
function (MF), i.e., the Gaussian MFs with uncertain variance is most appropriate to
model BER and MAC layer service time. Two FLSs and one neural network: a singleton
type-1 FLS, an interval type-2 FLS and back-prop neural network (NN) are designed to
predict the packet transmission delay based on the BER and MAC layer service time.
Simulation results show that the interval type-2 FLS performs much better than the
type-1 FLS in transmission delay prediction. And FLSs performs better than back-prop
NN. We use the forecasted transmission delay to adjust the transmission power, and
it shows that the interval type-2 FLS performs much better than a type-1 FLS, and
FLSs are performs better than back-prop NN in terms of energy consumption, average
delay and throughput. Besides, we obtain the performance bound based on the actual
transmission delay.

Keywords: wireless Ad Hoc networks, cross-layer design, fuzzy logic system, interval
type-2 fuzzy sets, packet transmission delay analysis and prediction

1. Introduction

The demand for Quality of Service (QoS) in mobile ad hoc networks is growing

in a rapid speed. To enhance the QoS, we consider the combination of physical

layer and data-link layer together, a cross-layer approach. A strict layered design

is not flexible enough to cope with the dynamics of the mobile ad hoc networks 1.

Cross-layer design could introduce the layer interdependencies to optimized overall

network performance. The general methodology of cross-layer design is to maintain

the layered architecture, capture the important information that influence other

layers, exchange the information between layers and implement adaptive protocols

and algorithms at each layer to optimize the performance.

Lots of previous works have focused on cross-layer design for QoS provision. Liu

1
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et al 2 combine the AMC at physical layer and ARQ at the data link layer. Ahn et

al 3 use the info from MAC layer to do rate control at network layer for supporting

real-time and best effort traffic. Akan et al 4 propose a new adaptive transport

layer suite including adaptive transport protocol and adaptive rate control protocol

based on the lower layer information.

Some works related to energy efficiency have been reported. Banbos proposes a

power-controlled multiple access schemes in 5. This protocol reveals the trade-off

of the transmitter power cost and backlog/delay cost in power control schemes.

Zhu 6 proposes a minimum energy routing scheme, which consider the energy con-

sumption for data packets as well as control packets of routing and multiple access.

In 7, Sichitiu proposes a cross-layer scheduling method. Through combining network

layer and MAC layer, a deterministic, schedule-based energy conservation scheme

is proposed. This scheme drives its power efficiency from eliminating idle listening

and collisions.

However, cross-layer design can produce unintended interactions among pro-

tocols, such as an adaptation loops. It is hard to characterize the interaction at

different layers and joint optimization across layers may lead to complex algorithm.

In this paper, we discuss one of the parameters for QoS: packet transmission

delay. And our algorithm is quite different from all the previous works. We propose

to use interval type-2 Fuzzy Logic System (FLS) for packet transmission delay

analysis and prediction, and we compare it against a singleton type-1 FLS. After

applying FLSs, better performances could be achieved. Also, the fuzzy method could

be flexible and simpler to implement.

We apply the transmission delay predictors to control the transmission power.

The simulation achieves performance parameters of average delay, energy consump-

tion and throughput. Assume we know the actual transmission delay, we also get

these parameters as the performance bounds. Table 1 is the acronyms used in the

paper.

The remainder of this paper is structured as following. In section 2, we introduce

the preliminaries. In section 3, we make an overview of fuzzy logic systems. In section

4, we apply the FLS to the cross-layer design. Simulation results and discussions

are presented in section 5. In section 6, we conclude this paper.

2. Preliminaries

2.1. Pysical layer design

The physical layer is the interface between the wireless medium and the MAC 8.

The principle of OFDM is to divide a high-speed binary signal to be transmitted

over a number of low data-rate subcarriers. A key feature of the IEEE 802.11a PHY

is to provide 8 PHY modes with different modulation schemes and coding rates,

making the idea of link adaptation feasible and important, as listed in Table 2.

BPSK, QPSK, 16-QAM and 64-QAM are the supported modulation schemes. The

OFDM provides a data transmission rates from 6 to 54MBPS. The higher code rate
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Table 1. Acronyms

AMC Adaptive Modulation and Coding

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CSMA/CA Carrier − Sense Multiple Access with Collision Avoidance

FLS Fuzzy Logic System

MAC Medium Access Control

MF Membership Function

NN Neural Network

OFDM Orthogonal Frequency Division Multiplexing

QAM Quadrature Amplitude Modulation

QPSK Quality of Service

QoS Quadrature Phase Shift Keying

RMSE Root Mean Square Errors

of 2/3 and 3/4 are obtained by puncturing the original rate 1/2 code.

Table 2. Eight PHY Modes of the IEEE802.11A PHY

Mode Modulation CodeRate DataRate BpS∗

1 BPSK 1/2 6Mbps 3

2 BPSK 3/4 9Mbps 4.5

3 QPSK 1/2 12Mbps 6

4 QPSK 3/4 18Mbps 9

5 16 − QAM 1/2 24Mbps 12

6 16 − QAM 3/4 36Mbps 18

7 64 − QAM 2/3 48Mbps 24

8 64 − QAM 3/4 54Mbps 27

*Bytes per OFDM Symbol

2.2. MAC layer design

The 802.11 MAC uses Carrier-Sense Multiple Access with Collision Avoidance

(CSMA/CA) to achieve automatic medium sharing between compatible stations.

In CSMA/CA, a station senses the wireless medium to determine if it is idle be-

fore it starts transmission. If the medium appears to be idle, the transmission may

proceed, else the station will wait until the end of the in-progress transmission.

A station will ensure that the medium has been idle for the specified inter-frame
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interval before attempting to transmit.

Besides carrier sense and RTS/CTS mechanism, an acknowledgment (ACK)

frame will be sent by the receiver upon successful reception of a data frame. Only

after receiving an ACK frame correctly, the transmitter assumes successful delivery

of the corresponding data frame. The sequence for a data transmission is: RTS-

CTS-DATA-ACK.

A mobile node will retransmit the data packet when finding failing transmission.

Retransmission of a signal packet can achieve a certain probability of delivery. There

is a relationship between the probability of delivery p and retransmission times n 9:

n = 1.451n
1

1− p
(1)

The IEEE 802.11 standard requires that a data frame is discarded by the trans-

mitter’s MAC after certain number of unsuccessful transmission attempts. Accord-

ing to the requirement of probability of delivery, we choose the minimum number

of retransmission.

When MAC layer acquires access to the channel, the nodes will exchange the

RTS-CTS-DATA-ACK packets. After the transmitters receive an ACK packet, a

packet is transmitted successfully. In this paper, we assume that there will be al-

ways best-effort traffic present that can be locally and rapidly rate controlled in an

independent manner at each node to yield necessary low delays and stable through-

puts.

2.3. Bit error rate

BER is the percentage of bits with errors divided by the total number of bits

that have been transmitted, received or processed over a given time period. It is

a measure of transmission quality. The high BER means high packets loss rate.

Requests for resends will increase delay. For delay sensitive traffic requires a very

low BER.

2.4. MAC layer service time

There are three basic processes when the MAC layer transmits a packet 10: the

decrement process of the backoff timer, the successful packet transmission process

that takes a time period of Tsuc and the packet collision process that takes a time

period of Tcol. Here, Tsuc is the random variable representing the period that the

medium is sensed busy because of a successful transmission, and Tcol is the random

variable representing the period that the medium is sensed busy by each station

due to collisions. The MAC layer service time is the time interval from the time

instant that a packet becomes the head of the queue and starts to contend for trans-

mission, to the time instant that either the packet is acknowledged for a successful

transmission or the packet is dropped. This time is important when we examine the

performance of higher protocol layers.
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2.5. Packet transmission delay

The packet delay represents the time it took to send the packet between the trans-

mitter and the next-hop receiver, including the deferred time and the time to fully

acknowledge the packet. The packet transmission delay between the mobile nodes

includes three parts: the wireless channel transmission delay, the Physical/MAC

layer transmission delay, and the queuing delay 11.

Defining D as the distance between two nodes and C as the light speed, the

wireless channel transmission delay as:

Delaych =
D

C
(2)

The Physical/MAC layer transmission delay will be decided by interaction of the

transmitter and the receive channel, the node density and the node traffic intensity

etc. The queuing delay is decided by the mobile node I/O system-processing rate,

the subqueue length in the node. In order to make the system “stable”, the rate at

which node transfers packets intended for its destination must satisfy all nodes that

the queuing lengths will not be infinite and the average delays will be bounded.

2.6. Energy

A mobile node consumes significant energy when it transmits or receives a packet.

But we will not consider the energy consumed when the mobile node is idle.

The distance between two nodes are variable in the mobile ad hoc networks and

the power loss model is used. To send the packet, the sender consumes 12,

Ptx = Pelec + εfs · d
2 (3)

and to receive the packet, the receiver consumes,

Prx = Pelec (4)

Where Pelec represents the power that is necessary for digital processing, mod-

ulation, and εfs represents the power dissipated in the amplifier for the free space

distance d transmission.

2.7. One-step markov path model

The mobile nodes are roaming independently with variable ground speed. The mo-

bility model is called one-step Markov path model 13. The probability of moving

in the same direction as the previous move is higher than other directions in this

model, which means this model has memory. Fig.1. shows the probability of the six

directions.

3. Overview of Interval Type-2 Fuzzy Logic Systems

Fig. 2. shows the structure of a type-2 FLS 14. It is very similar to the structure of

a type-1 FLS 15. For a type-1 FLS, the output processing block only contains the
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Fig. 1. One-step Markov Path Model

defuzzifier. We assume that the reader is familiar with type-1 FLSs, so that here

we focus only on the similarities and differences between the two FLSs.

FUZZIFIER

   RULES

 INFERENCE

TYPE-2 FUZZY  LOGIC  SYSTEM

CRISP

INPUT

FUZZY   INPUT

SETS

FUZZY  OUTPUT
SETS

x ε X

OUTPUT

PROCESSING

TYPE

REDUCED

SET

  

CRISP

OUTPUT

y = f(x) ε Y

TYPE - REDUCER

DEFUZZIFIER

Fig. 2. The structure of a type-2 FLS

In order to emphasize the importance of the type-reduced set, we have shown

two outputs for the type-2 FLS, the type-reduced set and the crisp defuzzified value.

The fuzzifier maps the crisp input into a fuzzy set. This fuzzy set can, in general,

be a type-2 set.

In the type-1 case, we generally have “IF-THEN” rules, where the lth rule has

the form “Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl”, where:

xis are inputs; Fl
is are antecedent sets (i = 1, . . . , p); y is the output; and Gls are

consequent sets. The distinction between type-1 and type-2 is associated with the

nature of the membership functions, which is not important while forming rules;

hence, the structure of the rules remains exactly the same in the type-2 case, the

only difference being that now some or all of the sets involved are of type-2; so, the

lth rule in a type-2 FLS has the form “Rl : IF x1 is F̃l
1

and x2 is F̃l
2

and · · · and xp

is F̃l
p, THEN y is G̃l”.

In the type-2 case, the inference process is very similar to that in type-1. The
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inference engine combines rules and gives a mapping from input type-2 fuzzy sets

to output type-2 fuzzy sets. To do this, one needs to find unions and intersections

of type-2 sets, as well as compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output from the fuzzy set that

is the output of the inference engine, i.e., a type-0 (crisp) output is obtained from a

type-1 set. In the type-2 case, the output of the inference engine is a type-2 set; so,

“extended versions” (using Zadeh’s Extension Principle 16) of type-1 defuzzification

methods was developed in 14. This extended defuzzification gives a type-1 fuzzy set.

Since this operation takes us from the type-2 output sets of the FLS to a type-1 set,

this operation was called “type-reduction” and the type-reduced set so obtained

was called a “type-reduced set” 14. To obtain a crisp output from a type-2 FLS, we

can defuzzify the type-reduced set.

General type-2 FLSs are computationally intensive, because type-reduction is

very intensive. Things simplify a lot when secondary membership functions (MFs)

are interval sets (in this case, the secondary memberships are either 0 or 1). When

the secondary MFs are interval sets, the type-2 FLSs were called “interval type-2

FLSs”. In 17, Liang and Mendel proposed the theory and design of interval type-2

fuzzy logic systems (FLSs). They proposed an efficient and simplified method to

compute the input and antecedent operations for interval type-2 FLSs, one that

is based on a general inference formula for them. They introduced the concept of

upper and lower membership functions (MFs) and illustrate their efficient inference

method for the case of Gaussian primary MFs. They also proposed a method for

designing an interval type-2 FLS in which they tuned its parameters.

In an interval type-2 FLS with singleton fuzzification and meet under minimum

or product t-norm, the result of the input and antecedent operations, Fl, is an

interval type-1 set, i.e., F l = [f l, f
l
], where f l and f

l
simplify to

f l = µ
F̃

l

1

(x1) ? . . . ? µ
F̃

l

p

(xp) (5)

and

f
l
= µ

F̃
l

1

(x1) ? . . . ? µ
F̃

l

p

(xp) (6)

where xi (i = 1, . . . , p) denotes the location of the singleton.

In this paper, we use center-of-sets type-reduction, which can be expressed as:

Ycos(Y
1, · · · , Y M , F 1, · · · , FM ) = [yl, yr] =

∫

y1 · · ·
∫

yM

∫

f1 · · ·
∫

fM 1
/

∑

M
i=1

fiyi

∑

M
i=1

fi
(7)

where Ycos is an interval set determined by two end points, yl and yr
17; f i ∈ F i =

[f i, f
i
]; yi ∈ Y i = [yi

l , y
i
r], and Y i is the centroid of the type-2 interval consequent

set G̃
i
; and, i = 1, . . . , M . Because Ycos is an interval set, we defuzzify it using the

average of yl and yr; hence, the defuzzified output of an interval type-2 FLS is

f(x) =
yl + yr

2
(8)
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4. Modeling BER and MAC Layer Service Time Using Interval

Type-2 Membership Function

4.1. BER analysis and modeling ber

Let p be the probability that bit is error in any given time. So p can be described

as a random variable with a known mean value Ea.

Now, at any given time the bit is error with probability p and the bit is correct

with probability 1-p. Since the bit is either error or correct, the number of the bits

it is error(Eb) for a fixed length transmission bits is binomial random variable. The

length of the transmission bits is Nt, The probability that Eb takes any value x is :

P{Eb = x} = CNt

x px(1-p)Nt−x (9)

As the number of the length of the transmission bits increase, the binomial distribu-

tion is approximated to a Gaussian distribution, with mean µ = pNt and variance

σ2 = p(1-p)Nt.

In this paper, we set up membership functions (MFs) for BER. We get the origi-

nal data from 10000 Monte-Carlo simulations. From the original data of BER shown

in Table 2, we randomly decomposed the whole data sets into ten segments and com-

puted the mean mi and std σi of the BER of the ith segment, i = 1, 2, · · · , 10. We

also computed the mean m and std σ of the entire BER. To see which value –mi

or σi– varies more, we normalized the mean and std of each segment using mi/m,

and σi/σ, and we then computed the std of their normalized values, σm and σstd.

Table 3. Mean and std values for ten segments and the entire BER, and their normalized std.

BER mean std

Segment 1 0.016613 0.033315

Segment 2 0.015618 0.027857

Segment 3 0.015528 0.017401

Segment 4 0.016206 0.02107

Segment 5 0.015721 0.017148

Segment 6 0.016298 0.029309

Segment 7 0.017062 0.037428

Segment 8 0.016253 0.022871

Segment 9 0.016448 0.023194

Segment 10 0.016237 0.020675

Entire Traffic 0.016198 0.025829

Normalized std 0.029161 0.26184

As we see from the last row of Table 3, σm � σstd. We conclude, therefore, that

if the BER of each segment (small number of simulations)are Gaussian, then the

membership function for BER ( in large number of simulations) is more appropriate
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Fig. 3. Type-2 Gaussian MF with uncertain standard deviation

to be modeled as Gaussian with uncertain standard deviation. One example of type-

2 Gaussian MF with uncertain standard deviation is shown in Fig.3.

4.2. MAC layer service time analysis and modeling

Recent research by Zhai, kwon and Fang 10 discovered that the lognormal distri-

bution could match for the MAC layer service time. i.e., if the MAC layer service

time for the packet i is si, then

log10 si ∼ N (·; m, σ2) (10)

We, therefore, tried to model the logarithm of the MAC layer service time, to see

if a Gaussian MF can match its nature. We got the original data from simulation.

We decomposed the whole data sets into ten segments and computed the mean

mi and std σi of the logarithm of the MAC layer service time of the ith segment,

i = 1, 2, · · · , 10. We also computed the mean m and std σ of the entire logarithm

of the MAC layer service time. To see which value –mi or σi– varies more, we

normalized the mean and std of each segment using mi/m, and σi/σ, and we then

computed the std of their normalized values, σm and σstd.

As we see from the last row of Table 4, σm � σstd. We conclude, therefore, that

if the logarithm of the MAC layer service time of each segment (small number of

simulations)are Gaussian, then the membership function for the logarithm of the

MAC layer service time( in large number of simulations) is more appropriate to

be modeled as Gaussian with uncertain standard deviation. One example of type-2

Gaussian MF with uncertain standard deviation is shown in Fig.3.

5. Cross-layer Design Using Interval Type-2 Fuzzy Logic System

As we introduce in the section 2, the high BER means high packets loss rate.

Requests for resends will increase latency. For delay sensitive traffic requires a very

low BER. And the MAC layer service time is important when we examine the

performance of higher protocol layers. So we could know BER and MAC layer service
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Table 4. Mean and std values for ten segments and the entire logarithm of MAC layer service time,
and their normalized std.

MAC layer service time mean std

Segment 1 -1.1902 0.44295

Segment 2 -1.1929 0.44698

Segment 3 -1.1967 0.45237

Segment 4 -1.1959 0.44835

Segment 5 -1.1917 0.43598

Segment 6 -1.1924 0.44779

Segment 7 -1.1976 0.45687

Segment 8 -1.1996 0.45554

Segment 9 -1.1923 0.45068

Segment 10 -1.1997 0.462

Entire Traffic -1.1949 0.44981

Normalized std 0.0028746 0.016421

time will manage the packet transmission delay between the mobile nodes. We are

now ready to evaluate the packet transmission delay using fuzzy logic systems.

We predict packet transmission delay based on the following two antecedents:

• Antecedent 1. BER.

• Antecedent 2. MAC layer service time.

The consequent is depicted as the packet transmission delay. The linguistic vari-

ables used to represent the BER and MAC layer service time were divided into three

levels: low, moderate, and high. The consequent – the packet transmission delay was

divided into 5 levels, vert low, low, moderate, high and very high.

We designed questions such as:

IF BER is low and MAC layer service time is high, THEN the packet

transmission delay is .

So we need to set up 32 = 9 (because every antecedent has 3 fuzzy sub-sets, and

there are 2 antecedents) rules for this FLS. We summarized these rules in Table 5.

We used Guassian membership functions (MFs) to represent the antecedents

and the consequent.

Fig.4. show the FLS application for the cross-layer design.

When a mobile node sends out a packet, it will first predict the packet trans-

mission delay using the FLS algorithm. After that, the node could adjust the trans-

mission power according to the predicted packet transmission delay. That means if

the predicted packet transmission delay is larger, we will increase the transimission

power. Similar rules can be obtained for other cases. Therefore average delay, energy

consumption and throughput performances will change.
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Table 5. Fuzzy Rules and Consequent

Antecedent1 Antecedent2 Consequent

Low Low V eryLow

Low Moderate Low

Low High Moderate

Moderate Low Low

Moderate Moderate Moderate

Moderate High High

High Low Moderate

High Moderate High

High High V eryHigh

Source

Buffer

MAC

Physical

FLS

MAC Layer Service Time

BER

Transmission Power

Fig. 4. FLS application for cross-layer design

6. Simulations

We implemented the simulation model using the OPNET modeler. The simulation

region is 300×300 meters. There were 12 mobile nodes in the simulation model, and

the nodes were roaming independently with variable ground speed between 0 to 10

meters per second. The mobility model was called one-step Markov path model.

The movement would change the distance between mobile nodes. We assumed the

collecting data distribution of the mobile node was exponential distribution and the

arriving interval was 0.2 second and the length of the packet is 512 bits.

For type-1 FLS, We chose Gaussian membership function as antecedents; for

interval type-2 FLS, we used Gaussian primary MF’s with fixed mean and uncertain

std for the antecedents. The initial 9 rules were designed according to Table 5. We

followed the training algorithm proposed in 17. In 19, the Back-prop NN is the
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Fig. 5. The RMSE of packet transmission delay prediction for two FLS approaches

best non-fuzzy design. We chose Back-prop NN as a comparision. We set the Back-

prop as two input, one output, 4 layers and 540 connectivity. The steepest decent

algorithm was used to train all the parameters based on the 300 data sets. After

training, the rules were fixed, and we tested the FLS based on the remaining 300

data sets.

In Fig.5., we summarized the root-mean-square-errors (RMSE) between the es-

timated packet transmission delay and the actual delay.

RMSE =

√

√

√

√

1

300

600
∑

i=301

[d(i) − f(i)]2 (11)

where d(i) was the actual packet transmission delay and f(i) was the estimated

delay.

The simulation result shows that the interval type-2 FLS for packet transmission

delay analysis and prediction outperforms the type-1 FLS, and two FLSs outperform

Back-prop NN.

In the following performance simulation, we assume we could know the actual

transmission delay. We just use it as a ideal case to get the performance parameters

as the bounds.

6.1. Average delay

We used the average delay parameter to evaluate the network performance. Each

packet was labeled a timestamp when it was generated by the source sensor node.

When its destination sensor node received it, the time interval was the transmission

delay.

Average Delay =

∑K

i=1
Di

K
(12)
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Fig.6. summaried the delay performance of the four algorithms. The type-2 FLS

algorithm was better than the type-1 FLS algorithm. The type-2 FLS predictor

could reduce the average delay by up to 20% than type-1 FLS predictor. Two FLS

were better than Back-prop NN algorithm. And the ideal case was get by using

actual transmission delay as the predictor outcome, and it was the best performance

among the three.
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Fig. 6. Average Delay for Three Algorithms

6.2. Energy efficiency

It was not convenient to recharge the battery, so the energy efficiency was extremely

important for mobile ad hoc networks. In the wireless mobile ad hoc networks, we

used the parameter: the remaining energy to describe the energy efficiency.
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Fig. 7. Remaining Energy for Three Algorithms
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The fuzzy computing consumed energy. In 20, we knew the energy comsumed

by computing was far less than that comsumed by communication. We could only

consider the commmunication energy comsuption for energy efficiency.

Fig.7. showed the remaining energy of the four algorithms. We assumed that

the energy of each sensor is 2.0J and we adopted CSMA/CA protocol to solve the

packets collision problem. If a sensor node transmitted Nums packets (each packet

cost 1 second) and receives Numr packets (each packets also cost 1 second) and it

was roaming in the network for Tm, we could get the remaining energy Ei of this

sensor node 11:

Ei = 2.0 − (3 × 10−5 × Tm + 1.2 × 10−3 × 1 + 6 × 10−4 × 1) (13)

Same as the average delay, for the performance of the energy consumption, the

type-2 FLS algorithm was better than the type-1 FLS algorithm. The type-2 FLS

predictor could reduce the energy consumption by up to 21% than the type-1 FLS

predictor. Two FLSs were better than Back-prop NN algorithm. The ideal case was

set as the low bound.

6.3. Networks efficiency

The mobile ad hoc networks were used to collect data and transfer packets. The

throughput of packets transmitted was one of the parameters to evaluate the net-

works efficiency. In our simulation, we assumed the collecting data distribution of

the mobile node was Poisson distribution and the arriving interval was 0.2 second.

Observing from Fig.8., the type-2 FLS algorithm was better than the type-1 FLS

algorithm. The type-2 FLS predictor could increase the throughput by up to 45%

than the typ-1 FLS predictor. Two FLSs were better than Back-prop NN algorithm.

And the ideal case was set as the high bound.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Simulation Time

T
hr

ou
gh

pu
t

back−prop NN
Type−1 FLS
Interval type−2 FLS
Ideal

Fig. 8. Throughput for Three Algorithms
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We introduce the fuzzy logic system in the cross-layer design. Compared with

other algorithms for cross-layer design, the fuzzy method could be flexible and

simpler to implement. We could predict the packet transmission delay according

to the information just from physical layer and MAC layer. So we have potential

application advantage. We use the FLSs as the predictors and we could control the

transmission power according the outcomes of the predictors. Simulation results

show that the type-2 FLS algorithm is better than the type-1 FLS algorithm. Two

FLSs were better than Back-prop NN algorithm. And we could set the ideal case

as the performance bounds.

7. Conclusion

Cross-layer design is a effective method to improve the performance of the mobile

ad hoc network. We applied the fuzzy logic system to coordinate physical layer

and data-link layer. We select BER and MAC layer service time as antecedents to

analyze and predict the packet transmission delay. And we apply a type-1 FLS and

an interval type-2 FLS for the packet transmission delay analysis and prediction.

Simulation results show that the interval type-2 FLS for packet transmission delay

analysis and prediction outperforms the type-1 FLS. Two FLSs are better than

Back-prop NN algorithm. We use the FLSs as the predictors and we could control

the transmission power according the outcomes of the predictors. Simulation re-

sults show that the type2 algorithm is better than the type1 algorithm. Two FLSs

are better than Back-prop NN algorithm. And we could set the ideal case as the

performance bounds.
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Abstract

Security problems caused by Denial of Service(DoS) attacks for wireless sen-
sor networks (WSNs) are important and hot research issues. Without proper
security mechanisms, WSNs will be confined to limited and controlled environ-
ments. This negates numerous promises WSNs hold. However, current works
on Media Access Control (MAC) for WSNs mainly concentrate on balancing
the efficiency and fairness of common channel access. In this paper, we propose
a secure MAC protocol for WSNs: fuzzy logic based secure media access control
(FSMAC) protocol. In FSMAC, a security system is embedded into the exist-
ing MAC sub-layer. Therefore, the operation mechanism of the original MAC
protocol, i.e., CSMA/CA, and its interfaces with the network layer and the
physical layer remain unchanged. This breaks through the concept that unless
the developers of WSNs take security into account at design time, the protocols
they depend on will remain vulnerable to DoS attacks. Moreover, fuzzy logic
system is applied for intrusion detection and defense. FSMAC is a fully dis-
tributed and non-agent-based method. Appropriate countermeasures are also
adopted to reduce the destruction of attacks. Simulations were performed to
demonstrate the effectiveness of our approach in terms of detection probability,
false alarm rate, data packet successful transmission rate, energy consumption
and network lifetime.

Keywords: DoS Attack; Fuzzy Logic Systems; Secure MAC protocol;
Distributed WSN; Attack Monitoring; Defense, Collision Attack; Exhaustion
Attack; Unfairness Attack.

1. Introduction

A wireless sensor network (WSN) can be thought as an ad hoc network,
which consists of sensor nodes linked by wireless medium to perform distrib-
uted sensing tasks. Recent developments in integrated circuit technology have

Preprint submitted to Elsevier December 17, 2009
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allowed the construction of small and low-cost sensor nodes with signal process-
ing and wireless communication capabilities. Distributed WSNs have increas-
ing applications. They hold the potential to revolutionize many segments of
our economy and lives from environmental monitoring, to manufacturing and
business asset management[5]. However, individual sensor nodes are resource -
energy, bandwidth, computation, and memory - constrained devices.

Most of WSNs actively monitor their surroundings, therefore it is easy to
deduce information other than the data monitored[30]. Such unwanted informa-
tion leakage often results in privacy breaches. Moreover, the wireless communi-
cation schemes employed by sensor networks facilitate eavesdropping and packet
injection by adversaries. To ensure operation safety, secrecy of sensitive data
and privacy for people in sensor environments, security algorithms are eagerly
needed for WSNs.

Generally, denial of service (DoS) attacks[37] aim at disabling normal func-
tions via wasting network resources, which could have been utilized by systems
to provide useful services to legitimate clients. They can be carried out either
by flooding victim nodes with network traffic or sending requests that cause
victim nodes to behave unpredictably. DoS attacks on WSNs can be carried
not only by attackers within an organization for having the authority to access
the network, but also by attackers outside the organization. For DoS attacks,
the target resources may be file system space, process space, network bandwidth
and network connections. There are two main kinds of DoS attacks: system-
oriented DoS attacks and congestion-based DoS attacks. System-oriented DoS
attacks exploit vulnerabilities in operating systems and the implementations of
protocol stack. Congestion-based DoS attacks take advantage of the weakness
inside the network design. On the other hand, according to the number of attack
sources, there are single-source DoS attacks and multi-source DoS attacks. A
single-source DoS attack is originated only at one host, and a multi-source DoS
attack floods the victim with a barrage of attack packets coming from multiple
hosts. DoS attacks on WSNs may be carried at network layer and MAC layer.
On network layer, DoS attacks will result in a disruption of routing functional-
ities. While on MAC layer, DoS attacks can potentially disrupt channel access
and cause the resource wastage in terms of bandwidth and energy.

Currently, agent-based intrusion detection[38][1], signature-based intrusion
detection [32] [12] [31], anomaly detection [27], encryption[40][7][39] and authen-
tication schemes[8][33] are popular and effective security methods for networks.
They can cooperate together, or work individually to improve system security.
However, these secure methods are disabled or degraded when they are applied
to WSNs to defend DoS attacks. The reasons are: (a) Complex cryptography is
too onerous to be completed by capacity-limited sensor nodes; (b) The coopera-
tion among sensor nodes within a distributed WSN consume extra resource; (c)
It is impractical to employ particular sensor nodes to conduct intrusion detec-
tion in WSNs; (d) It is very easy for enemies to compromise some sensor nodes
to get the access authority.

DoS attacks are increasingly common and critical in computer networks in
recent years. Without proper security mechanisms, computer networks will be

2
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confined to limited and controlled environments, and negate many of promises
they hold. DoS attacks have been studied extensively for wired networks, e.g.,
Internet, however there is a lack of equivalent researches for WSNs. Moreover,
security in WSNs is complicated by the constrained capabilities of sensor nodes
and the properties of their deployment:

• Wireless links make WSNs more susceptible to link attacks ranging from
passive eavesdropping, active impersonating, message replaying to mes-
sage distorting;

• Sensor nodes, roaming in a hostile environment with relatively poor phys-
ical protection, have the non-negligible possibility of being compromised;

• WSNs, unlike fixed networks, have dynamic topology and group mem-
bership, which can dramatically increase the complexity to administrate
authorization.

Wireless media are shared by all nodes in a network. This means all nodes
can transmit at any point, which may cause contention over the common chan-
nel. It is necessary to provide a fair and efficient method to share the media
among all nodes. The media access control (MAC) protocol is responsible for
deciding when competing nodes can access the share media.

Numerous MAC protocols have been proposed for wireless communications
networks. They can be divided into two broad categories according to whether
contention exists or not:

• Schedule-based MAC protocols: For this kind of MAC protocol, a central
authority specifies when and for how long each controlled node may trans-
mit over the shared medium. Hence, there is no collision during transmis-
sion process, such as FDMA, TDMA, CDMA, FCDMA and SDMA[10];

• Contention-based MAC protocols: As its name implies, all nodes access
the common channel through competition, such as CSMA, CSMA/CA,
IEEE802.11, WMACA[34].

In CSMA/CA, before transmitting a packet, a node first listens to the chan-
nel for a short period of time. If it does not sense any traffic, it assumes that the
channel is idle and starts data transmission. Moreover, CSMA/CA introduces
a three-way handshake to make hidden nodes aware of upcoming transmissions,
so collisions at common neighbors can be avoided. The working process is de-
scribed below, where the timing of successful data packet transmissions is shown
in Fig. 1.

1. The sender initiates the handshake by transmitting a Request-To-Send
(RTS) control packet announcing its intended data transmission;

2. The receiver responds with a Clear-To-Send (CTS) packet, which informs
all neighbors of the receiver of the upcoming transmission;

3. Data packets are finally guaranteed to be collision-freely transmitted.

3
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Figure 1: The timing of successful data packet transmissions in CSMA/CA protocol.

In literature, some secure protocols have been proposed for wireless network.
In [35], wired equivalent privacy (WEP) is added to IEEE 802.11[25] standard to
bring security into wireless networks. It employs the well-known and believed-
secure RC4[29] cipher to bring the security level of wireless systems close to
that of wired ones. Perrig proposed a security protocol for WSNs: SPINS[26].
It has two secure building blocks - SNEP and TESLA. SNEP includes data
confidentiality, two-party data authentication, and evidence of data freshness.
TESLA provides authenticated broadcast for severely resource-constrained en-
vironments. But, WEP and SPINS cannot effectively deal with the security
problems in WSNs caused by DoS attacks. Even though some intrusion de-
tection algorithms for wireless networks are proposed in [3][4][6][10], they are
all agent-based. Therefore, additional nodes are needed to execute intrusion
detection.

Security problems of WSNs are attracting more and more researchers atten-
tion. Our research in this paper focuses on the internal DoS attacks on MAC
layer. We propose a fuzzy logic based secure MAC protocol - FSMAC to im-
prove system immunity on DoS attacks. Compared to existing secure protocols,
FSMAC has advantages as following.

• Security system is embedded into the existing MAC sub-layer. The opera-
tion mechanism of original MAC protocol - CSMA/CA, and the interfaces
with the network layer and the physical layer remain unchanged. This
breaks through the concept that unless the developers of WSNs take secu-
rity into account at design time, the protocols they depend on will remain
vulnerable to DoS attacks.

• Fuzzy logic theory is innovatively utilized to design a security system for
intrusion detection and defense.

• FSMAC is a fully distributed and non-agent-based method.

The rest of this paper is organized as follows: In Section 2, we provide
some preliminaries on fuzzy logic systems. The classification on potential DoS
attacks and the selection on intrusion indicators are discussed in Section 3. Our
algorithm design is described in Section 4, including the intrusion detection
method and appropriate countermeasures. Simulation results are provided in
Section 5. Then, Section 6 concludes this paper.

2. Preliminaries: Fuzzy Logic Systems

Fig.2 shows the structure of a fuzzy logic system (FLS) [23]. When an input
is applied to a FLS, the inference engine computes the output set corresponding

4
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to each rule. The defuzzifier then computes a crisp output from these rule
output sets. Consider a p-input 1-output FLS, using singleton fuzzification,
center-of-sets defuzzification [21] and “IF-THEN” rules of the form [22]

Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl.

FUZZIFIER  DEFUZZIFIER

   RULES

 INFERENCE

  FUZZY  LOGIC  SYSTEM

CRISP

INPUT

CRISP

OUTPUT

FUZZY   INPUT
SETS

FUZZY  OUTPUT
SETS

x ε X y=f(x) ε Y

Figure 2: Structure of a fuzzy logic system.

Assuming singleton fuzzification, when an input x′ = {x′1, . . . , x′p} is applied,
the degree of firing corresponding to the l-th rule is computed as

μFl
1
(x′1) � μFl

2
(x′2) � · · · � μFl

p
(x′p) = T p

i=1μFl
i
(x′i) (1)

where � and T both indicate the chosen t-norm. There are many kinds of
defuzzifiers. In this paper, we focus, for illustrative purposes, on the height
defuzzifier [22]. It computes a crisp output for the FLS by first computing the
height, ȳl, of every consequent set Gl, and, then computing a weighted average
of these heights. The weight corresponding to the l-th rule consequent height is
the degree of firing associated with the l-th rule, T p

i=1μFl
i
(x′i), so that

yh(x′) =

∑M
l=1 ȳ

lT p
i=1μFl

i
(x′i)∑M

l=1 T
p

i=1μFl
i
(x′i)

(2)

where M is the number of rules in the FLS.

3. Denial of Service Attacks on MAC Layer of Wireless Sensor Net-
works

CSMA/CA protocol mainly concentrates on how to utilize common channel
efficiently and fairly when it is designed. It also assumes that each node accesses
the common channel following the same multiple access scheme strictly. This
assumption is the premise to guarantee the common channel be shared success-
fully and efficiently among nodes. However, it leaves chances for DoS attacks
on MAC layer through violating this rule on purpose.

By analyzing the working mechanism of CSMA/CA protocol, the charac-
teristics of DoS attacks and the limited capabilities of WSNs, potential DoS
attacks on MAC layer of WSNs can be classified into three categories: collision
attack, unfairness attack and exhaustion attack. Based on the classification of
DoS attacks, we correspondingly choose our indicators for intrusion detection.

5
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3.1. DoS Attack Classification
1. Collision Attack

In collision attacks, adversaries conduct attacks through sending attack
packets onto the busy channel. Those attack packets will collide with con-
trol packets (RTS, CTS and ACK) and data packets from normal sensor
nodes. In Fig.3, grey rectangles stand for packets sent by collision attack-
ers. Collision is supposed to happen when there is an overlap between a
normal sensor node’s transmission and a collision attacker’s transmission.
In this case, data transmissions of normal sensor nodes will fail due to
collision.
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Backoff RTS

CTS

Data
Packet

ACK
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Data
Packet

RTS

Collision Attack
Packet:

Figure 3: Failure transmissions due to collision attacks

2. Unfairness Attack
In the unfairness attack case, attackers have higher chance to access com-
mon channel than other normal sensor nodes. Unfairness attackers send
attack packets to the common channel immediately once sensing channel
is idle. In that sense, unfairness attackers prevent other normal sensor
nodes from transmitting. In Fig. 4, grey rectangles stand for packets
coming from unfairness attackers.
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Medium
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Figure 4: Failure transmissions due to unfairness attacks

3. Exhaustion Attack
Exhaustion attacks are supposed to happen when adversaries abnormally
send a great amount of RTS to normal sensor nodes. RTS/CTS-based
MAC protocols are transmitter invitation MAC protocols. That means,
when a receiver receives a RTS successfully, it must respond to that invi-
tation with a CTS. Moreover, adversaries are compromised from normal
sensor nodes, which makes the receiver unable to tell whether RTS is sent
by normal sensor nodes or by adversaries. Under this condition, if adver-
saries send RTS to normal sensor nodes repeatedly, normal sensor nodes
have to respond to those RTS incessantly with CTS, which will lead to
the exhaustion of battery resources of those normal sensor nodes.
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3.2. Intrusion Indicator Design
When collision attacks intrude the network, attackers send massive packets

into the common channel when the detecting channel is busy. As a result, more
RTS, CTS, ACK and even data packets may be destroyed due to collisions
caused by attackers (See Fig.3). Moreover, the average latency of data packet
is prolonged because of more retransmitting RTS packets and data packets.

Under normal condition, without any attacks, it is fair for each node to
transmit data over the common channel from a long-term statistical view, since
nodes have to wait for a random time before sending RTS to try to hold the
common channel (see Fig.1), and only the first successful one can be allowed to
transmit data over the common channel. Data packets of normal sensor nodes
have to wait for longer time at MAC layer, when unfairness attackers prevent
other normal sensor nodes from transmitting by holding the channel ahead of
time.

Differing from collision attacks and unfairness attacks, exhaustion attackers
work almost in the same way as other normal sensor nodes, except for sending
RTS repeatedly to some normal sensor nodes. As a result, the arrival rate of
RTS at victim nodes will increase dramatically. Besides this, data packets should
wait for longer time, since the common channel is more utilized for transmitting
RTS by attackers.

From above analysis, we can see that intrusions may be detected by monitor-
ing abnormal alterations of some sensitive network parameters, which include
the following.

• A great number of RTS packets are received by victim nodes for exhaustion
attacks;

• Average waiting time becomes very long for both unfairness attacks and
collision attacks;

• Collision takes place considerably often during collision attacks.

In our algorithm, we choose the arrival rate (RRTS), average waiting time (Tw)
and collision rate (Rc) as our intrusion indicators.

• Collision Rate (Rc): Rc is the collision number detected by a node per
second.

• Average Waiting-Time (Tw): Tw is the waiting time of a data packet at
MAC layer.

• RTS Arrival Rate (RRTS): RRTS is the number of RTS received success-
fully by a node per second.

Fixing a network’s traffic strength, node density, node capacity, etc., we add
collision attacks, unfairness attacks and exhaustion attacks respectively into
this network, which runs on CSMA/CA protocol. Table 1 displays a set of
mean and variance values for RRTS , Tw and Rc. There is no DoS attacks for
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normal scenarioes. Collision attacks, unfairness attacks and exhaustion attacks
are introduced into collision attack scenarioes, unfairness attack scenarioes and
exhaustion attack scenarioes separately.

Table 1: Mean and variance values for RRTS , Tw and Rc

Mean/V ariance RRTS Tw(ms) Rc

Normal Scenario 9.9/2.14 4/0.0 0.07/0.19
Collision Attack Scenario 6.0/4.78 290/370 146/157.19
Unfairness Attack Scenario 5.9/4.72 180/370 0.15/0.35
Exhaustion Attack Scenario 22.1/14.3 270/410 1.8/2.16

Note that different attacks result in different abnormal changes on RRTS ,
Tw, Rc:

• When a collision attacker intrudes a network, the mean values of Rc is
about 2084 times bigger and Tw is about 71 times longer than the normal
value;

• For unfairness attack, the mean value of Tw is about 44 times longer than
the normal value;

• For exhaustion attacks, the mean values of RRTS is about doubled and
Tw is about 66 times longer than the normal value.

Those sharp changes in Table 1 verify the feasibility of our intrusion detection
algorithm. Thus, once we detect some unusual changes on RRTS , Tw or Rc,
we can infer, with certain reliability, that there are DoS attacks intruding the
network. Based on this analysis, we design our FLS to implement intrusion
detection.

4. Fuzzy Logic Based Secure MAC (FSMAC) Algorithm Description

The structure of our proposed secure MAC algorithm is shown in Fig.5.
We improve the security of MAC layer through adding two special modules
- intrusion detection module and intrusion defense module - into the original
MAC layer. Each sensor node has its own security system.

In FSMAC, the intrusion module of each sensor node monitors RRTS , Tw

and Rc, and periodically judges whether intrusion exists or not. If intrusion is
found, the defense module of this sensor node will be trigged by FLS intrusion
detection module. Defense module will inform physical layer and MAC layer to
switch to different RF band to make transmission, or pause for a while. Then,
after a period of time, sensor node will switch back to the original RF band,
or restart information exchanging over the network. Intrusion detection will be
resumed also.
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Figure 5: Secure MAC algorithm model

4.1. Intrusion Detection Strategy
From Table 1, we notice that various intrusion indicators are not identi-

cally sensitive to different DoS attacks. Collision attacks significantly increase
data average waiting time and data packet collision rate, unfairness attacks sig-
nificantly increase the data average waiting time only and exhaustion attacks
increase RTS arrival rate and data average waiting time so much. It looks like
the abnormal change on the data average waiting time Tw can indicate these
three kinds of DoS attacks. However, measurements are usually corrupted by
noise; hence, they are uncertain. To increase the accuracy of our intrusion de-
tection, we choose all three intrusion indicators, i.e., RRTS , Tw and Rc, to make
the decision.

Moreover, since the distributed DoS attacks (DDoS)[36] can use many com-
puters to launch a coordinated DoS attack against one or more targets, it is
possible for more than one type of DoS attacks to appear within a system.
Through monitoring RRTS , Tw and Rc simultaneously, we can make intrusion
decision without classifying the attack type.

Based on above considerations, it is an essential part that how to combin-
ing those three intrusion indicators together. There are two main approaches:
linear combination methods and nonlinear combination schemes. For linear
combination, the probability of intrusion found Pif can be expressed as Pif =
α×RRST + β × Tw + γ ×Rc. The key task is to determine the values for com-
bination factors α, β and γ for optimizing the performance in terms of higher
detection probability and lower false alarm rate. There are maximum likelihood
(ML)[11], equal gain (EG) and maximal-ratio combining (MRC) methods[2].

In [25], we proposed a soft decision scheme for parameter combination. The
advantage of using soft decision is that a very small fluctuation of any indicators
value can be effectively reduced. The decision function is as following:

y(x) =
1

1 + exp[−A(x− C)]
(3)
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Notes:

• Parameter A determines the slope of the curve.

• Parameter C determines the center of the curve.

The shape of curve is adaptively adjusted through adjusting parameters A
and C. The intrusion probabilities obtained are:

• Probability of collision attack (Pc): Pc is the probability of collision attack
found. It directly relates to Rc;

• Probability of exhaustion attack (Pe): Pe is the probability of exhaustion
attack found. It directly relates to RRTS;

• Probability of unfairness attack (Pu): Pu is the probability of unfairness
attack found. It directly relates to Tw;

• Probability of total (Pt): Pt directly relates to probability of successful
data packet transmission (Pst).

The working process is depicted in Fig. 6.
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Figure 6: Intrusion probability process flow.

For the nonlinear combination approach, the FLS optimizes combination
through rules and fuzzy logic. FLS nonlinearly maps a set of input data into
an output; the output case decomposes into a collection of independent multi-
input/sign-output systems. The richness of fuzzy logic is that there are an
enormous number of possibilities that lead to lots of different mappings. More-
over, a FLS is well-known for being able to handle linguistic characterizations
and uncertainty of data. As an extension of our previous work, we design a
fuzzy logic model for intrusion detection in this paper.

4.2. Fuzzy Logic Intrusion Detection Module Design
Designing a FLS can be viewed as given a set of input-out pairs, tuning is

essentially equivalent to determining a system that provides an optimal fit to
the input-output pairs, with respect to a cost function. There exists a multi-
tude of design methods that can be used to construct FLSs that have different
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properties and characteristics. There are data-intensive ways, computational
simplicity approaches, recursive methods, offline ways and application specific
approaches[19].

Each sensor node monitors RRTS , Tw and Rc, which are the inputs (or
antecedents) of FLS intrusion detection module (See Fig.5). Then according
to the output (or consequent) - possibility of intrusion found by FLS intrusion
detection module, the security system makes a decision whether intrusion exists
or not.

There are three main steps for our FLS design:

• Fix the shapes and parameters of all the antecedent and consequent mem-
bership functions ahead of time. The data establish the rules and no
tuning is used.

• Fix the shapes and parameters of the antecedent membership functions
ahead of time. Use the training data to tune the consequent parameters.

• Fix the shapes of all the antecedent and consequent membership func-
tions ahead of time. Use the training data to tune the antecedent and
consequent parameters.

Based on the preceding steps, for our FLS, the linguistic variables used to
represent RRTS and Rc are divided into two levels: Low and High; and those
that are used to represent Tw are divided into two levels: Short and Long. The
result - the possibility that a sensor node finds intrusion - is divided into 5 levels,
V ery Low, Low, Moderate, High and V ery High. We show the membership
functions in Fig.7(a) and Fig.7(b). From these two figures we can see that every
antecedent has 2 fuzzy subsets, so we need to set up 23 = 8 (because every
antecedent has 2 fuzzy subsets, and there are 3 antecedents) rules for this FLS.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Low Moderate High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Very Low Low Moderate High VeryHigh 

(a) (b)

Figure 7: (a) Antecedent, and (b) consequent membership functions.
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Based on the fact that when any type of DoS attacks (i.e., collision attacks,
unfairness attacks or exhaustion attacks) intrudes a network, RRTS , Tw or Rc

becomes sharply high/long. The sharper the change is, the more the possibility
of detecting intrusion is. We design a fuzzy logic system using rules such as:

Rl: IF collision rate (x1) of a node detected is High, average waiting
time (x2) of a node collected is Long, and RTS arrival rate (x3) of a node
received is Low, THEN the possibility (y) that a intrusion found by this node
is High.

Where l = 1,2,. . . ,8. We summarize all the rules in Table 2. Ante1 is collision
rate, Ante2 is average waiting time, Ante3 is RTS arrival rate. Consequent is
the possibility that intrusion is found.

Table 2: Rules for intrusion detection.

Rule Ante1 Ante2 Ante3 Consequent

1 Low Short Low V eryLow
2 Low Short High Moderate
3 Low Long Low Moderate
4 Low Long High High
5 High Short Low Moderate
6 High Short High Low
7 High Long Low High
8 High Long High V eryHigh

Defuzzification produces a crisp output for the FLS from the fuzzy sets that
appear at the output of the inference block. Many defuzzifiers have been pro-
posed in the literature, such as centroid defuzzifier, center-of-sums defuzzifier,
height defuzzifier and center-of-sets defuzzifier[23]. One criterion for the choice
of a defuzzifier is computational simplicity. Based on this criterion, in our de-
sign, for every input(x1,x2,x3), the output is computed using

y(x1, x2, x3) =

∑8
l=1 ȳ

lμFl
1
(x1)μFl

2
(x2)μF3

1
(x3)∑8

l=1 μFl
1
(x1)μFl

2
(x2)μFl

3
(x3)

(4)

The height of the five fuzzy sets depicted in Fig.7(b) are ȳ1=0.1, ȳ2=0.3, ȳ3=0.5,
ȳ4=0.7, ȳ5=0.9.

4.3. Design and Optimization of FLS
FLS can incorporate numerical and linguistic knowledge into a unified frame-

work, just like what we have done in this paper. The FLS design is very
flexible based on different choices of antecedent and consequent membership
functions such as triangular, trapzoidal, Gaussian, or sigmoid functions. Gen-
erally piecewise linear membership functions (such as triangular or trapzoidal)
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are preferred, because of their simplicity and efficiency with respect to com-
putability. In this paper, we use triangular and trapzoidal membership func-
tions to illustrate our design of FLS. The rules are coming from experts’ (i.e.,
the authors’) linguistic knowledge, and then the antecedents and consequent
are represented using membership functions. Such methodology has been pop-
ularly used, such as the FLS designs in topology design for wireless personal
area networks [13], connection admission control in ATM networks[14]. Nonlin-
ear membership functions such as Gaussian and Sigmoid membership functions
could be used in this application as well with higher computational complexity.
To optimize our design in real world, some membership tuning and optimiza-
tion methods such as least mean square (LMS), SVD-QR, etc could be used, for
example, LMS was used in [15][16][17], and SVD-QR was used in [18].

4.4. Defense Module Design
When intrusions are found, the defense module is triggered, taking some

countermeasures to reduce the effects of attackers on the network. In fact, it is
an energy waste or unsafe action for normal sensor nodes to transmit or receive
information during the intrusion period. That is, transmission or reception is
almost unsuccessful or spied by attackers when enemies attack a network. Thus
it is an appropriate and effective choice for normal nodes to switch to different
RF bands to make transmission or to pause for a while.

In this paper, we focus on intrusion detection. So just as an example, we
choose pausing for a while to implement defense. There is no information on
attacks, thus we can’t know the duration of attacks. Therefore, after a period
of sleep, nodes should wake up to resume data communication and intrusion
detection. Nodes will stay at this state until intrusion is found again. At the
sleep mode, there is no transmitting or receiving, but sensing (such as collecting
data of temperature, humidity, or degree of air pollution) still continues.

In order to make our secure algorithm available for general WSNs, in which
there is no center control, our defense scheme, such as the intrusion detection
scheme, is also distributed.

5. Simulation and Performance Analysis

We used the simulator OPNET to run simulations. A network with 30 nodes
is set up and the radio range (radius) of each node is 50m. Those nodes are
randomly deployed in an area of 100 × 100m2 and have no mobility. In order
to simplify the analysis about the performance of our security MAC algorithm,
we exclude the factors coming from physical layer and network layer in our ex-
periments. Table 3 summarizes the parameters used by our simulations. Packet
size is 1000 bytes. The destination for each node’s traffic is randomly chosen
from its neighbors. As in [20][24], data packets arrive according to a Poisson
process with certain rate in our simulations.

All sensor nodes are set initially with energy of 2J. We use the same energy
consumption model as in [9] for the radio hardware. To transmit an l-symbol
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Table 3: Physical layer parameters.

Wwmin 32 Wwmax 1024
MAC Header 34 bytes ACK 38 bytes

CTS 38 bytes RTS 44 bytes
SIFS 10 μsec DIFS 50 μsec

ACK-Timeout 212 μsec CTS-Timeout 348 μsec

message a distance d, the radio expends:

ETx(l, d) = ETx−elec(l) + TTx−amp(l,d) = l × Eelec + l × efs × d2 (5)

and to receive this message, the radio expends:

ERx = l × Eelec (6)

The electronics energy, Eelec, as described in [9], depends on factors such as
coding, modulation, pulse-shaping and matched filtering. The amplifier energy,
efs × d2 depends on the distance to the receiver and the acceptable bit error
rate. In this paper, we choose: Eelec = 50nJ/sym, efs = 10pJ/sym/m2.

The attacker is an abnormal sensor node, which has been captured and
reprogrammed by enemies successfully before the system starts to work. In our
simulations, attackers start the intrusion randomly, and each attack lasts for a
random length of period.

We define a parameter metrics to testify the performance of our algorithm.

• Possibility of detection (Pd): the possibility of nodes making correct de-
tection when there is an attack;

• False alarm rate (Pfd): the possibility of nodes making false detection
when there is no attack;

• Data packet successful transmission rate (Rst): the rate of successful trans-
mit data packets to all data packets transmitted;

• Average energy consumption (Eav)(J/Pk): the energy consumed per suc-
cessful transmission data packet;

• Time of first node dead (Ts)(Second): the time that the first node, in the
network, runs out of power. When the energy of a node is used up, we
assume this node is dead.

We separately test the influences of each DoS attack - collision attack, unfair-
ness attack and exhaustion attack. In each experiment, there is only one type of
attack introduced. We compared our FSMAC against original CSMA/CA pro-
tocol. In Fig.8, we plot the simulation time versus the successful transmission
rate. Observe that the data packet successful transmission rate for FSMAC has
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been increased about 25% for each DoS attack. In Fig.9, we compared the aver-
age energy consumption for successful data transmission of these two schemes.
Observed that, our FSMAC outperforms the original CSMA/CA for about 5%
less energy consumption per data packet. In Table 4, FSMAC extends the time
of first node dead about two times, compared to the original CSMA/CA scheme.

For CSMA/CA without any attacks, the time of first node dead is about
200s. But Table 4 even shows FSMAC has longer lifetime than CSMA/CA
without any attack. The reason is that some sensor nodes switch to the sleep
state when intrusion found. At sleep state, some energy is reserved for no
transmitting and receiving. For three different types of attacks, the false alarm
rate of our algorithm is 0, and the probability of detection is 100%.
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Figure 8: Rate of data packet successful transmission.

Table 4: Time that the first node dies.

Collision Attack Unfairness Attack Exhaustion Attack
CSMA/CA FSMAC CSMA/CA FSMAC CSMA/CA FSMAC

Ts 126s 271s 107s 229s 126 275s

We also test the impact of combining DoS attack. That is, three types of
DoS attacks intrude the network together(See Fig. 10 and 11).
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Figure 9: Average energy consumption.

6. Conclusion

In this paper, we classify popular DoS attacks on MAC layer of WSNs into
three categories: collision attack, unfairness attack and exhaustion attack. We
firstly choose RTS arrival rate, average waiting-time and collision rate as our
indicators for intrusion detection. Based on the classification of DoS attacks and
selection of intrusion indictors, we propose a secure MAC protocol for WSNs
- FSMAC, a fully distributed method. In our algorithm, a fuzzy logic system
is designed for decision making on intrusion detection. The simulation results
have demonstrated that:

• Our algorithm can detect all intrusions without any false alarm;

• Failure data transmission, caused by DoS attacks, could be alleviated 25%
by our secure method;

• Half energy is reserved through reducing the energy waste for failure trans-
mission caused by DoS attacks.
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Wireless Sensor Network Lifetime Analysis Using
Interval Type-2 Fuzzy Logic Systems

Haining Shu, Student Member, IEEE, Qilian Liang, Senior Member, IEEE, and Jean Gao, Member, IEEE

Abstract—Extending the lifetime of the energy constrained
wireless sensor networks is a crucial challenge in sensor network
research. In this paper, we present a novel approach based on
fuzzy logic systems to analyze the lifetime of a wireless sensor net-
work. We demonstrate that a type-2 fuzzy membership function
(MF), i.e., a Gaussian MF with uncertain standard deviation (std)
is most appropriate to model a single node lifetime in wireless
sensor networks. In our research, we study two basic sensor
placement schemes: square-grid and hex-grid. Two fuzzy logic
systems (FLSs): a singleton type-1 FLS and an interval type-2
FLS are designed to perform lifetime estimation of the sensor
network. We compare our fuzzy approach with other nonfuzzy
schemes in previous papers. Simulation results show that FLS of-
fers a feasible method to analyze and estimate the sensor network
lifetime and the interval type-2 FLS in which the antecedent and
the consequent membership functions are modeled as Gaussian
with uncertain std outperforms the singleton type-1 FLS and the
nonfuzzy schemes.

Index Terms—Fuzzy logic system, interval type-2 fuzzy sets, life-
time distribution, network lifetime analysis, wireless sensor net-
works.

I. INTRODUCTION

RESEARCH on sensor networks was originally motivated
by military applications. Starting around 1980, networked

microsensors technology has been widely used in military ap-
plications. One example of such applications is the coopera-
tive engagement capability developed by the U.S. Navy. This
network-centric warfare system consists of multiple radars col-
lecting data on air targets [1]. Other military sensor networks
include acoustic sensor arrays for antisubmarine warfare such
as the fixed distributed system and the advanced deployable
system, and unattended ground sensors such as the remote bat-
tlefield sensor system and the tactical remote sensor system.

Nowadays, although the majority of sensors are still wired,
wireless sensors provide significant advantages over wired sen-
sors. Two main problems within wired sensor networks—cost
and delays in deployment—are tackled when low-cost sensors
and communication networks become available.
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Wireless sensor networks have recently come into research
notability because they developed many other nonmilitary ap-
plications, from environment and habitat monitoring to indus-
trial process control to infrastructure security [3] and transporta-
tion automation. One networked sensing experiment on Great
Duck Island [2] provides a small lens into an expansive future of
such applications. The experiment was conducted by a team of
computer engineers from the University of California, Berkeley.
To date, 190 wireless sensors have been deployed on a small is-
land ten miles off the coast of Maine to study the nesting behav-
iors of petrels. Biologists are now monitoring the petrels on the
island from their offices, browsing data from sensors linked by
satellite.

A wireless sensor network consists of certain amount of
small and energy-constrained nodes. Basic components of a
sensor node include a single or multiple sensor modules, a
wireless transmitter–receiver module, a computational module,
and a power supply module. Such networks are normally
deployed for data collection where human intervention after
deployment, to recharge or replace node batteries, may not be
feasible, resulting in limited network lifetime. Most applica-
tions have prespecified lifetime requirements, for instance, the
petrels monitoring application in [2] has a lifetime requirement
of at least nine months. Thus estimation of lifetime of such
networks prior to deployment becomes a necessity. Prior works
on evaluating lifetime have considered networks where sensor
nodes are randomly deployed. Reference [4] gives the upper
bound on lifetime that any network with the specified number
of randomly deployed nodes, source behavior, and energy
can reach while [6] discusses the upper bounds on lifetime
of networks with cooperative cell based strategies. Network
lifetime of fixed deployment schemes were recently studied in
[7]. Jain and Liang observed that in wireless sensor networks,
the behavior of a single node lifetime demonstrates the nature
of normal Gaussian distribution, which brings the first light of
exploring the network lifetime behavior given the knowledge
of nodes’ lifetimes [7].

In this paper, we address the issue of lifetime analysis and es-
timation for wireless sensor networks in which the sensor nodes
are deployed at desired locations. Our approach is entirely dif-
ferent from all prior research. Instead of trying out various prob-
ability basis, we propose to apply an interval type-2 fuzzy logic
system (FLS) for lifetime analysis and estimation in a wireless
sensor network. We demonstrate that a type-2 fuzzy member-
ship function (MF), i.e., a Gaussian MF with uncertain variance,
is most appropriate to model a single node lifetime in wireless
sensor networks. Two FLSs—a singleton type-1 FLS and an
interval type-2 FLS—are constructed for lifetime analysis and

1063-6706/$25.00 © 2008 IEEE
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estimation. Simulations are implemented on two basic place-
ment schemes: square-grid and hex-grid. We believe that these
two schemes can serve as basis for evaluating more complex
schemes for their lifetime performance prior to deployment and
help justify the deployment costs. We set up our fuzzy logic life-
time evaluator and compare it against the first-node-die methods
in [26] and [27] and the upper bounds in [4].

The rest of this paper is organized as follows. In Section II,
we detail two sensor deployment schemes used for this paper
and the basic concepts on network coverage, connectivity, and
lifetime. Section III gives an overview of interval type-2 fuzzy
logic systems. In Section IV, we demonstrate that a single node
lifetime can be modeled with Gaussian MFs. We observe that a
type-2 Gaussian MF with uncertain variance is most appropriate
to model a single node lifetime in wireless sensor networks.
We apply this knowledge and design an interval type-2 FLS in
Section V to estimate network lifetime. A singleton type-1 FLS
is constructed as well for performance comparison. Simulation
results and discussions are presented in Section VI. Section VII
concludes this paper.

II. PRELIMINARIES

A sensor network is designed to perform high-level informa-
tion processing tasks such as target detection and tracking. Ap-
plications of sensor networks are widely ranging and can vary
significantly in modes of deployment, application requirements,
sensing models, and quality of service. In this section, we dis-
cuss the key assumptions related to our approach, then formally
characterize the basic modes of sensor placement in this paper,
followed by the concept of coverage, connectivity, and network
lifetime.

A. Assumptions and Notations

The approach of network lifetime analysis developed in this
paper is based on the following assumptions about the wireless
sensor networks.

• Sensor nodes are placed in a two-dimensional field. Nodes
operate with very limited energy resources, which shape
the aspects of the node performance, for instance, the
node’s processing ability, sensing, and communication
range. We assume all sensor nodes originally deployed are
identical in power configuration and functionality.

• Sensing and communications between sensor nodes are
through radio links. We make the assumption that the radio
range for a node is a disk of radius around the node where

is taken as the same for all nodes. A sensor node can de-
tect or sense any target or event within its sensing range,
denoted by . We also define a communication range ,
which is the distance beyond which the transmitted signal
is received with signal-to-noise ratio below the acceptable
threshold level. In this paper, we assume the communica-
tion range to be equal to the sensing range .

• To be more energy efficient, direct communication be-
tween any pair of sensor nodes is allowed only if the
Euclidean distance between them satisfies . Such
a pair of nodes is called neighboring nodes. Since commu-
nication within communication range is by broadcast,

all immediate neighbors hear what a node transmits. Com-
munication between nonneighboring nodes is achieved
via peer-to-peer communication and may consists several
short hops to relay the transmitted message.

• Since the communication range denotes the maximum
distance of direct communication between two sensor, a
sensor network is said to be deployed with minimum den-
sity when the Euclidean distance between all neighboring
nodes is .

B. Basic Modes of Sensor Placement

Sensor placement directly affects power resource manage-
ment and background data processing, which is carried out with
various sensed data in distributed sensor networks. An intelli-
gent sensor placement enlarges the field coverage, facilitates the
operation of sensors (detecting, communication, data aggrega-
tion, etc.), and minimizes the excessive communications in ful-
filling a task.

The simplest placement modes involve uniform or regular
placement of sensor nodes such that each sensor node in the
network has the same number of neighbors. A sensor placement
mode that regulates two neighbors per sensor node has been de-
scribed in [10]. According to [7], we use the square-grid and
hex-grid placement modes illustrated in Fig. 1(a) and (b), re-
spectively. Square-grid mode in Fig. 1(a) shows that each sensor
node in the network has four neighbors, and in the Hex-grid
mode in Fig. 1(b), the number of neighbors for every sensor
node is three. We believe that these three elementary place-
ment modes [10], [7] can serve as basis for other placement
schemes, because a placement scheme of any complexity can
be decomposed into two-neighbor, three-neighbor, and four-
neighbor groups.

in Fig. 1(a) and (b) denotes communication range. Sensor
nodes in both square-grid and hex-grid are equidistant from their
respective neighbors. According to our assumption, both grids
are deployed with minimum density.1

C. Coverage and Connectivity

Coverage and connectivity are two important performance
metrics of networks, and hence a discussion on them becomes
imperative before the lifetime of the network can be defined.

Coverage scales the adequacy with which the network covers
the sensor field. A sensor with sensing range is said to cover
or sense a circular region of radius around it. If every point
in the sensor field is within distance from at least one sensor
node, then the network is said to provide complete or 100%
coverage.

Various levels of coverage are acceptable depending on the
applications. In critical applications, complete coverage is re-
quired at all times. Any loss of coverage leads to a sensing gap
in the field. Such gaps cause breach of security in case of surveil-
lance applications. Also, in applications that require data with
high precision, a sensing gap leads to inaccuracies. For such net-
works, any loss of coverage renders the network nonfunctional,

1The hex-grid is observed to have lower density than the square-grid. Rough
calculation shows that with 36 nodes deployed, the network with square-grid
covers an area of approximate 25r , and the hex-grid covers an area of approx-
imate 48r , almost double that of the square grid.
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Fig. 1. Two placement modes for a 36-node sensor network. r in both grids
denotes the communication range: (a) square-grid and (b) hex-grid.

while in some other applications a small loss of coverage may
be acceptable.

Connectivity scales the adequacy with which nodes are able to
communicate with their peers. One of the strengths of sensor net-
works arises from their ability to aggregate data collected from
different sensor nodes. This requires adequate communication
between sensor nodes. Any node should be able to communicate
with any other node for proper functioning of the network. If
a large number of nodes fail due to lack of energy, a part of the
network may get completely disconnected from the rest. In this
paper, we assume that only 100% connectivity is acceptable and
the network fails with any loss of connectivity. An example of a
sensor placement scheme that concentrates mainly on coverage
as its parameter of interest can be found in [11], where a sensor
placement algorithm for grid coverage has been proposed.

In our analysis, we require the network to provide complete
coverage and connectivity. We give equal importance to both
parameters and declare the network nonfunctional if either of
them falls below their desired levels.

D. Network Lifetime

The basic definition of lifetime or, more precisely, the post-
deployment active lifetime of a network is the cumulative active
time measured from deployment until network failure. Based on
the levels of coverage and connectivity required to deem a net-
work functional, network failure can be interpreted in different
ways. Since we assume that a wireless sensor network is fully
functioning with complete coverage and connectivity, network
failure corresponds to the first loss of coverage or connectivity.

In this paper, we concentrate on finding the minimum life-
time of a network, the worst case scenario. To be able to eval-
uate this minimum lifetime, we need to know the lifetime of a
single sensor node, the minimum number of node failures that
cause network failure, and the positional relationship2 between
the failed nodes.

Consider the square-grid and hex-grid networks deployed
with minimum density. Both networks survive the failure of
a single node without loss of either connectivity or coverage
implying that the minimum number of node failures that can
lead to network failure is greater than one. Now looking into
the square-grid network in Fig. 2(a), apparently failure of nodes
20 and 21 causes loss of coverage. Similarly, failure of nodes
20 and 25 in the hex-grid network brings the coverage down
to less than 100%. It comes to a conclusion that the failure of
any two neighboring nodes causes loss of coverage and hence
network failure.

Thus the minimum number of node failures that cause net-
work failure is two, and these two nodes must be adjacent to
each other (neighbors). A network may undergo multiple node
failures and still be connected and covered if any of the failed
nodes are not neighbors. But the absolute minimum number of
node failures that can cause network failure is two.

III. INTRODUCTION TO TYPE-2 FUZZY SETS AND INTERVAL

TYPE-2 FUZZY LOGIC SYSTEMS: AN OVERVIEW

A. Introduction to Type-2 Fuzzy Sets

The concept of type-2 fuzzy sets was introduced by Zadeh
[12] as an extension of the concept of an ordinary fuzzy set, i.e.,
a type-1 fuzzy set. Type-2 fuzzy sets have grades of member-
ship that are themselves fuzzy [14]. A type-2 membership grade
can be any subset in [0,1]—the primary membership; and, cor-
responding to each primary membership, there is a secondary
membership (which can also be in [0,1]) that defines the possi-
bilities for the primary membership. A type-1 fuzzy set is a spe-
cial case of a type-2 fuzzy set; its secondary membership func-
tion is a subset with only one element, crisp grades of member-
ship. Type-2 fuzzy sets allow us to handle linguistic uncertain-
ties, as typified by the adage “words can mean different things to
different people.” A fuzzy relation of higher type (e.g., type-2)
has been regarded as one way to increase the fuzziness of a re-
lation, and, according to Hisdal, “increased fuzziness in a de-
scription means increased ability to handle inexact information
in a logically correct manner [15].”

Fig. 3 shows an example of a type-2 set. The domain of the
membership grade corresponding to is also shown. The

2Positional relationship between two nodes can be that the two nodes are di-
agonal, adjacent, or completely unrelated.
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Fig. 2. Loss of coverage due to failure of two neighboring nodes: (a) Square-
grid: failure of nodes 20 and 21 causes loss of coverage. (b)Hex-grid: failure of
nodes 20 and 25 causes loss of coverage.

membership grade for every point is a Gaussian type-1 set con-
tained in [0,1]; we call such a set a “Gaussian type-2 set”. When
the membership grade for every point is a crisp set, the domain
of which is an interval contained in [0,1], such type-2 sets are
called “interval type-2 sets” and their membership grades “in-
terval type-1 sets” [8]. Interval type-2 sets are very useful when
we have no other knowledge about secondary memberships.

An interval type-2 fuzzy set can be represented by its upper
and lower MFs [18]. An upper MF and a lower MF are two
type-1 MFs that are bounds for the footprint of uncertainty (the

Fig. 3. (a) Pictorial representation of a Gaussian type-2 set. The secondary
memberships in this type-1 fuzzy set are shown in (b) and are Gaussian. Note
that this set is called a Gaussian type-2 set because all its secondary membership
functions are Gaussian. The “principal” membership function (the bold line),
which is triangular in this case, can be of any shape.

union of all primary membership grades) of an interval type-2
MF. The upper MF is a subset that has the maximum member-
ship grade of the footprint of uncertainty; and, the lower MF is a
subset that has the minimum membership grade of the footprint
of uncertainty.

We use an overbar (underbar) to denote the upper (lower)
MF. For example, let denote the type-2 MF for the th
antecedent of the th rule; then the upper and lower MFs of

are and , respectively, so that

(1)

where denotes the union of individual points of each set in the
continuum.

Example 1: Gaussian Primary MF With Uncertain Standard
Deviation: Consider the case of a Gaussian primary MF having
a fixed mean and an uncertain standard deviation that takes
on values in , i.e.,

(2)

where ; is the number of antecedents;
; and is the number of rules. The upper

MF is (see Fig. 4)

(3)
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Fig. 4. Type-2 Gaussian MF with uncertain standard deviation. The thick solid
lines denote upper MFs, and the thick dashed lines denote lower MFs. The
shaded regions are the footprints of uncertainty for interval secondaries. The
center of the Gaussian MFs is five, and the variance varies from 1.0 to 2.0.

Fig. 5. The structure of a type-2 FLS. In order to emphasize the importance
of the type-reduced set, we have shown two outputs for the type-2 FLS, the
type-reduced set, and the crisp defuzzified value.

and the lower MF is (see Fig. 4)

(4)

This example illustrates how to define and , so that it is
clear how to define these membership functions for other situa-
tions (e.g., triangular, trapezoidal, bell MFs).

B. Introduction To Type-2 Fuzzy Logic Systems: An Overview

Fig. 5 shows the structure of a type-2 FLS [8]. It is very sim-
ilar to the structure of a type-1 FLS [13]. For a type-1 FLS, the
output processing block only contains the defuzzifier. We as-
sume that the reader is familiar with type-1 FLSs, so that here
we focus only on the similarities and differences between the
two FLSs. The fuzzifier maps the crisp input into a fuzzy set.
This fuzzy set can, in general, be a type-2 set.

In the type-1 case, we generally have “IF-THEN” rules,
where the th rule has the form “ : IF is and is
and and is , THEN is ,” where s are inputs; s
are antecedent sets ; is the output; and s are
consequent sets. The distinction between type-1 and type-2 is

associated with the nature of the membership functions, which
is not important while forming rules; hence, the structure of
the rules remains exactly the same in the type-2 case, the only
difference being that now some or all of the sets involved are of
type-2; so, the th rule in a type-2 FLS has the form “ : IF
is and is and and is , THEN is .”

In the type-2 case, the inference process is very similar to
that in type-1. The inference engine combines rules and gives
a mapping from input type-2 fuzzy sets to output type-2 fuzzy
sets. To do this, one needs to find unions and intersections of
type-2 sets as well as compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output from
the fuzzy set that is the output of the inference engine, i.e., a
type-0 (crisp) output is obtained from a type-1 set. In the type-2
case, the output of the inference engine is a type-2 set; so, “ex-
tended versions” (using Zadeh’s extension principle [12]) of
type-1 defuzzification methods was developed in [8]. This ex-
tended defuzzification gives a type-1 fuzzy set. Since this oper-
ation takes us from the type-2 output sets of the FLS to a type-1
set, this operation was called “type-reduction” and the type-re-
duced set so obtained was called a “type-reduced set” [8]. To
obtain a crisp output from a type-2 FLS, we can defuzzify the
type-reduced set.

General type-2 FLSs are computationally intensive, because
type-reduction is very intensive. Things simplify a lot when sec-
ondary MFs are interval sets (in this case, the secondary mem-
berships are either zero or one). When the secondary MFs are in-
terval sets, the type-2 FLSs were called “interval type-2 FLSs.”
In [18], Liang and Mendel proposed the theory and design of
interval type-2 FLSs. They proposed an efficient and simplified
method to compute the input and antecedent operations for in-
terval type-2 FLSs, one that is based on a general inference for-
mula for them. For interval type-2 FLSs, Liang and Mendel de-
fined the concept of upper and lower MFs and illustrate their ef-
ficient inference method for the case of Gaussian primary MFs.
They also proposed a method for designing an interval type-2
FLS in which they tuned its parameters.

In an interval type-2 FLS with singleton fuzzification and
meet under minimum or product -norm, the result of the input
and antecedent operations is an interval type-1 set, i.e.,

, where and simplify to

(5)

(6)

where denotes the location of the singleton.
In this paper, we use center-of-sets type reduction, which can

be expressed as

(7)

where is an interval set determined by two end points
and ; ; and is
the centroid of the type-2 interval consequent set ; and
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. Because is an interval set, we defuzzify it using
the average of and ; hence, the defuzzified output of an
interval type-2 FLS is

(8)

C. Applications of Interval Type-2 Fuzzy Logic Systems

Liang and Mendel have developed theory and design methods
for the most useful kind of type-2 FLSs, interval type-2 FLSs
[18], and have applied them to a number of very important ap-
plications, such as the following.

1) Fading channel equalization [19] and cochannel inter-
ference elimination [20]. The channel states in a fading
channel or channel with cochannel interferences are un-
certain, and they validated that an interval type-2 fuzzy
set, Gaussian primary membership function with uncertain
mean, can be used to represent such uncertainties.

2) Network video traffic modeling and classification [16].
MPEG variable bit rate traffic are very bursty. They vali-
dated that the I, P, and B frame sizes are log-normal with
fixed mean and uncertain variance, so an interval type-2
fuzzy sets can be used to model the bursty video traffic
and an interval type-2 fuzzy logic system with such type-2
fuzzy set are demonstrated performing much better than a
Bayesian classifier.

3) Connection admission control for ATM network [17]. Con-
nection admission control is actually a decision making
problem. Different factors such as incoming real-time
video/audio packet sizes, non–real time packet sizes, and
buffer sizes are uncertain. They applied an interval type-2
fuzzy logic to handle these uncertainties.

IV. MODELING NODE LIFETIME WITH GAUSSIAN

MEMBERSHIP FUNCTIONS

Though applications of sensor networks vary with task re-
quirements, sensor nodes retain the basic elements within any
sensor network. Behavior of individual sensor in a manner de-
termines the network performance. As we have discussed in
Section II-C, failure of sensor nodes due to lack of energy may
cause the network to function improperly or completely break
down. Thus it becomes significantly important to characterize a
single node behavior before going into the network layer. A dis-
tinct identity of sensor nodes and wireless sensor network is its
constrained energy resources, which is widely measured by the
node and network lifetime. In this section, we study the lifetime
behavior for single sensor node and try to find its probability
characters from real network data.

Since wireless sensor nodes are severely energy constrained
due to their compact form, hardware design and protocol ap-
proaches for different layers must take energy efficiency into
account to increase the lifetime of sensor networks. However,
a fundamental question—“what is the nature of sensor network
lifetime?” has not been answered yet. Because the lifetime of
each individual node is not a constant but a random variable, it

Fig. 6. A single node lifetime distribution in a hex-grid sensor network.

TABLE I
MEAN AND STD VALUES FOR SEVEN SEGMENTS AND THE ENTIRE NODE

LIFETIME, AND THEIR NORMALIZED STD

follows that the network lifetime is also a random variable. Re-
cently, Jain and Liang [7] showed that in a wireless sensor net-
work where the workloads are very well balanced, the behavior
of a single node lifetime demonstrates the nature of normal
Gaussian distribution. Their observation was also justified by
the knowledge of probability and random process in [7]. Fig. 6
illustrates the real node lifetime distribution in a hex-grid sensor
network.

In the paper, we are first interested in setting up a precise
MF for the single node lifetime. From the original data of
single node lifetime shown in Table I, we decomposed the
whole data sets into seven segments and computed the mean
and standard deviation of node lifetime for each segment,

. The mean and standard deviation for the
entire data set were also computed. We are also interested to
know which value—mean or standard deviation —varies
more. We first normalized the mean and standard deviation

of each segment using and . Then we computed
the standard deviation of their normalized values and .
Results are presented in the end of Table I.

From the last row of Table I, we see that , which
means standard deviation varies much more than the mean
value . Therefore we conclude that if the single node lifetime
follows normal Gaussian distribution, it is most appropriate to
be modeled as a Gaussian MF with uncertain standard deviation.
This result justifies the use of the Gaussian MFs to model single
node lifetime in Section V.
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V. SENSOR NETWORK LIFETIME ANALYSIS USING INTERVAL

TYPE-2 FUZZY LOGIC SYSTEMS

In Section IV, we came to a conclusion that in wireless sensor
networks, the single node lifetime can be well modeled by a
type-2 Gaussian MF with uncertain variance. This result offers
a truly original approach to probe into the trait of network life-
time. Referring to [4], [6], and [7], prior research on sensor net-
work lifetime are mostly heuristic or application and protocol
driven. In this paper, we propose to apply fuzzy logic systems
to sensor network lifetime analysis, more specifically to eval-
uate or estimate network lifetime using interval type-2 FLSs.
We name our network lifetime evaluation system type-2 fuzzy
logic lifetime evaluator (FLLE2).

From the overview of type-2 FLSs in Section III-B, we know
that in a type-2 FLS, when inputs are applied to the system, the
inference engine computes the output set corresponding to each
rule. After the unique type-reduction operation, the defuzzifier
computes a crisp output from these rule output sets. We next ex-
patiate the input–output parameters, type-2 antecedent and con-
sequent MFs and fuzzy rules precisely designed for evaluating
sensor network lifetime.

A. Antecedent and Consequent Membership Functions

Let be the number of sensor nodes deployed in a sensor
network. All sensor nodes are initially configured with the same
battery level. After a period of time during which several tasks
(detecting, target tracking and communication, etc.) were car-
ried out by different sensors, the network is left with sensor
nodes at various battery levels. We assume the sensor network of
interest at this point retains complete coverage and connectivity
and all sensor nodes are still alive. The problem of evaluating
network lifetime is formulated like this:

Given a set of data representing the various battery
levels of all alive sensor nodes, denoted by

, estimate the cumulative alive time
of the network measured from the point of interest until
network failure, where is the current battery level
of sensor node .

The 1 values of battery levels, , are taken
as input to the FLLE2 and the alive time of the network mea-
sured from the point of interest until network failure is taken as
the output of FLLE2.

We depict one antecedent as “the remaining battery level of
sensor node ” and the consequent as “the cumulative network
alive time from the point of interest until network failure” The
linguistic variables to represent the antecedent are divided into
three levels—high, moderate, and low—and the consequent is
divided into five levels—very high, high, moderate, low, and
very low.

Antecedent and consequent membership functions are
chosen based on the result in Section IV. An interval type-2
Gaussian MF with uncertain standard deviation is illustrated
in Fig. 4. In this paper, all antecedents and consequents use
the same type of MFs and the MF parameters are initialized
consistently.

Fig. 7. RBDs for a system of two components. (a) RBD with parallel connected
components and (b) RBD with series connected components.

B. Rules Design

We apply reliability theory from control system to design the
fuzzy rules. In this section, we first treat the basics of reliability
theory and then demonstrate how this knowledge is extracted
for rules design with two simple examples.

1) Basics of Reliability Theory: For the sensor network life-
time issue studied in this paper, reliability theory provides a fea-
sible method to design fuzzy rules. To understand this, we in-
troduce the reliability block diagram (RBD). RBD is a graphical
representation of the components of the system and provides a
visual representation of the way components are reliability-wise
connected. Thus the effect of the success or failure of a compo-
nent on the system performance can be evaluated.

Consider a system with two components. If this system is
such that a single component failure can render the system non-
functional, then we say that the components are reliability-wise
connected in series. If the system fails only when both its com-
ponents fail, then we say that the components are reliability-
wise connected in parallel. Note that the physical connection
between the component may or may not be different from their
reliability-wise connection. The RBDs for both cases are given
in Fig. 7. Any complex system can be realized in the form of a
combination of blocks connected in series and parallel.

2) Rules Design Using Reliability Theory: In our analysis,
the wireless sensor network is the system under consideration,
and the sensor nodes are the components of the system. We de-
tail below how to design rules with the knowledge of reliability
theory referring to the two basic RBDs in Fig. 7. We make the
assumption that the workload among all components (sensor
nodes) is very well balanced.

Example 1: Setup Fuzzy Rules for Parallel System in
Fig. 7(a): In the parallel system, crisp logic claims that the
system (network) fails only when both components (sensor
nodes) fail. In fuzzy logic systems, the rules can be set up as
one example shown below:

IF the remaining battery level of component 1 (sensor
node 1) is high and the remaining battery level of
component 2 (sensor node 2) is moderate, THEN the
lifetime of the system (network) is very high.

Example 1: Setup Fuzzy Rules for Series system in Fig. 7(b):
In the series system, crisp logic claims that the system (network)
fails when either component fails. In fuzzy logic systems, the
rules can be set up as one example shown below:
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Fig. 8. RBD of a single node in a square grid. Nodes belonging to region-1 are
modeled as block-1, and nodes belonging to region-2 are modeled as block-2.

IF the remaining battery level of component 1 (sensor
node 1) is low and the remaining battery level of
component 2 (sensor node 2) is moderate, THEN the
lifetime of the system (network) is low.

Note that the parallel and series systems are the essential
ways to model two sensor nodes. A wireless sensor network
consisting of multiple sensor nodes can be hierarchically rep-
resented in the reliability block diagram.

C. Case Studies: Rules Design

1) Square-Grid Sensor Network: As defined in Section II-D,
the minimum network lifetime is the time to failure of any two
neighboring nodes. We know that the failure of any single node
does not cause network failure. The failure of any node coupled
with the failure of any of its neighbors causes network failure.
Using this definition, we build the RBD for the square-grid as
shown in Fig. 8.

Fig. 8 shows the RBD block for a single node in the network.
A node can be modeled in two ways depending on its position
in the sensor field. This distinction based on its position is made
due to a simple observation that nodes at the right edge of the
sensor field (region-2) do not have any right neighbor (node b),
as opposed to nodes in region-1. Also, nodes at the bottom edge
of the sensor field (region-2) do not have a bottom neighbor
(node c), as opposed to the nodes in region-1. Note that as every
node in a square-grid, node has four neighbors, but its relation-
ship with only two neighbors is modeled in its RBD block. This
is because the relationship with the other two neighbors will be
modeled when their RBD blocks are constructed. If this is not
followed, then the relationship between every node–neighbor
pair will be modeled twice.

We abstract three antecedents from the RBD of block-1 in
Fig. 8.

• Antecedent 1—The remaining battery level of node .
• Antecedent 2—The minimum remaining battery level of

node and .
• Antecedent 3—The remaining battery level of node .

The consequent is depicted as “minimum network lifetime.”
The linguistic variables to represent the antecedent are divided
into three levels, and the consequent is divided into five levels
as detailed in Section V-A. A total of rules (three
antecedents and each has three fuzzy subsets) are set up for
square-grid block-1. Table II gives the complete 27 designed
rules.

TABLE II
COMPLETE 27 RULES FOR SQUARE-GRID BLOCK-1

TABLE III
COMPLETE NINE RULES FOR SQUARE-GRID BLOCK-2

Two antecedents are chosen based on the RBD of block-2
in Fig. 8, and consequent is defined the same as in block-1. A
total of rules shown in Table III are constructed in this
scheme.

• Antecedent 1—The remaining battery level of node .
• Antecedent 2—The remaining battery level of node .
2) Hex-Grid Sensor Network: The analysis for the hex-grid is

carried out on the same lines as that of the square-grid. Fig. 2(b)
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Fig. 9. RBD block for a single node in the hex-grid.

shows that as in the case of a square grid, two neighboring node
failures cause network failure. The RBD block of a single node
is shown in Fig. 9.

Since the relation between a node and all of its neighbors is
modeled by its corresponding RBD block, the RBD blocks for
the neighbors are not constructed, as this causes the relationship
between the nodes to be considered twice. In the hex-grid net-
work, things simplify a lot when we abstract two antecedents
from its hexagonal structure. The two antecedents are listed
below.

• Antecedent 1—The remaining battery level of node .
• Antecedent 2—The minimum remaining battery level of

node , and .
Consequent definition, levels to represent antecedent and

consequent are consistent with Section V.A. A total of
rules for hex-grid network are constructed consistently with
square-grid network block-2 as listed in Table III.

VI. SIMULATION AND DISCUSSION

In the previous sections, we have theoretically addressed the
approach to analyze wireless sensor network lifetime using in-
terval type-2 fuzzy logic systems. Research on the single node
lifetime justified the use of Gaussian MFs with uncertain stan-
dard deviation (std) to model node lifetime and type-2 fuzzy
logic systems for the network lifetime likewise. We are now
ready to validate the feasibility of our approach. In this sec-
tion, we will train the design parameters of FLLE2 with col-
lected data and test our new FLLE2. We devised a Type-1 fuzzy
logic lifetime evaluator (FLLE1) using singleton type-1 fuzzy
logic system to compare the performance with FLLE2. FLLE1
is trained using the same algorithm as FLLE2.

A. Energy Consumption Model and Test Data Generation

Simulation is implemented on two deployment modes:
square-grid and hex-grid. For both modes, we consider the
basic units in Fig. 8 block-1 and Fig. 9 and deploy the network
with minimum density (referring to Section II-A). Our explicit
goal is to evaluate the remnant active time of a network when
some sensor nodes have consumed certain amount of energy in
task performing. Thus we initialize the remaining power level
of all sensor nodes by random variables within [0,10] .

A radio energy consumption model has been well studied
in LEACH (Energy-Efficient Communication Protocols for
Wireless Microsensor Networks) [26] and ESO (Energy-Effi-
cient Self-Organization for Wireless Sensor Networks) [27].
Different applications consume energy resources in different
manners. According to the path-loss model in wireless com-
munication, the energy needed to transmit over distance

is proportionate to , where is the path-loss exponent
depending on the specific propagation environment. For ex-
ample, will have a larger value for long-distance transmission
than for short-distance transmission. In order to save energy
resources and decrease interference, power control is widely
used in wireless communications such that the radio could
be adjusted for a certain range of output power level. The
following model is adopted from [26], where perfect power
control is assumed.

To transmit bits over distance , the sender’s radio spends

(9)

and to receive this message, the receiver’s radio spends

(10)

The electronics energy depends on factors such as dig-
ital coding, modulation, filtering, and spreading of the signal,
whereas the amplifier energy in free space or in
multipath environment depends on the distance to the receiver
and the acceptable bit-error rate. For the simulations described
in later sections, the communication energy parameters are set
as m, the radio dissipates nJ per bit to
run the transmitter or receiver circuitry, pJ/bit/m , and

pJ/bit/m .
In our simulation, we use the formula in (9) under the cir-

cumstances . Sensor nodes take turn to transmit data to
their immediate neighbors by broadcast until network failure.
We assume the transmission alternation is determined by the re-
maining power level of individual sensor nodes at the beginning
of each epoch. The sensor node with the lowest power level gets
to transmit with the least probability. We also make the assump-
tion that the transmitted data bits per turn is a constant such that
the energy dissipation varies only with the transmitting distance.
We ran simulations for square-grid and hex-grid wireless sensor
networks using the OPNET platform set up in [27]. The actual
sensor network lifetime can be obtained for different sensor bat-
tery level [0,10] J settings.

We run 50 Monte-Carlo simulations to collect data sets, each
of which contains lifetime data for square-grid and
hex-grid networks, respectively. Each data set consists of bat-
tery levels of four nodes and actual network lifetime. In our FLS
network lifetime analysis, we used 300 data sets for training, and
the remaining 300 data sets were used for testing.

B. Simulation Results and Discussion

We designed the FLLE2 and FLLE1 for a square-grid
wireless sensor network. The initial 27 rules were designed
according to Table II. The antecedent and consequent MFs
for FLLE1 and FLLE2 are plotted in Fig. 10. Then we tuned
the parameters of FLLE1 and FLLE2 using steepest descent
algorithm. We followed the training algorithm proposed in [18]
for FLLE2. Three hundred data sets were used for training.
Both FLLE1 and FLLE2 were trained for six epochs. After
training, the parameters of FLLE1 and FLLE2 were fixed and
the remaining 300 data sets were used for testing.
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Fig. 10. Membership functions. (a) Antecedent MFs: MFs with shaded regions
are for FLLE2 and MFs with dashed lines are for FLLE1. (b) Consequent MFs:
MFs with shaded regions are for FLLE2 and MFs with dashed lines are for
FLLE1.

In Fig. 11, we summarized the root mean square errors
(RMSEs) between the estimated lifetime and the actual life-
time. Observe that the RMSEs of both FLLE1 and FLLE2 for
square-grid wireless sensor network decrease along with the
tuning epoch and the FLLE2 performs much better than the
FLLE1. For example, FLLE1 takes down RMSE from initial
0.1472 to around 0.037 at the sixth epoch while FLLE2 reduces
RMSE from 0.104 to 0.006. FLLE2 achieves nearly 83.8%
reduction in RMSE compared to FLLE1 at the sixth epoch.

Similarly, we designed a FLLE1 and a FLLE2 for hex-grid
wireless sensor network. The initial nine rules were set ac-
cording to Table III. The same antecedent and consequent
MFs as in square-grid network were used. We then trained and
tested the FLLE1 and FLLE2. In Fig. 12, we plotted the RMSE
between the estimated lifetime and the actual lifetime. Results
show that the FLLE1 and the FLLE2 for hex-grid sensor
network decrease the RMSE along with the tuning epoch and
FLLE2 outperforms FLLE1 likewise. For example, FLLE1

Fig. 11. Square-grid: RMSE of FLLE1 and FLLE2.

Fig. 12. Hex-grid: RMSE of FLLE1 and FLLE2.

takes down RMSE from initial 0.1734 to around 0.069 at the
sixth epoch while FLLE2 reduces RMSE from 0.1038 to 0.006.
FLLE2 achieves nearly 91.3% reduction in RMSE comparing
to FLLE1 at the sixth epoch.

Next, we implement the basic units of square-grid and hex-
grid into a wireless sensor network and compare the perfor-
mance of FLLE1 and FLLE2 with the general nonfuzzy ap-
proach. We estimate the network lifetime in five consecutive
windows. In each observing window, we run Monte Carlo sim-
ulation 100 times. We compare our fuzzy logic based evaluators
with the first node die methods used in [26] and [27] and nor-
malized the network lifetime to the upper bound of data gath-
ering sensor activities proposed in [4]. Simulation results are
presented in Figs. 13 and 14.

In both figures, we observe that the estimated lifetimes from
FLLE2 and the first node die method are tight to the upper
bound, and our fuzzy approach FLLE2 outperforms the non-
fuzzy first node die method. Comparing the performance of
FLLE1 and FLLE2, the results again validate the feasibility of
modeling the sensor node lifetime with the type-2 interval fuzzy
logic system.
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Fig. 13. Square-grid: fuzzy estimation and nonfuzzy approach.

Fig. 14. Hex-grid: fuzzy estimation and nonfuzzy Approach.

Up to the present, we have discussed the basic units of square-
grid and hex-grid wireless sensor networks. Now, let be
the number of sensor nodes required to be deployed with min-
imum density (referring to Section II-A). For square-grid sensor
network, the network RBD in Fig. 8 consists of
block-1s and 2 1 block-2s in series, the whole square
grid network can actually be decomposed into multiple blocks
serial connected together and the method of setting up rules
can be applied likewise. Similarly, in hex-grid sensor network,

2 RBD blocks in Fig. 9 connected in series represent the
network, which can be decomposed the same way as in the
square-grid sensor network. While designing the FLSs, if the
number of antecedents is more than three, we can union-rule
configuration [28] to eliminate the rule explosion.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we described a new method based on fuzzy
logic systems to analyze and estimate the network lifetime for
wireless sensor networks. Our approach is illuminated by the re-
search that a single node lifetime behaves the nature of normal
Gaussian distribution. However, we showed that if the single
node lifetime follows normal Gaussian distribution, it is most

appropriate to be modeled as a Gaussian MF with uncertain
standard deviation. We then set up the fuzzy logic lifetime eval-
uator based on interval type-2 FLSs for lifetime estimation and
test its performance using real lifetime data. Simulation results
convincingly justified the feasibility of applying type-2 FLSs
into wireless sensor network lifetime analysis. We believe that
our approaches opens up a new vision for research on wireless
sensor network lifetime analysis.

Our future work will focus on lifetime evaluation under the
circumstances that the task scheduling is variable and how the
estimated network lifetime could be used to accommodate the
scheduling change.
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1. INTRODUCTION AND MOTIVATION

The goal for any target recognition system is to give the most
accurate interpretation of what a target is at any given point
in time. There are two classes of motion models of targets,
one for maneuvering targets and one for nonmaneuvering
(constant velocity and acceleration) targets. The area that is
still lacking in target recognition is the ability to detect reli-
ably when a target is beginning a maneuver where its speed
and range are uncertain. The tracking system can switch the
algorithms applied to the problem from a nonmaneuvering
set to the maneuvering set when a target is beginning a ma-
neuver. But when the tracker does finally catch up to the tar-
get after the maneuver and then perform ATR, the latency is
too high. In time-critical mission situation, such latency in
ATR is not tolerable. In this paper, we are interested in study-
ing automatic target recognition with range and speed uncer-
tainty, that is, delay-Doppler uncertainty, using radar sensor
networks (RSN). The network of radar sensors should oper-
ate with multiple goals managed by an intelligent platform
network that can manage the dynamics of each radar to meet
the common goals of the platform rather than each radar to
operate as an independent system. Therefore, it is significant

to perform signal design and processing and networking co-
operatively within and between platforms of radar sensors
and their communication modules. In this paper, we are
interested in studying algorithms on radar sensor network
(RSN) design based on linear frequency modulation (LFM)
waveform: (1) the conditions for waveform coexistence, (2)
interferences among waveforms in RSN, (3) waveform diver-
sity in RSN. Then we apply RSN to automatic target recogni-
tion (ATR) with delay-Doppler uncertainty.

In nature, diverse waveforms are transmitted by animals
for specific applications. For example, when a bat and a whale
are in the search mode for food, they emit a different type
of waveform than when they are trying to locate their prey.
The Doppler-invariant waveforms that they transmit are en-
vironment dependent [1]. Hence, in RSN, it may be useful to
transmit different waveforms from different neighbor radars
and they can collaboratively perform waveforms diversity for
ATR. Sowelam and Tewfik [2] developed a signal selection
strategy for radar target classification, and a sequential clas-
sification procedure was proposed to minimize the average
number of necessary signal transmissions. Intelligent wave-
form selection was studied in [3, 4], but the effect of Doppler
shift was not considered. In [5], the performance of constant
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frequency (CF) and LFM waveform fusion from the stand-
point of the whole system was studied, but the effects of clut-
ter were not considered. In [6], CF and LFM waveforms were
studied for sonar system, but it was assumed that the sensor is
nonintelligent (i.e., waveform cannot be selected adaptively).
All the above studies and design methods were focused on
the waveform design or selection for a single active radar or
sensor. In [7], cross-correlation properties of two radars are
briefly mentioned and the binary coded pulses using sim-
ulated annealing [8] are highlighted. However, the cross-
correlation of two binary sequences such as binary coded
pulses (e.g., Barker sequence) are much easier to study than
that of two analog radar waveforms. In [9], CF waveform de-
sign was applied to RSN with application to ATR without
any delay-Doppler uncertainty. In this paper, we will focus
on the waveform design fusion for radar sensor networks us-
ing LFM waveform.

The rest of this paper is organized as follows. In Section 2,
we study the coexistence of LFM radar waveforms. In Sec-
tion 3, we analyze the interferences among LFM radar wave-
forms. In Section 4, we propose a RAKE structure for wave-
form diversity combining and propose maximum-likelihood
(ML) algorithms for ATR with delay-Doppler uncertainty.
In Section 5, we provide simulation results on ML-ATR with
delay-Doppler uncertainty. In Section 6, we conclude this pa-
per and provide some future works.

2. COEXISTENCE OF LFM RADAR WAVEFORMS

In RSN, radar sensors will interfere with each other and the
signal-to-interference-ratio may be very low if the waveforms
are not properly designed. We will introduce orthogonality
as one criterion for waveforms design in RSN to make them
coexistence. Besides, the radar channel is narrowband, so we
will also consider the bandwidth constraint.

In our radar sensor networks, we choose LFM waveform.
The LFM waveform can be defined as

x(t) =
√

E

T
exp

(
j2πβt2), −T

2
≤ t ≤ T

2
. (1)

In radar, ambiguity function (AF) is an analytical tool for
waveform design and analysis that succinctly characterizes
the behavior of a waveform paired with its matched filter. The
ambiguity function is useful for examining resolution, side
lobe behavior, and ambiguities in both range and Doppler
for a given waveform [10]. For a single radar, the matched
filter for waveform x(t) is x∗(−t), and the ambiguity func-
tion of LFM waveform is [10]

A
(
τ,FD

) =
∣∣∣∣∣
∫ T/2

−T/2+τ
x(t) exp

(
j2πFDt

)
x∗(t − τ)dt

∣∣∣∣∣

=
∣∣∣∣∣E sin

[
π
(
FD + βτ

)(
T − |τ|)]

Tπ
(
FD + βτ

)
∣∣∣∣∣, −T ≤ τ ≤ T.

(2)

Three special cases can simplify this AF:

(1) when τ = 0,

A
(
0,FD

) =
∣∣∣∣E sin

(
πFDT

)
Tπ
(
FD
) ∣∣∣∣; (3)

(2) when FD = 0,

A(τ, 0) =
∣∣∣∣E sin

[
πβτ

(
T − |τ|)]

Tπβτ

∣∣∣∣, −T ≤ τ ≤ T ;

(4)

(3) and

A(0, 0) = E. (5)

However, the above ambiguity is for one radar only (no co-
existing radar).

For radar sensor networks, the waveforms from different
radars will interfere with each other. We choose the waveform
for radar i as

xi(t) =
√

E

T
exp

[
j2π
(
βt2 + δit

)]
, −T

2
≤ t ≤ T

2
(6)

which means there is a frequency shift δi for radar i. To min-
imize the interference from one waveform to the other, opti-
mal values for δi should be determined to have the waveforms
orthogonal to each other, that is, let the cross-correlation be-
tween xi(t) and xn(t) be 0,

∫ T/2

−T/2
xi(t)x∗n (t)dt

= E

T

∫ T/2

−T/2
exp

[
j2π
(
βt2 + δit

)]
exp

[− j2π
(
βt2 + δnt

)]
dt

= E sinc
[
π
(
δi − δn

)
T
]
.

(7)

If we choose

δi = i

T
, (8)

where i is a dummy index, then (7) can have two cases:

∫ T/2

−T/2
xi(t)x∗n (t)dt =

⎧⎪⎨
⎪⎩
E, i = n,

0, i �= n.
(9)

So, choosing δi = i/T in (6) can have orthogonal waveforms,
that is, the waveforms can coexist if the carrier spacing is
1/T between two radar waveforms. That is, orthogonality
amongst carriers can be achieved by separating the carriers
by an integer multiple of the inverse of waveform pulse du-
ration. With this design, all the orthogonal waveforms can
work simultaneously. However, there may exist time delay
and Doppler shift ambiguity which will have interferences to
other waveforms in RSN.
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3. INTERFERENCES OF LFM WAVEFORMS IN
RADAR SENSOR NETWORKS

3.1. RSN with two radar sensors

We are interested in analyzing the interference from one
radar to another if there exist time delay and Doppler shift.
For a simple case where there are two radar sensors (i and n),
the ambiguity function of radar i (considering interference
from radar n) is

Ai
(
ti, tn,FDi ,FDn

)
(10)

=
∣∣∣∣
∫∞
−∞

[
xi(t) exp

(
j2πFDi t

)

+ xn
(
t−tn

)
exp

(
j2πFDnt

)]
x∗i
(
t − ti

)
dt
∣∣∣∣

(11)

≤
∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn
(
t−tn

)
exp

(
j2πFDnt

)
x∗i
(
t−ti

)
dt
∣∣∣∣

+
∣∣∣∣
∫ T/2

−T/2+ti
xi(t) exp

(
j2πFDi t

)
x∗i
(
t − ti

)
dt
∣∣∣∣

(12)

=
∣∣∣∣
∫ T/2+min(ti,tn)

−T/2+max(ti,tn)
xn
(
t−tn

)
exp

(
j2πFDnt

)
x∗i
(
t−ti

)
dt
∣∣∣∣

+
∣∣∣∣E sin

[
π
(
FDi + βti

)(
T − ∣∣ti∣∣)]

Tπ
(
FDi + βti

) ∣∣∣∣.
(13)

To make analysis easier, we assume ti = tn = τ which is
a reasonable assumption because radar sensors can be co-
ordinated by the clusterhead to send out LFM waveforms.
Then (13) can be simplified as

Ai
(
τ,FDi ,FDn

) ≈ ∣∣E sinc
[
π
(
n− i + FDnT

)]∣∣

+
∣∣∣∣E sin

[
π
(
FDi + βτ

)(
T − |τ|)]

Tπ
(
FDi + βτ

) ∣∣∣∣.
(14)

Some special cases of (14) are listed as follows.

(1) If FDi = FDn = 0, then (14) becomes

Ai(τ, 0, 0) ≈
∣∣∣∣E sin

[
πβτ

(
T − |τ|)]

πβTτ

∣∣∣∣. (15)

(2) If τ = 0, then (14) becomes

Ai
(
0,FDi ,FDn

) ≈ ∣∣E sinc
[
π
(
n− i + FDnT

)]∣∣
+
∣∣E sinc

(
πFDiT

)∣∣. (16)

(3) If FDi = FDn = 0, τ = 0, and δi and δn follow (8), then
(14) becomes

Ai(0, 0, 0) ≈ E. (17)

3.2. RSN with M radar sensors

It can be extended to an RSN with M radars. Assuming time
delay τ for each radar is the same, then the ambiguity func-
tion of radar 1 (considering interferences from all the other
M − 1 radars with CF pulse waveforms) can be expressed as

A1
(
τ,FD1 , . . . ,FDM

) ≈
∣∣∣∣∣

M∑
i=2

E sinc
[
π
(
i− 1 + FDiT

)]∣∣∣∣∣
+
∣∣∣∣E sin

[
π
(
FD1 + βτ

)(
T − |τ|)]

Tπ
(
FD1 + βτ

) ∣∣∣∣.
(18)

Similarly, we can have three special cases.
(1) If FD1 = FD2 = · · · = FDM = 0, then (18) becomes

A1(τ, 0, 0, . . . , 0) ≈
∣∣∣∣E sin

[
πβτ

(
T − |τ|)]

πβTτ

∣∣∣∣. (19)

Comparing it against (4), it shows that our derived condition
in (6) can have a radar in RSN and it gets the same signal
strength as that of a single radar (no coexisting radar) when
the Doppler shift is 0.

(2) If τ = 0, then (18) becomes

A1
(
0,FD1 ,FD2 , . . . ,FDM

)

≈
∣∣∣∣∣

M∑
i=1

E sinc
[
π
(
i− 1 + FDiT + βτT

)]∣∣∣∣∣.
(20)

Comparing to (3), a radar in RSN has more interferences
when unknown Doppler shifts exist.

(3) If FD1 = FD2 = · · · = FDM = 0, τ = 0, and δi in (6)
follows (8), then (18) becomes

A1(0, 0, 0, . . . , 0) ≈ E. (21)

4. APPLICATION TO ATR WITH DELAY-DOPPLER
UNCERTAINTY

In RSN, the radar sensors are networked together in an ad
hoc fashion. They do not rely on a pre-existing fixed infras-
tructure, such as a wireline backbone network or a base sta-
tion. They are self-organizing entities that are deployed on
demand in support of various events surveillance, battlefield,
disaster relief, search and rescue, and so forth. Scalability
concern suggests a hierarchical organization of radar sensor
networks with the lowest level in the hierarchy being a clus-
ter. As argued in [11–14], in addition to helping with scala-
bility and robustness, aggregating sensor nodes into clusters
has additional benefits:

(1) conserving radio resources such as bandwidth;
(2) promoting spatial code reuse and frequency reuse;
(3) simplifying the topology, for example, when a mobile

radar changes its location, it is sufficient for only the
nodes in attended clusters to update their topology in-
formation;
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(4) reducing the generation and propagation of routing
information; and,

(5) concealing the details of global network topology from
individual nodes.

In RSN, each radar can provide their waveform parameters
such as δi to their clusterhead radar, and the clusterhead
radar can combine the waveforms from its cluster members.

In RSN with M radars, the received signal for clusterhead
(assume it is radar 1) is

r1(u, t) =
M∑
i=1

α(u)xi
(
t − ti

)
exp

(
j2πFDi t

)
+ n(u, t), (22)

where α(u) stands for radar cross section (RCS) and can be
modeled using nonzero constants for nonfluctuating target
and four Swerling target models for fluctuating target [10];
FDi is the Doppler shift of target relative to waveform i; ti is
delay of waveform i, and n(u, t) is additive white Gaussian
noise (AWGN). In this paper, we propose a RAKE structure
for waveform diversity combining, as illustrated by Figure 1.

According to this structure, the received r1(u, t) is pro-
cessed by a bank of matched filters, then the output of branch
1 (after integration) is

∣∣Z1
(
u; t1, . . . , tM ,FD1 , . . . ,FDM

)∣∣
=
∣∣∣∣
∫ T/2

−T/2
r1(u, t)x∗1

(
t − t1

)
ds
∣∣∣∣

=
∣∣∣∣∣
∫ T/2

−T/2

[ M∑
i=1

α(u)xi
(
t − ti

)
exp

(
j2πFDi t

)
+ n(u, t)

]

× x∗1
(
t − t1

)
dt

∣∣∣∣∣,

(23)

where
∫ T/2
−T/2 n(u, t)x∗1 (t − t1)dt can easily be proved to be

AWGN, let

n
(
u, t1

)
�
∫ T/2

−T/2
n(u, t)x∗1

(
t − t1

)
dt (24)

follow a white Gaussian distribution. Assuming t1 = t2 =
· · · = tM = τ, then based on (18),

∣∣Z1
(
u; τ,FD1 , . . . ,FDM

)∣∣
≈
∣∣∣∣∣

M∑
i=2

α(u)E sinc
[
π
(
i− 1 + FDiT

)]

+
α(u)E sin

[
π
(
FD1 + βτ

)(
T − |τ|)]

Tπ
(
FD1 + βτ

) + n(u, τ)

∣∣∣∣∣.
(25)

r1(u, t)

x

x

x

x�1 (t � t1)

x�2 (t � t2)

x�M(t � tM)

...

...

∫
T ()dt

∫
T ()dt

∫
T ()dt

�Z1�

�Z2�

�ZM�

Diversity
combining

Figure 1: Waveform diversity combining by clusterhead in RSN.

Similarly, we can get the output for any branch m (m =
1, 2, . . . ,M),∣∣Zm

(
u; τ,FD1 , . . . ,FDM

)∣∣
≈
∣∣∣∣∣

M∑
i=1, i �=m

α(u)E sinc
[
π
(
i−m + FDiT

)]

+
α(u)E sin

[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

) + n(u, τ)

∣∣∣∣∣.
(26)

So, |Zm(u; τ,FD1 , . . . ,FDM )| consists of three parts, signal (re-
flected signal from radar m waveform):

∣∣∣∣∣α(u)E sin
[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)
∣∣∣∣∣, (27)

interferences from other waveforms:

M∑
i=1, i �=m

∣∣α(u)E sinc
[
π
(
i−m + FDiT

)]∣∣, (28)

and noise: |n(u, τ)|. Delay-Doppler uncertainty happens
quite often in target search and recognition where target
range and velocity are not yet perfectly known.

We can also have three special cases for
∣∣Zm

(
u; τ,FD1 , . . . ,FDM

)∣∣. (29)

(1) When FD1 = · · · = FDM = 0,
∣∣Zm(u; τ, 0, 0, . . . , 0)

∣∣
≈
∣∣∣∣α(u)E sin

[
πβτ

(
T − |τ|)]

Tπβτ
+ n(u, τ)

∣∣∣∣. (30)

(2) If τ = 0, then (26) becomes∣∣Zm
(
u; 0,FD1 , . . . ,FDM

)∣∣
≈
∣∣∣∣∣

M∑
i=1

α(u)E sinc
[
π
(
i−m + FDiT

)]
+ n(u)

∣∣∣∣∣.
(31)

(3) If τ = 0 and FD1 = · · · = FDM = 0, then (26) becomes
∣∣Zm(u; 0, 0, 0, . . . , 0)

∣∣ ≈ ∣∣Eα(u) + n(u)
∣∣. (32)
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How to combine all the Zm’s (m = 1, 2, . . . ,M) is very
similar to the diversity combining in communications to
combat channel fading, and the combination schemes may
be different for different applications. In this paper, we are
interested in applying RSN waveform diversity to ATR, for
example, recognition that the echo on a radar display is that
of an aircraft, ship, motor vehicle, bird, person, rain, chaff,
clear-air turbulence, land clutter, sea clutter, bare mountains,
forested areas, meteors, aurora, ionized media, or other nat-
ural phenomena. Early radars were “blob” detectors in that
they detected the presence of a target and gave its location
in range and angle, and radar began to be more than a blob
detector and could provide recognition of one type of tar-
get from another [7]. It is known that small changes in the
aspect angle of complex (multiple scatter) targets can cause
major changes in the radar cross section (RCS). This has been
considered in the past as a means of target recognition, and is
called fluctuation of radar cross section with aspect angle, but
it has not had much success [7]. In this paper, we propose
a maximum-likelihood automatic target recognition (ML-
ATR) algorithm for RSN. We will study both fluctuating tar-
gets and nonfluctuating targets.

4.1. ML-ATR for fluctuating targets with
delay-Doppler uncertainty

Fluctuating target modeling is more realistic in which the
target RCS is drawn from either the Rayleigh or chi-square
of degree four pdf. The Rayleigh model describes the be-
havior of a complex target consisting of many scatters, none
of which is dominant. The fourth-degree chi-square mod-
els targets having many scatters of similar strength with one
dominant scatter. Based on different combinations of pdf
and decorrelation characteristics (scan-to-scan or pulse-to-
pulse decorrelation), four Swerling models are used [10].
In this paper, we will focus on “Swerling 2” model which
is Rayleigh distribution with pulse-to-pulse decorrelation.
The pulse-to-pulse decorrelation implies that each individ-
ual pulse results in an independent value for RCS α.

For Swerling 2 model, the RCS |α(u)| follows Rayleigh
distribution and its I and Q subchannels follow zero-mean
Gaussian distributions with variance γ2. Assume

α(u) = αI(u) + jαQ(u) (33)

and n(u) = nI(u) + jnQ(u) follows zero-mean complex Gau-
sian distribution with variance σ2 for the I and Q subchan-
nels. Observe (26), for given τ, FDi (i = 1, . . . ,M),

M∑
i=1, i �=m

α(u)E sinc
[
π
(
i−m + FDiT

)]

+
α(u)E sin

[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)

= α(u)E

[ M∑
i=1, i �=m

sinc
[
π
(
i−m + FDiT

)]

+
sin
[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)
]

(34)

follows zero-mean complex Gaussian distributions with vari-
ance E2γ2[

∑M
i=1, i �=m sinc[π(i − m + FDiT)] + sin[π(FDm +

βτ)(T − |τ|)]/Tπ(FDm + βτ)]2 for the I and Q subchannels.
Since n(u, τ) also follows zero-mean Gaussian distribution,
so |Zm(u; τ,FD1 , . . . ,FDM )| of (26) follows Rayleigh distribu-
tion. In real world, the perfect values of τ and FDi are not
known in the target search phase and the mean values of
τ and FDi are 0, so we just assume the parameter of this

Rayleigh distribution b =
√
E2γ2 + σ2 (when τ and FDi equal

to 0).
Let ym � |Zm(u; τ,FD1 , . . . ,FDM )|, then

f
(
ym
) = ym

E2γ2 + σ2
exp

(
− y2

m

2
(
E2γ2 + σ2

)). (35)

The mean value of ym is
√
π(E2γ2 + σ2)/2 and the variance is

(4− π)(E2γ2 + σ2)/2. The variance of signal is (4− π)E2γ2/2
and the variance of noise is (4− π)σ2/2.

Let y � [y1, y2, . . . , yM], then the pdf of y is

f (y) =
M∏

m=1

f
(
ym
)
. (36)

Our ATR is a multiple-category hypothesis testing prob-
lem, that is, to decide a target category (e.g., different aircraft,
motor vehicle, etc.) based on r1(u, t). Assume there are to-
tally N categories and category n target has RCS αn(u) (with
variance γ2

n), so the ML-ATR algorithm to decide a target cat-
egory C can be expressed as

C = arg max
n=1,...,N

f
(

y | γ = γn
)

= arg max
n=1,...,N

M∏
m=1

ym
E2γ2

n + σ2
exp

(
− y2

m

2
(
E2γ2

n + σ2
)).

(37)

4.2. ML-ATR for nonfluctuating targets with
delay-Doppler uncertainty

In some sources, the nonfluctuating target is identified as
“Swerling 0” or “Swerling 5” model [15]. For nonfluctuat-
ing target, the RCS α(u) is just a constant α for a given target.
Observe (26), for given τ, FDi (i = 1, . . . ,M),

M∑
i=1, i �=m

α(u)E sinc
[
π
(
i−m + FDiT

)]

+
α(u)E sin

[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)

= αE

[ M∑
i=1, i �=m

sinc
[
π
(
i−m + FDiT

)]

+
sin
[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)
]

(38)

is just a constant. Since n(u, τ) follows zero-mean Gaus-
sian distribution, so |Zm(u; τ,FD1 , . . . ,FDM )| of (26) follows
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Table 1: RCS values at microwave frequency for 6 targets.

Index n Target RCS

1 Small single-engine aircraft 1

2 Large flighter aircraft 6

3 Medium bomber or jet airliner 20

4 Large bomber or jet airliner 40

5 Jumbo jet 100

6 Pickup truck 200

Rician distribution with direct path value

λ = αE

[ M∑
i=1, i �=m

sinc
[
π
(
i−m + FDiT

)]

+
sin
[
π
(
FDm + βτ

)(
T − |τ|)]

Tπ
(
FDm + βτ

)
]
.

(39)

Since τ and FDi are uncertain and zero-mean, so we just use
the approximation

λ = αE (40)

which is obtained when τ and FDi equal to 0.
Let ym � |Zm(u; τ,FD1 , . . . ,FDM )|, then the probability

density function (pdf) of ym is

f
(
ym
) = 2ym

σ2
exp

[
−
(
y2
m + λ2

)
σ2

]
I0

(
2λym
σ2

)
, (41)

where σ2 is the noise power (with I and Q subchannel power
σ2/2), and I0(·) is the zero-order modified Bessel function of
the first kind. Let y � [y1, y2, . . . , yM], then the pdf of y is

f (y) =
M∏

m=1

f
(
ym
)
. (42)

The ML-ATR algorithm to decide a target category C
based on y can be expressed as,

C = arg max
n=1,...,N

f
(

y | λ = E
∣∣αn∣∣)

= arg max
n=1,...,N

M∏
m=1

2ym
σ2

× exp
[
−
(
y2
m + E2α2

n

)
σ2

]
I0

(
2E
∣∣αn∣∣ym
σ2

)
.

(43)

5. SIMULATIONS

Radar sensor networks will be required to detect a broad
range of target classes. In this paper, we applied our ML-
ATR to automatic target recognition with delay-Doppler
uncertainty. We assume that the domain of target classes is
known a priori (N in Sections 4.1 and 4.2), and that the RSN
is confined to work only on the known domain.

For fluctuating target recognition, our targets have 6
classes with different RCS values, which are summarized
in Table 1 [7]. We assume the fluctuating targets follow
“Swerling 2” model (Rayleigh with pulse-to-pulse decorrela-
tion), and assume the RCS value listed in Table 1 to be the
standard deviation (std) γn of RCS αn(u) for target n. We
applied the ML-ATR algorithm in Section 4.1 (for fluctuat-
ing target case) for target recognition within the six targets
domain. We chose T = 0.1 ms and β = 106. At each av-
erage SNR value, we ran Monte-Carlo simulations for 105

times for each target. In Figures 2(a), 2(b), 2(c), we plot
the average ATR error for fluctuating targets with different
delay-Doppler uncertainty and compared the performances
of single-radar system, 5-radar RSN, and 10-radar RSN. Ob-
serve these three figures.

(1) The two RSNs vastly reduce the ATR error com-
paring to a single-radar system in ATR with delay-Doppler
uncertainty, for example, the 10-radar RSN can achieve ATR
error 2% comparing against the single-radar system with
ATR error 37% at SNR = 32 dB with delay-Doppler uncer-
tainty τ ∈ [−0.1 T, 0.1 T] and FDi ∈ [−200 Hz, 200 Hz].

(2) Our LFM waveform design can tolerate reasonable
delay-Doppler uncertainty which are testified by Figures
2(b), 2(c).

(3) According to Skolnik [7], radar performance with
probability of recognition error (pe) less than 10% is good
enough. Our 10-radar RSN with waveform diversity can have
probability of ATR error much less than 10% for the aver-
age ATR for all targets. However, the single-radar system has
probability of ATR error much higher than 10%. Our RSN
with waveform diversity is very promising to be used for real-
world ATR.

(4) Observe Figures 2(a), 2(c), the average probability of
ATR error in Figure 2(c) is not as sensitive to the SNR as
that in Figure 2(a), that is, ATR error curve slope becomes
flat with higher delay-Doppler uncertainty, which means that
the delay-Doppler uncertainty can dominate the ATR perfor-
mance when it is too high.

For nonfluctuating target recognition, our targets have
6 classes with different RCS values, which are summa-
rized in Table 1 [7]. We applied the ML-ATR algorithms
in Section 4.2 (for nonfluctuating target case) to classify an
unknown target as one of these 6 target classes. We chose
T = 0.1 ms and β = 106. At each average SNR value, we
ran Monte-Carlo simulations for 105 times for each target. In
Figures 3(a), 3(b), 3(c), we plotted the probability of ATR er-
ror with different delay-Doppler uncertainty. Observe these
figures.

(1) The two RSNs tremendously reduce the ATR er-
ror comparing to a single-radar system in ATR with delay-
Doppler uncertainty, for example, the 10-radar RSN can
achieve ATR error 9% comparing against the single-radar
system with ATR error 22% at SNR = 22 dB with
delay-Doppler uncertainty τ ∈ [−0.2T , 0.2T] and FDi ∈
[−500 Hz, 500 Hz].

(2) Comparing Figures 2(a), 2(b), 2(c) against Figures
3(a), 3(b), 3(c), the gain of 10-radar RSN for fluctuating tar-
get recognition is much larger than that for nonfluctuating
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Figure 2: The average probability of ATR error for 6 fluctuating targets with different delay-Doppler uncertainty: (a) no delay-Doppler
uncertainty, (b) with delay-Doppler uncertainty, τ ∈ [−0.1T , 0.1T] and FDi ∈ [−200 Hz, 200 Hz], and (c) with delay-Doppler uncertainty,
τ ∈ [−0.2T , 0.2T] and FDi ∈ [−500 Hz, 500 Hz].

target recognition, which means our RSN has better capacity
to handle the fluctuating targets. In real world, fluctuating
targets are more meaningful and realistic.

(3) Comparing Figures 3(a), 3(b), 3(c) against Figures
2(a), 2(b), 2(c), the ATR needs much lower SNR for nonfluc-
tuating target recognition because Rician distribution has di-
rect path component.

6. CONCLUSIONS AND FUTURE WORKS

We have studied LFM waveform design and diversity in
radar sensor networks (RSN). We showed that the LFM
waveforms can coexist if the carrier frequency spacing is
1/T between two radar waveforms. We made analysis on
interferences among waveforms in RSN and proposed a

RAKE structure for waveform diversity combining in RSN.
We applied the RSN to automatic target recognition (ATR)
with delay-Doppler uncertainty and proposed maximum-
likehood (ML)-ATR algorithms for fluctuating targets and
nonfluctuating targets. Simulation results show that RSN us-
ing our waveform diversity-based ML-ATR algorithm per-
forms much better than single-radar system for fluctuat-
ing targets and nonfluctuating targets recognition. It is also
demonstrated that our LFM waveform-based RSN can han-
dle the delay-Doppler uncertainty which quite often happens
for ATR in target search phase.

The waveform design and diversity algorithms proposed
in this paper can also be applied to active RFID sensor
networks and underwater acoustic sensor networks because
LFM waveforms can also be used by these active sensor
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Figure 3: The average probability of ATR error for 6 nonfluctuating targets with different delay-Doppler uncertainty: (a) no delay-Doppler
uncertainty, (b) with delay-Doppler uncertainty, τ ∈ [−0.1 T, 0.1 T] and FDi ∈ [−200 Hz, 200 Hz], and (c) with delay-Doppler uncertainty,
τ ∈ [−0.2 T, 0.2 T] and FDi ∈ [−500 Hz, 500 Hz].

networks to perform collaborative monitoring tasks. In this
paper, the ATR is for single-target recognition. We will con-
tinuously investigate the ATR when multiple targets coexist
in RSN and each target has delay-Doppler uncertainty. In our
waveform diversity combining, we have used spatial diversity
combining in this paper. We will further investigate spatial-
temporal-frequency combining for RSN waveform diversity.
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1 Introduction

Wireless sensor networking is an emerging technology that
promises unprecedented ability to monitor and manipulate
the physical world via a network of densely distributed
wireless sensor nodes. The nodes can sense the physical
environment in a variety of modalities, including acoustic,
video, seismic, thermal, infrared, etc. In wireless sensor
networks, there exists some challenges:

• The routing path (link) failure may happen during data
transmission because of collision, node dying out
(no battery), node busy or other accidents. Some

applications require real-time information and data,
which means retransmission is not possible.

• Security is an important topic for sensor networks,
especially for the security-sensitive applications such
as battlefield monitoring and homeland security.
Traditional security mechanisms, such as
authentication protocols, digital signature and
encryption, can play important roles in achieving
confidentiality, integrity, authentication and
non-repudiation of communication in ad hoc networks,
but these mechanisms are not sufficient by themselves
for mobile sensor networks.

Copyright © 2007 Inderscience Enterprises Ltd.
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• There exists energy constraint in wireless sensor
networks because most sensors are battery operated,
which means the operating Signal-to-Noise-Ratio
(SNR) is very low and some energy efficiency schemes
have to be developed.

• Sensor mobility may cause the existing
point-to-point route invalid before another route
must be chosen. In physical layer, sensor mobility
generates channel fading during data transmission,
which degrades the performance in terms of
Bit Error Rate (BER) and Frame Error
Rate (FER).

These challenges motivate us to design a fault-tolerant
(tolerate link failure and compromised nodes) and energy
efficient schemes for information and data transmission
in wireless sensor networks. In this paper, we propose a
Fault-tolerant and Energy Efficient Multipath-routing
(FEEM) scheme aided with channel coding and interleaver
in wireless sensor networks, which is a cross-layer
approach.

Many routing protocols have been developed for ad hoc
networks, which can be summarised as two categories:
table-driven (e.g. destination sequenced distance vector
(Bhagwat, 1994), cluster switch gateway routing (Chiang
et al., 1997)) and source-initiated on-demand-driven
(e.g. ad hoc on-demand distance vector routing (Perkins and
Royer, 1999), dynamic source routing (Johnson and Maltz,
1996)). Lee and Gerla (2001) proposed a Split Multipath
Routing protocol that builds maximal disjoint paths, where
data traffic is distributed in two roots per session to avoid
congestion and to use network resources efficiently. A
Multipath Source Routing (MSR) scheme was proposed by
Wang et al. (2001), which is an extension of Dynamic Source
Routing (DSR). Their work focuses on distributing load
adaptively among several paths. Nasipuri and Das (1999)
presented the On-Demand Multipath Routing scheme, which
is also an extension of DSR. In their scheme, alternative
routes are maintained, which can be utilised when the primary
one fails. Tsirigos et al. (2001) proposed a multipath routing
scheme based on diversity coding. Three different paths are
utilised to distribute the data and x-for-y diversity coding
is used to offer protection against at most x lost blocks
out of the total x + y blocks. Security in ad hoc networks
and sensor networks have been studied by some researchers.
Zhou and Haas (1999) took advantage of inherent
redundancy in ad hoc networks – multiple routes between
nodes – to defend routing against denial of service
attacks. Law et al. (2002) benchmarked some well-known
cryptographic algorithms in search for the best compromise
in security and energy efficiency on a typical sensor node.
Deng et al. (2003) evaluated the performance of INSENS,
an INtrusion-tolerant routing protocol for wireless sensor
networks. Karlof and Wagner (2003) considered routing
security in wireless sensor networks. However, none of these
security-related approaches considered to solve this problem
from physical layer design. In additions, energy efficient
routing has been extensively studied by this community.
In Xue and Li (2001), a location-aided power aware
routing protocol was proposed. Singh et al. (1998) proposed

power-aware routing and discussed different metrics in
power-aware routing; Li et al. (2001) extended their work
and proposed an online power aware routing in wireless ad
hoc networks. A greedy distance routing (Bose and Morin,
1999) was proposed for unicast geographic routing. Greedy
Perimeter Stateless Routing (GPSR) (Karp and Kung, 2000)
was proposed as a mixture of greedy distance routing and
perimeter protocol. A protocol named GEAR which stands
for Geographical and Energy-Aware Routing was proposed
by Yu et al. (2001), whose goal is to efficiently route a
message to a geographic region while at the same time
performing some load-balancing on the nodes used and
thus avoiding energy depletion. But node mobility was not
considered in this protocol. In this paper, we propose an
Energy and Mobility-aware Geographical Multipath Routing
(EM-GMR) scheme for wireless sensor networks and
compare with Geographical Multipath Routing (GMR)
scheme.

The rest of this paper is organised as follows. In Section 2,
we present an EM-GMR in a wireless sensor network.
In Section 3, we present our FEEM scheme Aided with
Channel Coding and Interleaver. The simulation results and
performance analysis are presented in Section 4 and in
Section 5, we conclude this paper.

2 EM-GMR

In this paper, we propose an EM-GMR scheme. In the
existing geographical routing approach (e.g. Jain et al., 2001),
the path selection does not consider the remaining battery
capacity of each node and its mobility, which are two very
important factors for energy efficiency and network lifetime.
Sensor mobility means the degree of channel fading and high
mobility requires higher SNR for operating if the BER or
FER requirements are given. In our EM-GMR, we consider
distance to the sensor node, remaining battery capacity and
mobility of each sensor node. The geographical location of
destination is known to the source node (as in Jain et al.,
2001) and the physical location of each sensor node can
be estimated easily if the locations of three sensor nodes
(within a communication range) are known in wireless sensor
network. Our scheme is a fully distributed approach where
each sensor only needs the above three parameters and we use
Fuzzy Logic Systems (FLS) to handle these three parameters
in the EM-GMR.

2.1 Preliminaries: overview of FLSs

A FLS includes fuzzifier, inference engine, rules and
defuzzifier (Mendel, 1995). When an input is applied
to a FLS, the inference engine computes the output set
corresponding to each rule. The defuzzifer then computes
a crisp output from these rule output sets. Consider a p-input
1-output FLS, using singleton fuzzification, centre-of-sets
defuzzification (Mendel, 2001) and ‘IF-THEN’ rules of the
form

Rl : IFx1 is Fl
1andx2 is Fl

2 and · · · andxp is Fl
p,

THENy is Gl
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Assuming singleton fuzzification, when an input x′ =
{x ′

1, . . . , x
′
p} is applied, the degree of firing corresponding

to the lth rule is computed as

µFl
1
(x ′

1) � µFl
2
(x ′

2) � · · · � µFl
p
(x ′

p) = T p

i=1µFl
i
(x ′

i ) (1)

where � and T both indicate the chosen t-norm. There
are many kinds of defuzzifiers. In this paper, we
focus, for illustrative purposes, on the centre-of-sets
defuzzifier (Figure 1) (Mendel, 2001). It computes a crisp
output for the FLS by first computing the centroid, cGl , of
every consequent set Gl , and then computing a weighted
average of these centroids. The weight corresponding to the
lth rule consequent centroid is the degree of firing associated
with the lth rule, T p

i=1µFl
i
(x ′

i ), so that

ycos(x′) =
∑M

l=1 cGlT p

i=1µFl
i
(x ′

i )∑M
l=1 T p

i=1µFl
i
(x ′

i )
(2)

where M is the number of rules in the FLS (Figure 1).

Figure 1 The structure of a FLS
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2.2 FLS for node selection in multipath routing

In this paper, we assume that each sensor node keeps a
table which has some information about its neighbour nodes:
locations, battery level and mobility. The table is updated
periodically by the locally broadcasted information (beacon)
from each neighbour node. The structure of a beacon includes
node ID, its position, battery level and mobility. We define a
new term, coherence time, during which the three parameters
(locations, battery level and mobility) do not change very
much. Coherence time is the shortest time duration that a
sensor node will send another beacon. Each sensor examines
itself the status of the three parameters in every coherence
time period and if a certain parameter has changed above a
threshold, it will locally broadcast a beacon (Figure 2).

Figure 2 Structure of a beacon

EnergyPosition_YPosition_XType MobilitySelf Node ID

There are one control channel and one data traffic channel
in the sensor network. Direct Sequence Code-Division
Multiple Access (DS-CDMA) is used and 64-bit Walsh
sequence are used as spreading sequence. The control channel
is a common channel which means every node in its local

communication range is able to obtain the message and all
0’s Walsh sequence is reserved for control channel. Each
source node randomly generates M 64-bit Walsh sequences
and a spreading sequence is used for each path. The spreading
sequence is relayed to the next hop node via common control
channel.

In our EM-GMR for M-path routing, the source node
select M nodes in its communication range for the first
hop relay. Assume there are N (N > M) nodes in
its communication range, nodes who are further to the
destination node than the source node are not considered.
Choosing M nodes from remaining eligible nodes is based
on a FLS (as will be described in detail). Starting the second
hop, each node in the M-path selects its next hop node also
using a FLS.

In our FLS design, we set up fuzzy rules for node selection
based on the following three descriptors:

1 distance of a node to the destination

2 its remaining battery capacity and

3 its degree of mobility.

The linguistic variables used to represent the distance of a
node to the destination were divided into three levels: near,
moderate and far and those to represent its remaining battery
capacity and degree of mobility were divided into three levels:
low, moderate and high. The consequent – the possibility that
this node will be selected – was divided into five levels, Very
Strong, Strong, Medium, Weak and Very Weak. So we need to
set up 33 = 27 (because every antecedent has 3 fuzzy subsets
and there are 3 antecedents) rules for this FLS.

A desired node to be included into the path should have
near distance to the destination, high remaining battery
capacity (so that the network life can last longer) and low
mobility (so that channel fading will not be severe). Based
on this fact, we design a FLS using rules summarised in
Table 1. We used trapezoidal Membership Functions (MFs)
to represent near, low, far and high and triangle MFs to
represent moderate (Figure 3).

For every input (x1, x2, x3), the output is computed using

y(x1, x2, x3) =
∑27

l=1 µF1
l
(x1)µF2

l
(x2)µF3

l
(x3)c

l

∑27
l=1 µF1

l
(x1)µF2

l
(x2)µF3

l
(x3)

(3)

where cl is the centroid of consequent set. The output from
FLS is degree of the possibility that this node will be selected
into the path.

Our EM-GMR scheme consists of route discovery phase,
route reconstruction phase and route deletion phase. In the
route discovery phase, the source node uses a FLS to eval-
uate all eligible nodes (closer to the destination location) in
its communication range based on the parameters of each
node: distance to the destination, remaining battery capac-
ity and degree of mobility. The source node chooses the top
M nodes based on the degree of the possibility (output of
FLS) that this node will be selected. The source node sends a
Route Notification (RN) packet to each desired node and each
desired node will reply using a REPLY packet if it is available.
The structure of RN and REPLY is summarised in Figure 4.
If after a certain period of time, the source node did not receive
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REPLY from some desired node, it will pick the node with
the M + 1st degree of selection possibility. In the second
hop, the selected node in each path will choose its next hop
node uses a FLS. As illustrated in Figure 5, node B needs to
choose one node from eligible nodes C, D, E, F, H based on
their three parameters and sends RN packet to the selected
node and waits for REPLY. If the top one node is unavailable
(selected by another path or busy), then the top second node
will be selected. By this means, M paths can be set up.

Table 1 The rules for node selection in multipath routing.
Antecedent 1 (Ante 1) is distance of a node to the
destination, Antecedent 2 (Ante 2) is its remaining
battery capacity, Antecedent 3 (Ante 3) is its degree of
mobility and Consequent is the possibility that this
node will be included into the path

Rule # Ante 1 Ante 2 Ante 3 Consequent

1 Near Low Low Medium
2 Near Low Moderate Weak
3 Near Low High Very weak
4 Near Moderate Low Medium
5 Near Moderate Moderate Strong
6 Near Moderate High Weak
7 Near High Low Very strong
8 Near High Moderate Strong
9 Near High High Medium
10 Moderate Low Low Weak
11 Moderate Low Moderate Very weak
12 Moderate Low High Very weak
13 Moderate Moderate Low Medium
14 Moderate Moderate Moderate Medium
15 Moderate Moderate High Weak
16 Moderate High Low Strong
17 Moderate High Moderate Strong
18 Moderate High High Weak
19 Far Low Low Weak
20 Far Low Moderate Very weak
21 Far Low High Very weak
22 Far Moderate Low Weak
23 Far Moderate Moderate Weak
24 Far Moderate High Very weak
25 Far High Low Medium
26 Far High Moderate Strong
27 Far High High Medium

Each node is mobile, it may be possible that some node moves
out of the communication range or some node dies out, which
will lead to link failure, then a route reconstruction phase
is started. The node immediately before the failure node in
the routing path will apply FLS to determine the selection
possibility for all its eligible neighbour nodes and choose the
top one degree node (via RN-REPLAY procedure). The new
node will determine its next node accordingly. Based on the
source ID and destination location information in RN, it is
easy to reconstruct the partial path failure.

The energy, mobility and physical location of each node
are changing. It may be possible that a node (in path) observes
that its next node is not the optimal after a while, then this
node will initiate a route deletion phase. This node will send
an RN packet to the optimal node via common control channel
and this RN packet will also be received by the original relay
node who will notice that the original path is deleted.

Figure 3 The MFs used to represent the linguistic labels (a) MFs
for antecedents and (b) MFs for consequent
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Figure 4 RN and REPLY packet structure
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3 FEEM Aided with channel coding

In our fault-tolerance, we will tolerate link failure and
security-related problems. In the security part, there are
two sources of threats to routing protocols. The first
comes from external attacks. By injecting erroneous routing
information, replaying old routing information or distorting
routing information, an attacker could successfully partition
a network or introduce excess traffic load into the network
by causing retransmission and inefficient routing. This kind
of attack can be overcome using cryptographic schemes such
as digital signature to protect the routing information (Zhou
and Haas, 1999). The second and also the more severe kind
of threats comes from compromised nodes, which might
relay incorrect information (packet) to the next node during
routing. Detection of such incorrect information is difficult:
merely requiring relayed information to be signed by each
node would not work because compromised nodes are able
to generate valid signatures using their private keys. In this
paper, we focus on the second threat and our goal is: even if
certain paths are compromised, the receiver node may still be
able to recover message from errors. In this paper, we propose
a FEEM scheme aided with channel coding and interleaver.

In our FEEM with channel coding and interleaver scheme.
We apply convolutional coding to encode the information
bits, then the code words are interleaved. Interleaver
(Wicker, 1995) was used to eliminate the correlation of the
noise/fading process affecting adjacent symbols in a received
code word, but here we use interleaver to make sure that the
incorrect symbols in one compromised path will be spread
after de-interleaver so that the Viterbi decoder will perform
well. The interleaved bits are inserted with some unique
words (for demodulation purpose) and then these bits are
modulated to symbols. By this means, a frame has been
built. For M-path routing, we split the symbols in one frame
to M equal-length bursts and each path transmits one burst
in parallel. The receiver node demodulates each received
burst from different path and provide soft-decision output.
The receiver node combines all the soft-decision output from
each burst according to the order when they are transmitted.
In this paper, we use the demodulation algorithm we proposed
in Liang (2003) for soft decision output. In case one or more
bursts are lost due to link failure during transmission, the
receiver node will provide 0’s as the soft decision output.
Then de-interleaving is performed to the soft-decision output
and the de-interleaved data are used as the input to Viterbi
decoder. The decoded output from Viterbi decoder are the
information bits with possible errors due to compromised
nodes (providing random data relay) and Additive White

Gaussian Noise (AWGN). We summarise this scheme using
a diagram in Figure 6.

4 Simulations

4.1 Sensor mobility and channel fading

Mobility of a sensor generates a doppler shift, which is a key
parameter of fading channel. The doppler shift is

fd = v

c
fc (4)

where v is the speed of a sensor, c is the speed of light
(3 × 108 m/s) and fc is the carrier. In our simulation, we
used the carrier is 5 GHz. For reference, if a sensor moves
with speed 12 m/s, the doppler shift is 200 Hz.

We model channel fading in sensor networks as Rician
fading. Rician fading occurs when there is a strong specular
(direct path or line of sight component) signal in addition
to the scatter (multipath) components. For example, in
communication between two infraed sensors, there exist a
direct path. The channel gain,

g(t) = gI (t) + jgQ(t) (5)

can be treated as a wide-sense stationary complex
Gaussian random process and gI (t) and gQ(t) are
Gaussian random processes with non-zero means mI(t) and
mQ(t), respectively and they have same variance σ 2

g , then
the magnitude of the received complex envelop has a Rician
distribution,

pα(x) = x

σ 2
exp

{
−x2 + s2

2σ 2

}
I0

(xs

σ 2

)
x ≥ 0 (6)

where

s2 = m2
I (t) + m2

Q(t) (7)

and I0(·) is the zero order modified Bessel function. This
kind of channel is known as Rician fading channel. A Rician
channel is characterised by two parameters, Rician factor
K which is the ratio of the direct path power to that of the
multipath, that is, K = s2/2σ 2, and the Doppler spread
(or single-sided fading bandwidth) fd. We simulate the
Rician fading using a direct path added by a Rayleigh fading
generator. The Rayleigh fade generator is based on Jakes
(1993) model in which an ensemble of sinusoidal waveforms
are added together to simulate the coherent sum of scattered
rays with Doppler spread fd arriving from different directions
to the receiver. The amplitude of the Rayleigh fade generator
is controlled by the Rician factorK . The number of oscillators
to simulate the Rayleigh fading is 60.

Figure 6 The diagram of FEEM aided with channel coding and interleaver
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4.2 Simulations of EM-GMR

We ran our simulations using OPNET. It was found that
59 sensors were deployed randomly in an area with size
10 km × 10 km and communication range (radius) was 1 k.
Totally 59 sensors were deployed initially. The source and
destination sensors were set with 2 J initially and 5 couples
of source and destination nodes were communicating at
the same time in this network. All the other sensors had
initial energy from 0 to 2 J. Each node (including source
and destination nodes) had moving speed ranging from 0
to 10 m/s and its moving speed changed in every 10 sec. The
frame length was 512 symbol and symbol rate was 9.6 ksym/s
in our simulation.

Each sensor locally broadcasted a beacon message in
every 2 sec to keep link, so that neighbour table could be
updated (including new neighbour joins in and old neighbours
expire). These information are used for route discovery,
reconstruction and deletion. The coherence time were set as
10 sec in our simulation.

We used the same energy consumption model as
in Heinzelman (2002) for the radio hardware energy
dissipation where the transmitter dissipates energy to run the
radio electronics and the power amplifier and the receiver
dissipates energy to run the radio electronics. We chose the
path-loss exponent p = 2. To transmit an l-symbol message
a distance d, the radio expends:

ETx(l, d) = ETx−elec(l) + ETx−amp(l, d)

= lEelec + lεd2 (8)

and to receive this message, the radio expends

ERx(l) = ERx−elec(l) = lEelec (9)

The electronics energy, Eelec, as described in Heinzelman
(2002), depends on factors such as coding, modulation,
pulse-shaping and matched filtering and the amplifier energy,
εd2 depends on the distance to the receiver and the acceptable
bit error rate. In this paper, we chose: Eelec = 50 nJ/sym,
ε = 10 pJ/sym/m2. Same as Heinzelman (2002) and Wang
et al. (1999), the energy for data aggregation is set as
EDA = 5 nJ/sym/signal.

We compared our EM-GMR against the Geographical
Multipath Routing (GMR) scheme where only distance
to the destination is considered. In Figure 7, we plotted
the simulation time versus the number of nodes dead.
Observe that when 50% nodes (30 nodes) die out, the
network lifetime for EM-GMR has been extended about
(175 − 125)/125 = 40%. In Figure 8, we compared the
frame loss rate of these two scheme. Observe that our
EM-GMR outperforms the GMR for about 20% less frame
loss. The average latency during transmission (end-to-end) is
419.68 ms for our EM-GMR and 407.5 ms for GMR, and link
failure rate for EM-GMR is 5.68% but for GMR is 10.42%.

4.3 Performance of FEEM for link failure

We evaluated our FEEM scheme using computer simulations.
We ran our simulations for four-path FEEM and six-path
transportation FEEM and assumed each path has 2% failure

rate. QPSK modulation and convolutional codes with rate
1/2 and connections 101 and 111 (in binary) were used in
the transmitting sensor (encoder) and receiver node (Viterbi
decoder).

Figure 7 Simulation time versus number of nodes dead
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Figure 8 Simulation time versus frame loss rate
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For four-path FEEM, a frame structure with 820 QPSK
symbols (800 symbols payload and 20 symbols UW) were
used. We used block interleaver with size 8×200 to interleave
the payload bits (after channel coding). The interleaver
and de-interleaver is shown in Figure 9(a) and (b) where
M = 4 in this paper. Then we construct a frame by
inserting UW and modulation. One frame is split to four
equal-length bursts (205 sym/burst) for transmission. We ran
Monte-Carlo Simulations for 105 frames at each Eb/N0

value and compared its performance against 2-path diversity.
In 2-path diversity, the transmitted symbols in each path
are identical, but it will have big advantage if one path has
failure during transportation. In the simulation, the frame
in each path has 400 payload symbols and 10 UW symbol
per burst without coding. Considering two paths, the total
number of symbols (820 symbols) is the same as the FEEM
per transportation.

In Figure 10, we summarised the average BER versus
Eb/N0. Observe that the FEEM scheme has more than 3 dB

232 of 816



254 Q. Liang, L. Wang and Q. Ren

gain comparing to the 2-path diversity scheme. It clearly
shows a BER floor for the FEEM scheme at high Eb/N0

because there exists 2% failure rate for each path. But the
performance of our FEEM is very good (e.g. BER = 3×10−4

at Eb/N0 = 5 dB).

Figure 9 The interleaver and de-interleaver structures:
(a) interleaver and (b) de-interleaver
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In mobile wireless sensor networks, there exists channel
fading during data transportation. In the simulation, we used
Rician fading K = 9 dB and fd = 20 Hz. We compared
our FEEM scheme against the two-path diversity with
Maximal Ratio Combination (MRC) scheme. Diversity is
very powerful in combatting channel fading Stuber (2001)

and MRC is the optimal combination scheme for diversity. We
used the same frame structure as that in dual transportation
scheme (Figure 11(b)). We ran Monte-Carlo Simulations for
2×105 frames at each Eb/N0 value for four-path FEEM and
diversity with MRC and summarised the results in Figure 12.
Observe that four-path FEEM can achieve more than 1 dB
gain at BER = 10−3.

Figure 10 Average BER versus Eb/N0 for four-path and six-path
FEEM and 2-path diversity in static AWGN channel
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Figure 11 Frame structure (in symbols) we used in
our simulations: (a) four-path FEEM and
(b) 2-path diversity
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In six-path FEEM, a frame structure with 930 QPSK symbols
(900 symbols payload and 30 symbols UW) were used.
We used block interleaver with size 12×150 to interleave the
payload bits (after channel coding) and then then construct
a frame by inserting UW and modulation. One frame is split
to six equal-length bursts (155 sym/burst) for transmission.

We ran Monte-Carlo Simulations for 105 frames at
each Eb/N0 value and compared its performance against
the 2-path diversity. The frame structure is provided in
Figure 13(b). In Figure 10, we plotted the average BER versus
Eb/N0. Observe that more than 4 dB gain can be achieved
using FEEM.

Similarly, we performed simulations for Rician fading
channel K = 9 dB and fd = 20 Hz, and compared our
six-path FEEM against the two-path diversity with MRC.
The simulation results are summarised in Figure 12, which
demonstrates that more than 2 dB gain can be achieved using
six-path FEEM. Observe Figures 10 and 12, for larger number
of paths in FEEM, the performance is better, which means
the fault is more tolerable.
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Figure 12 Average BER versus Eb/N0 for FEEM and diversity
with MRC in Rician fading channel
(K = 9 dB, fd = 20 Hz)
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Figure 13 Frame structure (in symbols) we used in our
simulations: (a) six-path FEEM and (b) 2-path
diversity
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We also simulated the FER versus SNR. In Figure 14(a)
and (b), we plotted the BER and FER versus SNR for
Rician fading channel K = 15 dB, fd = 10 Hz, respectively.
Observe Figure 14(b), 1.5 dB gain can be achieved
at FER = 2%.

4.4 Performance of FEEM for compromised nodes

Due to space limitation, we only include the performance for
secure multipath routing where each path has 1% probability
to be compromised. When a path is compromised, the
received burst from this path is some data with random
value. We evaluated our FEEM scheme using computer
simulations. We ran our simulations for six-path SEEM
aided with channel coding and interleaver. We assumed
that each path has probability 1% to be compromised.
QPSK modulation and convolutional codes with rate 1/2
and connections 101 and 111 (in binary) were used in the
transmitting sensor (encoder) and receiver node (Viterbi
decoder). We used the frame structure plotted in Figure 13(a)
for six-path FEEM. Block interleaver 12 × 300 (in bits)
is used before modulation and de-interleaver 300 × 12
(in soft-decision symbol with resolution 3 bits per symbol)
is used after demodulation.

In our channel coding, we introduced some redundancy
(coding rate 1/2), so we compared our FEEM scheme against
2-path diversity, which means both schemes introduced the

same amount of redundancy. The frame structure of each path
in the 2-path diversity is plotted in Figure 13(b).

Figure 14 Average BER and FER versus Eb/N0 for FEEM and
diversity with MRC in Rician fading channel
(K = 15 dB, fd = 10 Hz): (a) BER and (b) FER
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We ran Monte-Carlo simulations for 105 frames at each
Eb/N0 value for our FEEM scheme and diversity with MRC.
We evaluated a four-path FEEM for Rician fading channel
with random K from 9 to 12 dB and random fd from 10 to
200 Hz and each path has 1% probability to be compromised.
We ran Monte-Carlo Simulations for 105 frames at each
Eb/N0 value for our SEEM scheme and diversity with MRC,
and the channel fading is different from frame to frame.
In Figure 15, we summarised the average BER versus
Eb/N0. Observe that about 1.4 dB gain can be achieved at
BER = 0.5%. We also evaluated a six-path FEEM for
Rician fading channel with random K from 9 to 12 dB and
random fd from 10 to 200 Hz, and the BER is plotted in
Figure 16. Observe that about 3 dB gain can be achieved at
BER = 0.5%.

4.5 Performance analysis

Why our FEEM scheme can perform very well even with
2% link failure or 1% to be compromised in each path?
This can be explained based on the successful example of
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puncturing. Puncturing is often used to generate additional
rates from a single convolutional code (Cain et al., 1979;
Hagenauer, 1988). The basic idea behind puncturing is not
to transmit some of the bits output by the convolutional
encoder, thus increase the rate of the code. This increase
in rate decrease the free distance of the code, but usually
the resulting free distance is very close to the optimum one.
The receiver inserts dummy bits to replace the punctured
bits in the receiver, hence only one encoder/decoder pair is
needed to generate several different code rates. In our M-path
routing, the receiver node inserts 0’s if one burst is lost during
transmission or a compromised path provides random values
to the receiver node. Then the receiver node de-interleaves
the soft-decision output from demodulator (random value),
which is very similar that some dummy bits are used to
replace the bits from compromised path. But in our scheme,
the effective puncturing pattern in terms of the number of bits
and puncture location is time-varying from frame to frame.

Figure 15 Average BER versus Eb/N0 for four-path FEEM and
diversity with MRC in Rician fading channel with
random K from 9 to 12 dB and random fd from
10 to 200 Hz
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Figure 16 Average BER versus Eb/N0 for six-path FEEM and
diversity with MRC in Rician fading channel with
random K from 9 to 12 dB and random fd from
10 to 200 Hz
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5 Conclusion

We have proposed an EM-GMR for wireless sensor networks.
The remaining battery capacity, mobility and distance to
the destination node of candidate sensors in the local
communication range were taken into consideration for next
hop relay node selection and a FLS was applied to the decision
making. Simulation results showed that this scheme could
extend the network lifetime about 40% comparing to the
GMR scheme where only distance to the destination was
considered. Besides, this scheme could tremendously reduce
the frame loss rate and link failure rate since mobility was
considered.

In wireless sensor networks, the energy is limited and
some link failure may happen during data transmission.
In additions, threat can come from compromised nodes,
which might relay incorrect information (packet) to the next
node during routing. Detection of such incorrect information
is very difficult. In this paper, we proposed a FEEM aided
with channel coding and interleaver scheme for wireless
sensor networks to tolerate this. The M-path in multipath
routing are selected using EM-GMR. Based on the simulation
results, we draw the following conclusions:

1 our scheme performs much better than the diversity
with MRC scheme in terms of BER

2 our FEEM can tolerate some link failures and
compromised, which makes wireless sensor networks
survivable and resilient

3 our FEEM scheme can work at low SNR (e.g.
Eb/N0 = 5 dB), which can save lots of energy
because energy constraint is one of the most
important topics in wireless sensor networks and
existing studies show that most energy is
consumed in communication-related activities in
wireless sensor networks

4 the larger the number of paths in FEEM, the better the
performance, which means the fault is more tolerable

5 the network lifetime can be extended using our FEEM
scheme.
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1. INTRODUCTION

The recent advances in MEMS, embedded systems, and wire-
less communications enable the realization and deployment
of wireless sensor networks (WSN), which consist of a large
number of densely deployed and self-organized sensor nodes
[1]. The potential applications of WSN, such as environment
monitor, often emphasize the importance of location infor-
mation. Fortunately, with the advance of localization tech-
nologies, such location information can be accurately esti-
mated [2–5]. Accordingly, geographic routing [6–8] was pro-
posed to route packets not to a specific node, but to a given
location. An interesting question arises as “how many hops
does it take to reach a given location?” The prediction of the
number of hops, that is, hop-distance estimation, is impor-
tant not only in itself, but also in helping, estimate the latency
and energy consumption, which are both important to the
viability of WSN.

The question could become very simple if the sensor
nodes are manually placed. However, if sensor nodes are de-
ployed in a random fashion, the answer is beyond the reach
of simple geometry. The stochastic nature of the random de-
ployment calls for a statistical study.

The relation between the Euclidean distance and network
distance (in terms of the number of hops), also referred to
as hop-distance relation, catches a lot of research interest re-

cently. In [9], Huang et al. defined the Γ-compactness of a
geometric graph G(V ,E) to be the minimum ratio of the Eu-
clidean distance to the network distance,

γ = min
i, j∈V

d(i, j)
h(i, j)

, (1)

where d(i, j) and h(i, j) are the Euclidean distance and net-
work distance between nodes i and j, respectively. The con-
stant value γ is a good lower bound, but might not be enough
to describe the nonlinear relation between Euclidean distance
and network distance. In fact, their relation is often treated as
linear for convenience, for example, [r/R] + 1 is widely used
to estimate the needed number of hops to reach distance r
given transmission range R. Against this simple intuition, the
relation between Euclidean distance and network distance is
far more complex. Fortunately, a lot of probabilistic stud-
ies have been applied to this question. In [10], Hou and Li
studied the 2D Poisson distribution to find an optimal trans-
mission range. They found that the hop-distance distribu-
tion is determined not only by node density and transmission
range, but also by the routing strategy. They showed results
for three routing strategies, most forward with fixed radius,
nearest with forward progress, and most forward with vari-
able radius. Cheng and Robertazzi in [11] studied the one-
dimensional Poisson point and found the pdf of r given the
number of hops. They also pointed out that the 2D Poisson
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point distribution is analogous to the 1D case, replacing the
length of the segment by the area of the range. Vural and
Ekici reexamined the study under the sensor networks cir-
cumstances in [12], and gave the mean and variance of mul-
tihop distance for 1D Poisson point distribution. They also
proposed to approximate the multihop distance using Gaus-
sian distribution. Zorzi and Rao derive the mean number of
hops of the minimal hop-count route through simulations
and analytic bounds in [8]. Chandler [13] derives an expres-
sion for t-hop outage probability for 2D Poisson node distri-
bution. However, Mukherjee and Avidor [14] argue that one
of Chandler’s assumptions is relaxed, and thus his expression
is in fact a lower bound on the desired probability. Using
the same assumption, they also derive the pdf of the mini-
mal number of hops for a given distance in a fading envi-
ronment. Although these analytic results are available in the
literature, their monstrous computational complexity limits
their applications. Therefore, we try to approximate the hop-
distance relation and simplify the decision process and error
analysis in this paper. Considering the application of resource
allocation, only large-scale path loss is considered, and thus
the fading is ignored.

The rest of this paper is organized as follows. The num-
ber of hops prediction problem is addressed and solved in
Section 2. Since this problem has no closed-form solution,
we propose an attenuated Gaussian approximation and show
how to simplify the error analysis in Section 2.1. Application
examples are shown in Section 3. Section 4 concludes this pa-
per.

2. ESTIMATION OF NETWORK DISTANCE BASED ON
EUCLIDEAN DISTANCE

Suppose the sensor nodes are placed on a plane at random,
and N(A), the number of nodes in a given area A, follows
two-dimensional Poisson distribution with average density
λ. The problem of interest is to find the number of hops
needed to reach a distance r away. We can make a maximum-
likelihood (ML) decision,

Ĥ = arg max f
(
r | Hn

)
, n = 1, 2, 3, . . . , (2)

where the event Hn can be described as “the minimum num-
ber of hops is n from the source to the specific node at Eu-
clidean distance r.” In the following discussion, we are trying
to approximate f (r | Hn) for 2D Poisson distribution. Note
that r < R implies H1, that is, the specific node is within one
hop from the source. We are more interested in multiple-hop
distance relation, especially when n is moderately large.

2.1. Attenuated Gaussian approximation

Since f (r | Hi) is awkward to evaluate even using numeri-
cal methods, we use histograms collected from Monte Carlo
simulations as substitute to the joint pdf. All the simulation
data are collected from a scenario where N sensor nodes were
uniformly distributed in a circular region of radius of RBound

meters. For convenience, polar coordinates were used. The
source node was placed at (0, 0). The transmission range was

Table 1: Statistics of f (r | Hi).

Number of hops Mean STD Skewness Kurtosis

1 19.991 7.0651 −0.57471 −0.58389

2 45.132 7.8365 −0.16958 −1.0763

3 72.01 8.2129 −0.10761 −1.0332

4 99.45 8.391 −0.07938 −0.97857

5 127.14 8.5323 −0.06445 −0.93104

6 154.96 8.6147 −0.05341 −0.9004

7 182.68 8.573 −0.07738 −0.91687
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Figure 1: Histograms of hop-distance joint distribution (N = 1000,
RBound = 200, R = 30).

set as R meters. For each setting of (N ,RBound,R), we ran 300
simulations, in each of which all nodes are redeployed at ran-
dom. We ran simulations for extensive settings of node den-
sity λ and transmission range R. Due to space constraints,
only the histograms for (N = 1000,RBound = 200, R =
30) are plotted in Figure 1, which approximately shows that
f (r | Hi) approaches the normal when Hi increases. Table 1
lists the first-, second-, third-, and fourth-order statistics of
f (H , r).

Skewness is a third-order statistic used to measure of
symmetry, or more precisely, the lack of symmetry. Skewness
is zero for a symmetric distribution and positive skewness in-
dicates right skewness while negatives indicates left skewness.

Definition 1 (see [15]). For a given sample set X ,

m3 = Σ(X − X)3

n
,

m2 = Σ(X − X)2

n
,

(3)

where X is the sample mean of X , and n is the size of X . Then
a sample estimate of skewness coefficient is given by

g1 = m3

m3/2
2

. (4)
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Figure 2: The histogram versus postulated distribution for end-to-end distances for given number of hops: (a) three hop; (b) four hop; (c)
five hop; (d) six hop.

Kurtosis is a fourth-order statistic indicating whether the
data are peaked or flat relative to a normal distribution.

Definition 2 (see [15]). A sample estimate of kurtosis for a
sample set X is given by

g2 = m4

m2
2
− 3, (5)

where m4 = Σ(X − X)4/n is the fourth-order moment of X
about its mean.

Skewness and kurtosis are useful in determining whether
a sample set is normal. Note that the skewness and kurtosis
of a normal distribution are both zero; significant skewness
and kurtosis clearly indicate that data are not normal. Table 1
clearly shows that the skewness and kurtosis satisfy the Gaus-
sianity condition within tolerance of error. Furthermore, The
postulated distribution and histogram are drawn together in

Figures 2(a), 2(b), 2(c), and 2(d), which clearly shows a close
match for each case. Also, note that f (r | Hn) attenuates ex-
ponentially with n increase, we need to introduce an attenu-
ation factor to model this behavior.

Thus, the objective function can be approximated by

f
(
r | Hn

) = αnN
(
mn, σn

) = αn

2πσ
e−(r−mn)2/2σ2

n , (6)

where α is the equivalent attenuation base, mn and σn are
the mean and standard deviation (STD), respectively. Since
f (r | Hn) attenuates with n increasing, α must be less than 1.
The specific values of these parameters can be estimated from
simulations or computed numerically from the exact pdfs.
Our extensive simulations show that even for only moder-
ately large Hi, f (r | Hi) has the following properties.

(1) σn ≈ σn−1, which means that the neighboring joint
pdfs have similar spread.
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Hn−1 Hn Hn+1

dn−1 dn r

Figure 3: Gaussian approximation.

(2) mn − mn−1 ≈ mn+1 − mn, which means that the joint
pdfs are evenly spaced.

(3) 3 < (mn −mn−1)/σn < 5, which means the overlap be-
tween the neighboring joint pdfs is small but not neg-
ligible. (As a rule of thumbs, Q(3) is considered rela-
tively small and Q(5) is regarded negligible.)

(4) (mn −mn−2)/σn � 5, which means the overlap be-
tween the nonneighboring joint pdfs is negligible.

(5) α < 1. For large density λ, α → 1. Along with prop-
erty (1), this tell us that the neighboring joint pdfs have
nearly identical shape.

As shown in the following discussion, these properties largely
simplify the decision rule and the error analysis. Another in-
teresting observation, besides these properties, is that the fol-
lowing equations do not stand true,

mn = nm1,

mn = nR,

mn = (n− 1)R + R/2.

(7)

Although these equations sound plausible, they all give vis-
ible errors. The aforementioned estimator [r/R] + 1 for Hi,
though widely used, is not good in the new light shed by this
study.

2.2. Decision boundaries

Following (2), and observing the f (r | Hi) in Figure 3, the
decision is needed only between neighboring Hi, that is,

f
(
r | Hn

) n
≷
n+1

f
(
r | Hn+1

)
. (8)

This is because, for a specific value of r, there are only two
values of Hi with dominating f (r | Hi), compared to which
f (r | Hi) for other values of Hi is negligible. Substituting
(6) into (8), we obtain the decision boundary dn between the
regions Hn and Hn+1,

dn = B +
√
B2 + AC

A
,

A = σ2
n+1 − σ2

n ,

B = mnσ
2
n+1 −mn+1σ

2
n ,

C = m2
nσ

2
n+1 −m2

n+1σ
2
n + 2σ2

nσ
2
n+1 lnα.

(9)

Using property (1),

dn = m2
n+1 −m2

n − 2σ2
n lnα

2
(
mn+1 −mn

) . (10)

For large density λ, property (5) is applicable, (9) simplifies
to

dn = σ2
nmn+1 + σ2

n+1mn

σ2
n + σ2

n+1
. (11)

Applying property (1) to (11),

dn = mn + mn+1

2
. (12)

No matter which approximate solution we choose for dn, the
decision rule is given by

r
n+1
≷
n

dn. (13)

In other words,

we decide n̂ if dn̂−1 < r ≤ dn̂. (14)

2.3. Error performance analysis

For our decision rule, a decision error occurs only when the
required number of hops is n, but our decision n̂ /=n. Thus,
the probability of error for a specific r is

p(ε | r) =
∑
n /=n̂

f
(
Hn | r

)
, (15)

where f (H | r) is related to f (r | Hi) by the Bayesian rule.
The total probability of error is obtained by integrating (15)
over all possible r,

p(ε) =
∫
p(ε | r) fr(r)dr. (16)

According to property (4), only f (r | H = n − 1) and f (r |
H = n + 1) could have outstanding value over the decision
region [dn−1,dn],

p(ε)≈
∞∑
n=2

∫ dn

dn−1

f
(
r | Hn−1

)
p
(
Hn−1

)
+ f
(
r | Hn+1

)
p
(
Hn+1

)
dr

=
∞∑
n=2

αn−1p
(
Hn−1

)[
Q
(
dn−1−mn−1

σn−1

)
−Q

(
dn −mn−1

σn−1

)]

+αn+1p
(
Hn+1

)[
Q
(
mn+1−dn

σn+1

)
−Q

(
mn+1−dn−1

σn+1

)]
.

(17)
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Note that

dn −mn−1

σn−1
− dn−1 −mn−1

σn−1
= dn − dn−1

σn−1
� 1, (18)

therefore, Q((dn − mn−1)/σn−1) is negligible compared to
Q((dn−1 − mn−1)/σn−1). Similarly, Q((mn+1 − dn)/σn+1) is
negligible. Equation (17) is approximated by

p(ε) ≈ α3p
(
H3
)
Q
(
m3 − d2

σ3

)

+
∞∑
n=3

[
αn−1p

(
Hn−1

)
Q
(
dn−1 −mn−1

σn−1

)

+ αn+1p
(
Hn+1

)
Q
(
mn+1 − dn

σn+1

)]

= α2p
(
H2
)
Q
(
d2 −m2

σ2

)

+
∞∑
n=3

αnp
(
Hn
)[
Q
(
mn − dn−1

σn

)
+ Q

(
dn −mn

σn

)]
.

(19)

Substituting an appropriate solution of dn into (19) would
give us the probability of error within required accuracy. For
example, if we choose (12),

p(ε) ≈ α2p
(
H2
)
Q
(
m3 −m2

2σ2

)

+
∞∑
n=3

αnp
(
Hn
)[
Q
(
mn −mn−1

2σn

)
+ Q

(
mn+1 −mn

2σn

)]
.

(20)

Thanks to the Gaussian approximation, the error probabil-
ity is given in forms of Q functions, which is tremendously
simpler than the derivation from the original pdfs. This er-
ror process is general and applicable to other estimators. For
example, even when we have to use a linear estimator due
to limit of computation capacity, we can still use the above
process to obtain the corresponding error probability.

3. APPLICATION EXAMPLES

We provide two application examples, latency and energy es-
timation, in this section. To emphasize the role of the num-
ber of hops in the estimation, we use general time and energy
models. On how to derive the parameters such as Trx,Ttx for
a specific routing scheme, readers are referred to [16, 17].

3.1. Latency estimation

We use a simple time model, in which the latency increases
linearly with the number of hops [18]. Suppose it takes Trx,
Ttx for a sensor node to process 1 bit of incoming and out-
going messages, respectively, and Tpr is the required time to
transmit 1 bit of message through a band-limited channel.
Therefore, the latency introduced for each hop is

Thop = Ttx + Tpr + Trx. (21)

mTrx mTtx
· · ·

Tpr

Figure 4: Time model.

Table 2: Energy consumption parameters

Name Value

r0 86.2 m

Eelec 50 nJ/bit

EDA 5 nJ/bit

ε f s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

As shown in Figure 4, given the end-to-end distance r, we can
find the required number of hops n̂ according to (13), thus,
a good estimator of the total latency of an l-bit message is

ln̂Thop. (22)

3.2. Energy consumption estimation

The following model is adopted from [19] where perfect
power control is assumed. To transmit l bits over distance
r, the sender’s radio expends

Etx(l, r) =
⎧⎨
⎩lEelec + lε f sr2, r < d0,

lEelec + lεmpr4, r ≥ d0,
(23)

and the receiver’s radio expends

Erx(l, r) = lEelec. (24)

Eelec is the unit energy consumed by the electronics to pro-
cess one bit of message, ε f s and εmp are the amplifier factor
for free-space and multipath models, respectively, and d0 is
the reference distance to determine which model to use. In
fact, the first branch of (23) assumes a free-space propaga-
tion and the second branch uses a path-loss exponent of 4.
The values of these communication energy parameters are
set as in Table 2.

Let sn denote the single-hop distance from the (n− 1)th-
hop to the nth-hop. Obviously, sn ≤ R. In our experimental
setting, R = 30m < d0 so that the free-space model is al-
ways used. This agrees well with most applications, in which
multihop short-range transmission is preferred to avoid the
exponential increase in energy consumption for long-range
transmission. Naturally, the end-to-end energy consumption
for sending l bit over distance r is given by

Etotal(l, r) =
n̂∑
1

{
Etx
(
l, r1
)

+ Erx(l)
}

, (25)
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Figure 5: Estimation average: (a) latency; (b) energy consumption.

where n̂ is the estimated number of hops for given r and r1

is the single-hop distance because the message is relayed hop
by hop.

On the average,

Etotal(l, r) = n̂l
(
Eelec + ε f sE

[
r2

1

]
+ Eelec

)

= n̂l
(
2Eelec + ε f s

(
m2

1 + σ2
1

))
.

(26)

3.3. Simulation

We used the same scenario described in Section 2.1 and var-
ied the node density λ and transmission range R. In each sim-
ulation, the number of hops is estimated for each node using
(11) and (13), and then the latency and energy consumption
are estimated using (22) and (26), respectively. As compar-
ison to our proposed statistic-based estimator, we choose a
widely used linear estimator,

linear estimator 1 n̂ =
[
r

R

]
+ 1,

linear estimator 2 n̂ =
[
r

R

]
+ 2,

(27)

where r is the given distance, R, the transmission range, and
[r/R] is the maximum integer less than r/R. We plot the av-
erage of latency and energy consumption in Figures 5(a) and
5(b) and the RMSE in Figures 6(a) and 6(b), respectively. The
latency is plotted in units of Thop while the energy consump-
tion in units of joules. The ripple shape of RMSE is due to the
fact that decision errors occur more often in the overlapping
zones of neighboring f (r | Hi). Figure 5 shows that the linear

estimator 1 performs well at the shorter range but suffers vis-
ibly at larger range, while the linear estimator does the oppo-
site. The linear estimators, no matter what value their param-
eters take, may significantly underestimate or overestimate
the latency and energy consumption as already pointed out
in Section 2.1, while our statistic-based model keeps close to
the actual latency and energy consumption at all ranges ex-
cept for the border. This is also verified by Figure 6, which
also shows that our model can reduce RMSE to at least half
for both latency and energy consumption. These results show
that linear models cannot identify network behavior accu-
rately, as also confirmed by our extensive simulations for dif-
ferent settings of node density and transmission range, which
is not shown here due to space constraints.

4. CONCLUSION

To address the fundamental problem “how many hops does
it take for a packet to be relayed for a given distance,” we
make both probabilistic and statistical studies. We proposed
a Bayesian decision based on the conditional pdf of f (r | Hi).
Since f (r | Hi) is computationally complex, we also pro-
posed an attenuated Gaussian approximation for the condi-
tional pdf, which visibly simplifies the decision process and
the error analysis. This error analysis based on Gaussian ap-
proximation is also applicable to other estimators, includ-
ing the linear ones. We also show that several linear mod-
els, though intuitively sound and widely used, may give sig-
nificant bias error. Given as application examples, our ap-
proximation is also applied in the latency and energy con-
sumption estimation in dense WSN. Simulations show that
our approximation model can predict the latency and energy
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Figure 6: Estimation RMSE: (a) latency; (b) energy consumption.

consumption with less than half RMSE, compared to the
aforementioned linear models.

ACKNOWLEDGMENT

This work was supported by the US Office of Naval Research
(ONR) Young Investigator Award under Grant N00014-03-
1-0466.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Maga-
zine, vol. 40, no. 8, pp. 102–114, 2002.

[2] H. Lim and J. C. Hou, “Localization for anisotropic sensor net-
works,” in Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
’05), vol. 1, pp. 138–149, Miami, Fla, USA, March 2005.

[3] A. Caruso, S. Chessa, S. De, and A. Urpi, “GPS free coordinate
assignment and routing in wireless sensor networks,” in Pro-
ceedings of the 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM ’05), vol. 1,
pp. 150–160, Miami, Fla, USA, March 2005.

[4] L. Fang, W. Du, and P. Ning, “A beacon-less location discovery
scheme for wireless sensor networks,” in Proceedings of the 24th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM ’05), vol. 1, pp. 161–171, Miami,
Fla, USA, March 2005.

[5] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S.
Teller, “Mobile-assisted localization in wireless sensor net-
works,” in Proceedings of the 24th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
’05), vol. 1, pp. 172–183, Miami, Fla, USA, March 2005.

[6] R. Jain, A. Puri, and R. Sengupta, “Geographical routing using
partial information for wireless ad hoc networks,” IEEE Per-
sonal Communications, vol. 8, no. 1, pp. 48–57, 2001.

[7] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed en-
ergy conservation for ad hoc routing,” in Proceedings of the
7th Annual International Conference on Mobile Computing and
Networking (MOBICOM ’01), pp. 70–84, ACM Press, Rome,
Italy, July 2001.

[8] M. Zorzi and R. R. Rao, “Geographic random forwarding
(GeRaF) for ad hoc and sensor networks: multihop perfor-
mance,” IEEE Transactions on Mobile Computing, vol. 2, no. 4,
pp. 337–348, 2003.

[9] Q. Huang, C. Lu, and G.-C. Roman, “Spatiotemporal mul-
ticast in sensor networks,” in Proceedings of the 1st Interna-
tional Conference on Embedded Networked Sensor Systems (Sen-
Sys ’03), pp. 205–217, ACM Press, Los Angeles, Calif, USA,
November 2003.

[10] T.-C. Hou and V. O. K. Li, “Transmission range control in mul-
tihop packet radio networks,” IEEE Transactions on Communi-
cations, vol. 34, no. 1, pp. 38–44, 1986.

[11] Y.-C. Cheng and T. G. Robertazzi, “Critical connectivity phe-
nomena in multihop radio models,” IEEE Transactions on
Communications, vol. 37, no. 7, pp. 770–777, 1989.

[12] S. Vural and E. Ekici, “Analysis of hop-distance relationship
in spatially random sensor networks,” in Proceedings of the 6th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC ’05), pp. 320–331, ACM Press,
Urbana-Champaign, Ill, USA, May 2005.

[13] S. A. G. Chandler, “Calculation of number of relay hops re-
quired in randomly located radio network,” Electronics Letters,
vol. 25, no. 24, pp. 1669–1671, 1989.

[14] S. Mukherjee and D. Avidor, “On the probability distribution
of the minimal number of hops between any pair of nodes
in a bounded wireless ad-hoc network subject to fading,” in

243 of 816



8 EURASIP Journal on Wireless Communications and Networking

Proceedings of the 2nd International Workshop on Wireless Ad-
Hoc Networks (IWWAN ’05), London, UK, May 2005.

[15] G. Snedecor and W. Cochran, Statistical Methods, Iowa State
University Press, Ames, Iowa, USA, 1989.

[16] M. Zorzi and R. R. Rao, “Geographic random forwarding
(GeRaF) for ad hoc and sensor networks: energy and latency
performance,” IEEE Transactions on Mobile Computing, vol. 2,
no. 4, pp. 349–365, 2003.

[17] H. M. Ammari and S. K. Das, “Trade-off between energy sav-
ings and source-to-sink delay in data dissemination for wire-
less sensor networks,” in Proceedings of the 8th ACM Sympo-
sium on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems (MSWiM ’05), pp. 126–133, ACM Press, Montreal,
Quebec, Canada, October 2006.

[18] W. Ye, J. Heidemann, and D. Estrin, “Medium access control
with coordinated adaptive sleeping for wireless sensor net-
works,” IEEE/ACM Transactions on Networking, vol. 12, no. 3,
pp. 493–506, 2004.

[19] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless mi-
crosensor networks,” IEEE Transactions on Wireless Communi-
cations, vol. 1, no. 4, pp. 660–670, 2002.

244 of 816



Distributed Sensor Networks Deployment Using Fuzzy

Logic Systems

Haining Shu1,3, Qilian Liang1, and Jean Gao2

The effectiveness of distributed wireless sensor networks highly depends on the sensor
deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will

provide sufficient sensor coverage and ameliorate the quality of communications. In this
paper, we apply fuzzy logic systems to optimize the sensor placement after an initial random
deployment. We use the outage probability due to co-channel interference to evaluate the

communication quality. Fenton–Wilkinson method is applied to approximate the sum of
log-normal random variables. Our algorithm is compared against the existing distributed
self-spreading algorithm. Simulation results show that our approach achieves faster and

stabler deployment and maximizes the sensor coverage with less energy consumption. Outage
probability, as a measure of communication quality gets effectively decreased in our algorithm
but it was not taken into consideration in the distributed self-spreading algorithm.

KEY WORDS: wireless sensor networks; sensor deployment; fuzzy logic system; Fenton–Wilkson
method; outage probability

1. INTRODUCTION

Wireless sensor networks consist of certain
amount of small and energy constrained nodes.
Sensor nodes are deployed in support of various
missions such as environment and habitat monitor-
ing, industrial process control, infrastructure security
[1] and automation in the transportation. One net-
worked sensing experiment on Great Duck Island [2]
provides a small lens into an expansive future of such
applications. The experiment was conducted by a
team of computer engineers from the University of
California, Berkeley. Up to date, 190 wireless sensors
have been deployed on a small island 10 miles off the
coast of Maine to study the nesting behaviors of
petrels. Biologists are now monitoring the petrels on
the island from their offices, browsing data from
sensors linked by satellite.

The deployment of sensors varies with different
applications. A number of applications require the
placement of sensors at desired locations like data
collection [3] and infrastructure security [1], where
critical area, buildings and facilities are monitored by
a network of sensors placed adequately. For such
placement-friendly applications, sufficient knowledge
of the environment is assumed to be available before
deployment is carried out.

In other applications where prior knowledge of
the environment can not be obtained, sensors may
have to be randomly air-dropped and human inter-
vention after deployment to recharge or replace node
batteries may not be feasible. Mobile sensors are
practically desirable in this situation because they
have the capability to move around and re-adjust
their positions for high quality communication and
better coverage and surveillance [4]. However mobile
sensor deployment itself is an energy consuming
process because of the motion and communication
between sensors. An efficient sensor re-deployment
scheme is a necessity to save energy resources and
improve the quality of communications.
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Some prior research proposed sensor deployment
strategies based on virtual forces for target localization
[5–7]. One example of virtual force concept was
presented in [7]. The pair-wise interaction between
sensor nodes is governed by two kinds of virtual forces
– one causes the nodes to repel each other to improve
their coverage and the other is an attractive force that
prevents the nodes from losing connectivity. Later
Cheng et al. [8] formulated a constrainedmultivariable
nonlinear programming problem to determine both
the locations of the sensor nodes and data transmission
pattern. In [9, 10], Heo and Varshney developed a
distributed self-spreading algorithm (DSSA) and an
intelligent deployment and clustering algorithm
(IDCA) for sensor deployment. Recently, a voronoi
diagram (VD)-based deployment algorithm was
included in [11]. All the above algorithms have made
lots of efforts to formulate the virtual forces, however
none of which can well handle the uncertainties with
the random move and unpredictable oscillation in
sensor deployment. For the purpose of stability and
convergence, various parameters or constraints such as
oscillation limit, stable status [9–11], and number of
neighbors [7] have to be imposed to avoid excessive
sensor oscillation.

In this paper, we apply fuzzy logic systems
(FLSs) to handle these uncertainties in distributed
sensor deployment. Instead of attempting to formu-
late the virtual forces, we propose to apply FLSs to
re-deploy the sensors. Each individual mobile sensor
uses a FLS to self-adjust its location. For a single
sensor node, neighboring nodes� location is the only
information needed to make the movement decision.
Therefore the deployment scheme based on FLSs is a
fully distributed approach. After applying FLSs,
exhaustive move and unpredictable oscillation is
efficiently avoided and fast deployment is achieved.

As a result, the entire sensor network survives for
longer lifetime and the quality of communication in
terms of outage probability is greatly ameliorated. A
concept of coherence time is introduced for the
purpose of synchronization among sensors.

The rest of this paper is organized as follows. In
Section 2, we briefly review the basic concept of
FLSs. Section 3 details the FLSs design for distrib-
uted sensor deployment. Simulation and discussion
are presented in Section 4. Section 5 concludes this
paper with a summary. Fenton–Wilkinson method to
tackle the outage problem is expatiated in Appendix.

2. OVERVIEW OF FLSS

Figure 1 shows the structure of a rule-based
type-1 FLS [12]. It contains four components: fuzz-
ifier, rules, inference engine and defuzzifier. When an
input is applied to a FLS, the inference engine
computes the output set corresponding to each rule.
The defuzzifer then computes a crisp output from
these rule output sets.

Rules are the heart of a FLS and may be
provided by experts or can be extracted from
numerical data. In either case, the rules that we are
interested in can expressed as a collection of
IF-THEN statements, e.g. [13]

IF the total average input rate of real-time voice
and video traffic is a moderate amount, and the total
average input rate of the non-real-time data traffic is
some, THEN the confidence of accepting the tele-
phone call is a large amount.

The IF-part of a rule is its antecedent and the
THEN-part of a rule is its consequent.

The process of making a crisp input fuzzy
is called fuzzification. The most widely used

RULES

DEFUZZIFIERFUZZIFIER

INFERENCE

CRISP
INPUT

FUZZY INPUT
SETS

FUZZY OUTPUT
SETS

CRISP
OUTPUT

FUZZY LOGIC SYSTEM

Fig. 1. The structure of a fuzzy logic system.
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fuzzification is the singleton fuzzification. All fuzziness
for a particular fuzzy set is essentially characterized
by the membership functions (MFs). The shapes used
to describe the fuzziness have very few restrictions
but with the help of mathematical structure, some
standard terms related to the shape of MFs have been
developed over the years [14]. The most common
forms of MFs are those that are normal and convex.

Consider a type-1 FLS having p inputs and one
output. Let us suppose that it has M rules, there the
lth rule has the form:

Rl: IF x1 is F1
l and x2 is F2

l and � � � and xp is Fp
l ,

THEN y is Gl. l ¼ 1; . . . ;M
Assuming singleton fuzzification is used, when

an input x0 ¼ fx01; . . . ; x0pg is applied, the degree of
firing corresponding to the lth rule is computed as

lFl
1
ðx01Þ ? lFl

2
ðx02Þ ? � � � ? lFl

p
ðx0pÞ ¼ T

p
i¼1lFl

i
ðx0iÞ ð1Þ

where ? and T both indicate the chosen t-norm.
The last but not the least process in a FLS is

called defuzzification. Defuzzification is the conver-
sion of fuzzy output sets to crisp output sets. There
are many defuzzification methods including maxi-
mum, mean-of-maxima, centroid, center-of-sums,
height, modified height and center-of-sets. In this
paper, we focus, for illustrative purposes, on the
center-of-sets defuzzifier [13]. It computes a crisp
output for the FLS by first computing the centroid,
cGl , of every consequent set Gl, and, then computing a
weighted average of these centroids. The weight
corresponding to the lth rule consequent centroid is
the degree of firing associated with the lth rule,
T p

i¼1lFl
i
ðx0iÞ, so that

ycosðx0Þ ¼
PM

l¼1c
l
GT

p
i¼1lFl

i
ðx0iÞPM

l¼1Ti¼1
plFl

i
ðx0iÞ

ð2Þ

where M is the number of rules in the FLS.
In the next section, we will detail the design of

the rule-based type-1 FLSs for distributed sensor
deployment issue.

3. DESIGN OF FLSS FOR DISTRIBUTED

SENSOR DEPLOYMENT

3.1. Assumptions and Notations

In this research, we make several assumptions:

• Sensor field is denoted by a two-dimensional
grid. Sensing and communication is modeled
as a circle on this grid.

• Coverage discussed in this paper is grid
coverage. A grid point is covered when at
least one sensor covers this point.

• A sensor can detect or sense any event within
its sensing range, denoted by Rs. Coverage is
determined based on Rs.

• Two sensors within their communication
range, denoted by Rc can communicate with
each other. Neighbors of a sensor are defined
as nodes within its communication range.

• All sensor nodes are assumed peer to peer.
• Sensor nodes have certain mobility and are

capable of computing, detection and commu-
nication.

• Sensor node can obtain the knowledge of its
location.

• Sensors are synchronized by coherence time.
One-time move is made within each coherence
period.

3.2. FLSs Design for Distributed Sensor Deployment

FLS is well known to be able to handle uncer-
tainty and ambiguity. Practically not all uncertainty
is random. Some forms of uncertainty are non-
random and hence not suited to treatment or
modeling by probability theory. Fuzzy set theory is
a marvelous tool for modeling uncertainty associated
with vagueness, or with a lack of information
regarding a particular element of the problem at
hand. Upon concerning the distributed sensor
deployment, the moving distance and direction of
each sensor are distributed and full of uncertainty
which can barely be described by some random
distribution. FLS is well known as model free. Their
MFs are not based on statistical distributions. There-
fore we propose to apply FLS to the distributed
sensor deployment problem. Each sensor makes fully
distributed decision on its movement based on FLS.

Our algorithm starts with random deployment.
Assume a two-dimensional sensor field is the target
area of surveillance. In the initial condition, a given
number of sensors are randomly deployed such as air-
dropping. Because of the randomness in initial
deployment, very likely the sensor field will not be
fully covered. Part of the sensor field might be over
crowded with the sensors. Such unbalanced deploy-
ment brings difficulty in target detection and
tracking, and increases the interference during com-
munications. Figure 2 gives an example of randomly
deployed field. As shown in Figure 2, targets in the
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uncovered area can not be detected while in the over
crowded area, communication between sensors is
corrupted by the interference from neighboring
nodes.

Our algorithm then intends to re-deploy the
sensors such that maximum field coverage and high
quality communication could be achieved. Each
individual sensor in the network needs to fine-tune
its location such that densely deployed sensors can be
evenly spreaded in the field. Two critical procedures
are considered in our algorithm:

• Determine the next-step move distance for
each sensor.

• Determine the next-step move direction for
each sensor.

The next-step move distance is hard to deter-
mine. Too small or big move distance each step
consumes the network more time and energy to get
stable deployment. Excessive move and oscillation is
unavoidable in previous work with no fuzzy system.
In this paper, we design a FLS to determine the
next-step move distance for each sensor.

An ideal sensor deployment will have uniform
distribution for better coverage. But in random
deployment, coverage uniformity is hardly to achieve
initially. In sensor network composed of mobile
sensors, each sensor detects the number and location
of its neighbors and decides its neighborhood density.
If the sensor has a high density of neighboring nodes,
it makes decision using FLSs to shift a certain

distance away from the high density area. If the
neighborhood density is low, the sensor might stand
still or shift a little distance away from the current
location.

As illustrated in Figure 2, the neighborhood
density of a sensor node is determined by two factors:
the number of neighbors and the distance between
sensor node and its neighbors. The more the neigh-
boring nodes, the higher the neighborhood density.
The closer the neighboring nodes, the higher the
neighborhood density. Based on this knowledge, we
choose two antecedents as follows:

Antecedent 1. Number of neighbors of each sensor.
Antecedent 2. Average Euclidean distance between
sensor node and its neighbors.

The linguistic variables to represent the number
of neighbors for each sensor are divided into three
levels: high, moderate and low; and those to represent
the average Euclidean distance between sensor node
and its neighbors are divided into three levels: far,
moderate and near. The consequent – the shift
distance normalized by sensing range Rs is divided
into three levels: far, moderate and near. Table 1
summaries the rules and consequents.

One example of rules is as follows:
IF the number of neighbors of sensor i is high

and average Euclidean distance between sensor i and
its neighbors is moderate, THEN the normalized shift
distance of sensor i should be moderate.

We setup 9 rules for this FLS because every
antecedent has 3 fuzzy sub-sets and there are 2
antecedents. Trapezoidal MFs are used to represent
high, low, far and near and triangle MFs to
represent moderate. Two antecedents are normalized
to the range [0,10]. We show these MFs in
Figures 2 and 3.

−2 0 2 4 6 8 10 12
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12

Uncovered Area 

Covered Area 

Over Crowded Area 

Fig. 2. An example of random deployment: targets in the uncov-

ered area can not be detected; In the over crowded area commu-

nication between sensors has lots of interference.

Table 1. Fuzzy rules and consequent

Antecedent 1 Antecedent 2 Consequent

Low Near Moderate

Low Moderate Near

Low Far Near

Moderate Near Far

Moderate Moderate Moderate

Moderate Far Near

High Near Far

High Moderate Moderate

High Far Moderate
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Applying center-of-sets defuzzification [7], for
every input (x1, x2), the output is computed using

yðx1;x2Þ ¼
P9

l¼1 c
l
GlFl

1
ðx1ÞlFl

2
ðx2ÞP9

l¼1 lFl
1
ðx1ÞlFl

2
ðx2Þ

ð3Þ

Repeating these calculations for 8xi 2 ½0; 10�,we
obtain a decision surface y(x1, x2) as shown in
Figure 4.

Generally, the decision surface is time-varying
and nonlinear. From Figure 4, we can see that
although the number of neighbors for a particular
sensor is high, the move distance can be smaller than
some sensor with fewer "crowded" neighbors, i.e.

very close average Euclidean distance between the
sensor and its neighbors. With the assist of decision
surface, the next-step move distance can be deter-
mined.

Comparing to move distance, the next-step move
direction is much easier to decide. Coulomb�s law in
physics becomes a useful tool to tackle the problem.
For instance, assume sensor i has 2 neighbors in its
communication range as shown in Figure 5.

The coordinate of sensor i is denoted as
Ci = (Xi,Yi).

The next-step move direction of sensor i could be
represented as follows:

~v ¼
X2
j¼1

~Cj � ~Ci

j~Cj � ~Cij2
ð4Þ

tanðaÞ ¼
Yð~vÞ
Xð~vÞ

ð5Þ

After getting distance and direction (angle a) , sensor
i clearly knows his next-step move information. In
order to prolong the battery life of each individual
sensor, we introduce a coherence time as the duty
cycle during which the changes of two antecedents
can be ignored. Sensors are put into idle or sleep
mode if within the coherence time, the information of
neighbors remains unchanged.

near, low moderate far, high

0 2 4 6 8 10

0.5

1

Fig. 3. Antecedent membership functions.
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4. SIMULATION AND DISCUSSION

We investigate various number of sensors
deployed in a field of 250 � 250 m2 area. We assume
each sensor is equipped with an omni-directional
antenna to carry out the task of detection and
communication. Evaluation of our scheme follows
three criteria: field coverage, converging speed, mean
travel distance per node and outage probability.
Results are averaged over 200 Monte Carlo simula-
tions.

We compare the performance of our algorithm
with the Distributed Self Spreading Algorithm
(DSSA) proposed in [9]. DSSA is known as a good
solution in the self-deployment of mobile sensor
nodes. The main idea of DSSA is to define a partial
force for the movement of sensors during the
deployment process. The force a node receives from
a closer neighbor node is greater than that from a
farther neighbor. For N sensor nodes deployed in a
square field with area A, DSSA formulates the partial
force sensor node i receives from neighbor node j as:

fi;jn ¼
D

l2
ðRc � pin � pjn

�� ��Þ pin � pjn

pin � pjn
�� �� ð6Þ

where Rc stands for communication range,
l ¼ N � p � R2

c=A is called the expected density while
D is the local density, and pin stands for the location
of node i at time step n. Each node makes decision to
move by adding up all partial forces from its neigh-
boring nodes. DSSA sets up two criteria: stable status

limit (Slim) and oscillation limit (Olim) to stop a
sensor�s movement.

Figure 6 shows at 50 m sensing range
(Rs = 50 m) and 100 m communication range
(Rc = 100 m), the coverage of the initial random
deployment, the coverage after DSSA is implemented
and the coverage after using FLSs. We ran three
iterations for all three schemes. When 20 sensors are
deployed, the coverage after random deployment was
initially around 85% and the DSSA increased it to
93%. After FLSs were used, the coverage reached
approximate 98% after three iterations.

Figure 7 gives the results when 10 iterations are
completed for the three deployment schemes. We
observe that the performance of DSSA gets closer to
our FLSs after 10 iterations. Both FLSs and DSSA
can dramatically increase the network coverage in the
low density network. Figures 6 and 7 also indicates
that instead of deploying large amount of sensors, the
desired field coverage could be achieved with fewer
sensors. Comparing Figures 6 and 7, we noticed that
our FLSs increases the network coverage faster than
DSSA in terms of iteration times.

Figures 8–10 are the real pictures of 20 sensors
from random deployment, after implementing FLS
and DSSA respectively. Both FLS and DSSA can
spread the densely deployed sensors but the deploy-
ment after using FLS demonstrates more uniformity
than the one using DSSA.

We then simulated two cases when 30 sensor
nodes and 60 sensor nodes are deployed respectively.
Network coverage according to these two cases are
presented in Figurs 11 and 12.

move direct ion v

X(v)

Y(v)

Rc
sensori

neighbor 2

neighbor 1

not a neighbor
of sensori

Rc: communication range

Fig. 5. Example of next step move direction for sensor having two

neighbors.
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It is fairly clear in Figures 11 and 12 that our
FLSs increase the network coverage much faster than
the DSSA. For instance, when 30 sensor nodes were
deployed, our FLSs boost the network coverage from
initial 93% to around 98.5% in only 1 iteration
whereas the DSSA takes 6 iterations to reach the
same coverage.

The average distance traveled by each sensor
node is also important in energy saving problem. For
energy constrained wireless sensor nodes, less travel
distance leads to less energy consumption. Our goal is
to adjust sensors� positions appropriately such that
the maximum coverage is achieved with minimum

energy dissipation in deployment. We calculated the
average distance traveled by each sensor node for our
FLS and compared it against the DSSA as both reach
the same network coverage. Results in Figure 13
indicate that for the FLS scheme, each sensor node
travels less average distance than that in DSSA.
Furthermore, in FLS scheme, the average travel
distance by each node varies little when the number
of sensors changes which implies that the energy
consumed in deployment is nearly independent of
network density.
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Fig. 7. Coverage vs. number of sensors deployed (after 10 itera-

tions, Rc = 100 m).
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Fig. 10. Deployment with 20 sensors after implementing DSSA
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In wireless sensor networks, the radio link
performance is usually limited by interference rather
than noise, therefore, the probability of outage due to
co-channel interference is of primary concern. Mea-
surements [16] have shown that at any value of di,j
(the Euclidean distance between sensor i and sensor
j), the path loss PLðdi;jÞ is random and distributed
log-normally (normal in dB) about the mean distance
dependent value. That is:

PLðdi;jÞ½dB� ¼PLðdi;jÞ þ Xr ¼ PLðd0Þ
þ 10n log

di;j
d0

� �
þ Xr

ð7Þ

and

Prðdi;jÞ½dBm� ¼ Pt½dBm� � PLðdi;jÞ½dB� ð8Þ

where Xr is a zero-mean Gaussian distribution ran-
dom variable (in dB) with standard deviation r (also
in dB).

The log-normal distribution describes the ran-
dom shadowing effects on the propagation path which
implies that measured signal levels at certain distance
have a Gaussian (normal) distribution about the
distance-dependent mean and standard deviation r.
Since PLðdi;jÞ follows normal distribution, so is
Prðdi;jÞ, and the Q function may be used to determine
the probability that the received signal level will
exceed (or fall below) a particular level.

The probability that the received signal level will
exceed a certain value c can be calculated from the
cumulative density function as

Pr½Prðdi;jÞ>c� ¼ Q
c� Prðdi;jÞ

r

� �
ð9Þ

For sensor i with N neighbors, if sensor i acts as the
destination node during one communication, the
signal to interference ratio (SIR) is represented as:

SIRðiÞ ¼ Prðdi;jÞPN
k¼1 Prðdi;kÞ

; k 6¼ j ð10Þ

The denominator denoting the effect of co-channel
interference is a sum of N)1 log-normal signals.
Evaluating the outage probability requires the prob-
ability distribution of the interference power. There is
no known exact expression for the probability distri-
bution for the sum of log-normal random variables,
but various authors have derived several approaches
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which approximate the sum of log-normal random
variables by another log-normal random variable.

In this paper, we used Fenton–Wilkinson
method [17]. The co-channel interference can now
be approximated by one log-normal random variable.
SIR(in dB) as a result follows log-normal distribution
as well. We expatiate the Fenton–Wilkinson method
in the Appendix. Results of outage probability are
presented in Figure 14.

Observe Figure 14, the FLSs scheme successfully
reduced the outage probability by nearly 15% com-
paring to DSSA when the number of sensors is 60,
which implies a higher probability that the received
signal level will exceed the SIR threshold using our
FLSs scheme. The DSSA did not perform well
considering the outage probability because it did
not take the outage probability into performance
evaluation [9].

We have introduced earlier that DSSA stops a
sensor�s movement by two criteria: stable status limit
(Slim) and oscillation limit (Olim). Ref. [9] shows that
it takes more than 10 times iteration to termination.
Our fuzzy approach gains a distinct advantage over
DSSA by converging in around three iterations. Thus
stop criteria is not required in our fuzzy approach.
These facts indicate that our FLS scheme is much
faster and simpler to implement comparing to DSSA
and more significantly, the FLS scheme maximizes
the network coverage with less energy consumption
in deployment.

5. CONCLUSIONS

In this paper, we proposed a sensor deployment
strategy based on FLS. Our approach has a great
advantage to deal with the uncertainty in distributed
sensor deployment which is particularly useful when
emergency rescue or redeployment over hostile situ-
ation is needed. We believe that in an energy
constrained wireless sensor network, fast and efficient
deployment strategy is a necessity to save energy and
extend network lifetime. Our FLSs scheme is capable
to model all distributed sensor deployment with a
FLS. The network coverage and quality of commu-
nication in term of outage probability are greatly
improved as a result. Moreover, the FLSs scheme
brings the whole network to a stable and optimal
deployment very soon which will significantly reduce
the energy consumption. Our future work will focus
on modeling the random deployment with some
existing pattern so that the energy consumption can
be further studied in the deployment problem.
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Appendix Multiple Log-Normal Interferers Consider
the sum of NI log-normal random variables

I ¼
XNI

k¼1
Xk ¼

XNI

k¼1
10XkðdBmÞ=10 ð11Þ

where the XkðdBmÞ areGaussian random variables with
mean lXkðdBmÞ

and variance r2
Xk
, and the Xk ¼

10XkðdBmÞ=10 are the log-normal random variables.
Unfortunately, there is no known closed form expres-
sion for the probability density function (pdf) of the
sum of multiple ( NI � 2) log-normal random vari-
ables. However, there is a general consensus that the
sum of independent log-normal random variables can
be approximated by another log-normal random
variablewithappropriately chosenparameters.That is,

I ¼
XNI

k¼1
10XkðdBmÞ=10 � 10ZðdBmÞ=10 ¼ Î ð12Þ

where ZðdBmÞ is a Gaussian random variable with
mean lZðdBmÞ and variance r2

Z. The problem is to
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determine lZðdBmÞ and variance r2
Z in terms of the

lXkðdBmÞ
and variance r2

Xk
, k ¼ 1; . . . ;NI. Several

methods have been suggested in the literature to solve
this problem including those by Fenton, Schwartz
and Yen, and Farley. Each of these methods provides
varying degrees of accuracy over specified ranges of
the shadow standard deviation rX, the sum I, and the
number of interferes NI.

Fenton–Wilkinson Method With the Fenton–Wilkin-
son method, the mean lZðdBmÞ and variance r2

Z of
ZðdBmÞ are obtained by matching the first two
moments of the sum I with the first two moments
of the approximation Î. To derive the appropriate
moments, it is convenient to use natural logarithms.
We write

Xk ¼ 10XkðdBmÞ=10 ¼ e�XkðdBmÞ ¼ eX̂k ð13Þ

where � ¼ ðln 10Þ=10 ¼ 0:23026 and X̂k ¼ �XkðdBmÞ.
Note that lX̂k

¼ �lXkðdBmÞ
and r2

X̂k
¼ �2r2

Xk
. The nth

moment of the log-normal random variable Xk can
be obtained from the moment generating function of
the Gaussian random variables X̂k as

E½Xn
k� ¼ E½enX̂k � ¼ e

nlX̂k
þð1=2Þn2r2

X̂k ð14Þ

To find the appropriate moments for the log-normal
approximation we can use (14) and equate the first
two moments on both sides of the equation

I ¼
XNI

k¼1
eX̂k � eẐ ¼ Î ð15Þ

where Ẑ ¼ �ZðdBmÞ. For example, suppose that X̂k,
k ¼ 1; . . . ;NI have mean lX̂k

, k ¼ 1; . . .NI and
identical variances r2

X̂
. Identical variances are often

assumed because the standard deviation of log-
normal shadowing is largely independent of the
radio path length. Equating the means on both
sides of (15)

lI ¼ E½I� ¼
XNI

k¼1
E½eX̂k � ¼ E½eẐ� ¼ E½Î� ¼ lÎ ð16Þ

gives the result

XNI

k¼1
e
lX̂k

 !
e
ð1=2Þr2

X̂ ¼ elẐþð1=2Þr2

Ẑ ð17Þ

Likewise, we can equate the variances on both sides
of (15) under the assumption that the X̂k,
k ¼ 1; . . . ;NI are independent

r2
I ¼ E½I2� � l2

I ¼ E½Î2� ¼ r2
Î

ð18Þ

giving the result

XNI

k¼1
e
2lX̂k

 !
e
r2

X̂ðer2

X̂ � 1Þ ¼ e2lẐ er2

Ẑðer2

Ẑ � 1Þ ð19Þ

By squaring each side of (17) and dividing each side
of resulting equation by the respective side of (19) We
can solve for r2

Ẑ
in terms of the known values of lX̂k

,
k ¼ 1; . . . ;NI and r2

X̂
. Afterwards, lẐ can be

obtained from (17). This procedure yields the follow-
ing solution:

lẐ ¼
r2

X̂
� r2

Ẑ

2
þ ln

XNI

k¼1
e
lX̂k

 !
ð20Þ

r2
Ẑ
¼ ln ðer2

X̂ � 1Þ
PNI

k¼1 e
2lX̂k

ð
PNI

k¼1 e
lX̂k Þ2

þ 1

 !
ð21Þ

Finally, lZðdBmÞ ¼ ��1lẐ and r2
Z ¼ ��2r2

Ẑ
.

The accuracy of this log-normal approximation can
be measured in terms of how accurately the first two
moments of IðdBÞ ¼ 10 log10 I are estimated, and how
well the cumulative distribution function (cdf) of
IðdBÞ is described by a Gaussian cdf. In problems
relating to the co-channel interference outage in
cellular radio systems, we are usually interested in the
tails of both the complementary distribution function
(cdfc) FC

I ¼ PðI � xÞ and the cdf FIðxÞ ¼ 1� FC
I ¼

PðI<xÞ. In this case, we are interested in the accuracy
of the approximation

FIðxÞ � PðeẐ � xÞ ¼ Q
ln x� lẐ

rẐ

� �
ð22Þ

for large and small values of x. It will be shown later that
the Fenton–Wilkinson method can approximate the tails
of the cdf and cdfc functions with good accuracy.
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Abstract

In this paper, we utilize clustering to organize wireless sensors into an energy-efficient hierarchy. We

propose a Medium-contention based Energy-efficient DIstributed Clustering (MEDIC) scheme, through

which sensors self-organize themselves into energy-efficient clusters by bidding for cluster headship. This

scheme is based on a new criterion that can be used by each sensor node to make a distributed decision

on whether electing to be a cluster head or a non-head member, which is a fully distributed approach.

Although MEDIC uses only local information, it achieves better performance in terms of effective

lifetime and its Data/Energy Ratio is 25% higher than native LEACH (Low-Energy Adaptive Clustering

Hierarchy), which relies on other routing algorithms to access global information. A complementary

exponential data correlation model is also introduced to simulate different data aggregation effect.

Index Terms

Wireless sensor networks, energy-aware systems, clustering, distributed applications

I. INTRODUCTION

A wireless sensor network (WSN) can be thought of as anad hoc network consisting of

sensors linked by a wireless medium to perform distributed sensing tasks. Thanks to recent
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advances in semiconductor technology, the sensors nodes can be made small in size and cheap

for mass production. Due to their low-power antenna and limited energy reserves in form of

chemical battery, the sensor nodes can communicate with each other in a short range and work

for a relatively short duration.

WSNs share many communication technologies withad hocnetworks, but there are some vital

differences such as dense deployment and energy constraint [1], thus the protocols developed

for traditional wireless ad hoc networks are not necessarily well suited to the unique features

of WSNs. When a wireless sensor may have to operate for a relatively long duration on a tiny

battery, energy efficiency becomes a major concern.

A variety of “power-aware” routing protocols have been proposed to address this problem. In

one school of thoughts [2]–[4], the traditional Shortest Path First strategy is replaced by Least

Energy First routing, i.e., a multihop route is preferred to a single-hop one if only multiple short-

distance relays cost less energy than a single long-distance transmission. For example, “Minimum

Transmission Energy”(MTE) routing [3], [4] was proposed in place of traditional “minimum hops

routing”. Another school of thoughts is that nodes are clustered so that a hierarchy is formed

[5]–[7]. Based on the observations on cellular networks [8], it would be advisable to partition

nodes into clusters for the reasons such as spatial reuse, less update cost, less routing information

and less data transmission.

Another dispute in clustering research is whether a cluster head be elected within each cluster.

Some researchers [6], [7], [9] argue that it is unreasonable to have a cluster head because

every node has similar energy constraint and the cluster head will consume energy much faster.

Their methodology breaks the information exchange into two parts; cluster members proactively

perform the intracluster exchange, and intercluster information exchange is achieved by demand-

based operations. This approach does have some advantage when the traffic is mostly within the

cluster, however, when the major traffic in WSN is directed from sensor nodes to the base station,

i.e., of intercluster type, headless structure suffers from cumbersome intercluster information

exchange.

On the other hand, the extra burden of cluster head can be mitigated by rotating the headship

among the members. The rotation can also take advantage of the relaxation effect [10], which

indicates frequently reducing the current drawn from the battery enables the battery to recover a

portion of its lost capacity and hence lengthens the battery lifetime. In addition, the cluster head

2
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can perform data fusion and reduce the data sent back to the base station. LEACH (Low-Energy

Adaptive Clustering Hierarchy) [11], an example of the latter school, can extend network lifetime

by an order of magnitude compared with general-purpose multihop approaches. In conclusion,

the characteristics of WSN prefer hierarchical structure with cluster heads.

However, the cluster formation in LEACH is based on global information. To access such

information, other routing schemes are required. In this sense, LEACH is only a semi-distributed

protocol for WSN. Another problem with LEACH is the random head election that cannot guar-

antee that the desired number of cluster heads be elected or the elected heads evenly positioned. In

this paper, we are concerned to optimize the cluster formation using only local information. The

intuition behind the proposed Medium-contention based Energy-efficient DIstributed Clustering

(MEDIC) is using medium contention to keep the cluster size within an ideal range. By exploiting

medium contention to simulate an auction for the cluster headship, we also eliminate the need

for location information.

The problems of LEACH are also addressed by other researchers. HEED [12] corrects the

problem that no or not enough cluster heads are elected by doubling the probability of electing

to be a cluster head for those nodes that are not covered by any cluster heads. In [13], Qin

and Zimmermann proposed a voting-based clustering algorithm (VCA) for energy-efficient data

dissemination in quasi-stationary sensor networks. Their approach lets sensors vote for their

neighbors to elect suitable cluster heads. Connectivity based k-hop clustering [14] proposed to

combine two known approaches into a single clustering algorithm which considers connectivity

as a primary criterion and lower ID as secondary criterion for selecting cluster heads. Their

clustering goal is to minimize the number of clusters, which results in dominating sets of smaller

sizes (this is important for applications in broadcasting and Bluetooth formation). Bandyopadhyay

and Coyle in [15] extend clustering to multiple levels, generating a hierarchy of clusterheads

and observed that the energy savings increase with the number of levels in the hierarchy. They

also used stochastic geometry to derive solutions for the values of parameters of our algorithm

that minimize the total energy spent in the network when all sensors report data through the

cluster heads to the processing center. Weighted Clustering Algorithm (WCA) [16] took into

consideration the ideal degree, transmission power, mobility and battery power of a mobile node

and tried to keep the number of nodes in a cluster around a pre-defined threshold to facilitate

the optimal operation of the medium access control (MAC) protocol, The on-demand execution

3

258 of 816



of WCA aimed to maintain the stability of the network, thus lowering the computation and

communication costs associated with it. In [17], Two-Phase Clustering (TPC) partitions the

network into clusters in phase I, each with a cluster head, forming a direct link between cluster

member and cluster head. In phase II, each cluster member searches for a neighbor closer

than the cluster head within the cluster to set up an energy-saving data relay link. The sensors

use either the direct link or the data relay link for their sensed data forwarding depending on

the requirements specified by the users or applications. Other work on clustering also tries to

distribute the clustering formation [18], [19]. Our approach is independent and orthogonal to

these advances in clustering and thus may be used to further improve the energy efficiency.

This paper builds on the work described in [20] by giving a detailed description and analysis

of Medium-contention based Energy-efficient DIstributed Clustering (MEDIC). The rest of this

paper is organized as follows. Section II reviews LEACH and wireless medium access. Section

IV-A introduces the data correlation model that our research is based on. In section IV, we make

data-centric analysis of energy consumption in WSN and propose a new criterion that MEDIC

bases the self-electing decision on. MEDIC is described in Section V and simulations are given

in Section VI. Section VII concludes this paper.

II. RELATED WORK

In this section, we provide some preliminaries needed for further discussion.

A. LEACH

LEACH uses CDMA-TDMA hybrid communication scheme. Each cluster has its own Spread

Spectrum code so that the interference between clusters is minimized. For intracluster communi-

cations, TDMA slots are assigned for each member to minimize media contention. The operation

of LEACH is divided into rounds. At the beginning of each round, cluster heads are elected and

other nodes join them as members so thatN nodes are partitioned intoc clusters. When a cluster

is formed, the cluster head creates and broadcasts a time schedule to its members. As shown

in Fig.1, each member is assigned a time slot per frame to send its data to its cluster head,

and then the cluster head performs data aggregation and sends the resulting data back to the

base station. Compared with multihop routing schemes, LEACH shows an outstanding energy

efficiency, which is referred to as clustering energy gain in the following.

4
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B. Review of Wireless Medium Access

In this paper, we consider a generic MAC that is compatible with the basic access mechanism

described in 802.11 DCF [21]. As illustrated in Fig. 3, after the channel is sensed idle for

greater than or equal to a DIFS (Distributed InterFrame Spacing) period, the transmitting node

generates a random backoff timer chosen uniformly from the range[0, w − 1], wherew is the

size of contention window. In a binary exponential backoff scheme, the value ofw is reset to

CWmin after each successful transmission, and doubled after each unsuccessful transmission,

up to CWmax (maximum contention window). The backoff timer is decremented as long as

the channel is sensed idle, stopped when a transmission is detected, and reactivated when the

channel is sensed idled again for a DIFS period. After the backoff timer reaches zero, the node

starts transmission.

The collisions of packets in the contention-based MAC generally degrade channel utilization

and increase energy consumption, which motivates establishing transmission schedules to allow

nodes to communicate without collisions. In NAMA (Node Activation Multiple Access) [22]

and TRAMA (Traffic-Adaptive Medium Access protocol) [23], a distributed election scheme is

used to determine which node can transmit at a particular time slot. From this point of view,

LEACH is also a schedule-based scheme, in which cluster formation is a random-access period

to establish a scheduled-access period collision-free (Fig. 1).

C. Auction Theory

Auctions are heavily studied as a market clearing mechanism to equate demand and supply

[24]. In WSN, the cluster headship is a scarce resource, and hence, it would help to view the

process of electing a cluster head among nodes in WSNs as an auction for the headship. Auctions

can be classified according to several distinct criteria. For example, they can be classified into

open and sealed-bid auctions, based on whether all bids are publicly observable. Open auctions

can be further classified into ascending and descending price auction. The ascending auction,

also called English auction, starts at a low price and bids have to be increasing. The auction

stops when no bidder is willing to increase his bid above the highest standing bid. The bidder

with the highest bidder wins the auction and pays the highest bid. The English auction is the

best-known format of auctions, its drawback is a bidder can take a dominating strategy to win

the bid, that is, as long as his bid is higher than the second highest bid, this bidder can win the

5
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bid, even when the highest bid is still much lower than the true value of the auctioned object. As

comparison, the descending price auction, also known as Dutch auctions, starts at a high price

that continuously decreases on an automated clock. The auction ends when one of the bidders

stops the clock. This bidder wins the object and pays the price at which the clock stopped. The

aforementioned dominating strategy can’t be used in Dutch auctions, therefore, the highest bid

in the Dutch auction tends to reflect the true value of the resource. However, our interest in the

Dutch auction is for another advantage - its time efficiency. Note that in the Dutch auction, the

highest bidder always speaks first, and the auction ends right after its bid. On the other hand, the

English auction could start with a lower bid, and when this does happen, it might take several

rounds before a bidder dominates. Therefore, we design MEDIC based on the Dutch auction.

D. Radio Energy Consumption

The following model is adopted from [11] where perfect power control is assumed. To transmit

l bits over distanced, the sender’s radio expends

ETX(l, d) =




lEelec + lǫfsd
2 d < d0

lEelec + lǫmpd
4 d ≥ d0

(1)

and the receiver’s radio expends

ERX(l, d) = lEelec. (2)

Eelec is the unit energy consumed by the electronics to process one bit of message,ǫfs and

ǫmp are the amplifier factor for free-space and multi-path models, respectively, andd0 is the

reference distance to determine which model to use. The values of these communication energy

parameters are set as in Table I.

III. PROBLEMS AND MOTIVATIONS

Random election has been widely used in algorithms for wireless sensor networks for its

simplicity and convenience [11]. However, there are two fundamental drawbacks in random

election:

a. Dependence on Global Information In LEACH, each nodei elects itself to be a cluster

head at the beginning of roundr + 1(which starts at time t) with probabilityPi(t). Two

6
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ways were used to determine the self-electing probabilityPi(t) in [11]. If all nodes are

assumed to start with an equal amount of energy,Pi(t) is given by

Pi(t) =




c
N−c∗(rmod N

c
)

: Ci(t) = 1

0 : Ci(t) = 0
, (3)

wherec is the desired number of clusters andCi(t) is the indicator function determining

whether or not nodei has been a cluster head in the most recent(r mod (N/c)) rounds.

The more general estimate ofPi(t) is given by

Pi(t) = min{ Ei(t)

Etotal(t)
c, 1}, (4)

whereEi(t) is the current energy(i.e. remaining battery capacity) of nodei and

Etotal(t) =
N∑

i=1

Ei(t). (5)

Essentially,N in (3) andEtotal in (4) are global information, which is only accessible via

other routing schemes.

b. High Variation Although random decision generally strengthens the robustness by avoiding

sticking to a single choice, high variation in decision may shift the decision too far away

from the optimal range. For example, suppose (4) is used and all nodes have equal amount

of energy, ifN nodes want to electc heads among them, then the self-electing probability

for each node is

p =
c

N
(6)

Then the probability of “n heads are elected” is

Pr(n elected heads) = (N
n )pn(1 − p)(N−n) (7)

The distribution of the number of elected heads is listed in Table II. Obviously, too few

(Fig. 2(c)) and too many (Fig. 2(d)) elected heads would damage the energy efficiency.

Moreover, in the case of “no elected head” whose probability listed in row 1, all the nodes

have to communicate directly with the base station, in which case all the clustering energy

gain is lost. When the number of elected heads is too few, for example, only one head is

elected, the head may be exhausted by the tremendous data sent to it. In such cases, the

energy efficiency is tremendously compromised.

7
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Another problem introduced by the random head selection is that the sensor locations are not

taken into consideration. Obviously, the even layout of heads would favor energy efficiency

(Fig. 2(a)). When heads are randomly selected as in LEACH, elected heads sometimes

clump together as shown in Fig. 2(b), which leads to unnecessary energy waste.

IV. OPTIMAL CLUSTERING

In this section, we first introduce a data correlation model, and then based on this model, make

data-centric analysis of energy consumption in WSN. A new criterion is proposed for clustering,

which is the theoretical basis of Medium-contention based Energy-efficient DIstributed Clustering

(MEDIC).

A. Data Correlation Model

The data collected by neighboring sensors have a lot of redundancy, thus, [11] assumes perfect

data correlation that all individual signals from members of the same cluster can be combined into

a single representative signal. Nevertheless, this assumption cannot hold when the cluster size

increases to some extent. Therefore, we develop a complementary exponential data correlation

model based on the observations in distributed data compression [25], [26].

Considering the phenomenon of interest as a random process, the correlation between data

collected by two sensors is generally a decreasing function of the distancer between them.

After the data aggregation removes most of the redundancy, the residue can be assumed to be an

increasing function ofr. Based on the above observation, the data aggregation effect is modeled

as below.

Suppose there areMk non-head members in clusterk (k = 1, 2, 3, ..., c), the ith member

(i = 1, 2, 3, ..., Mk) collects l bits and sends them back to its headk at distancerki, the head

expends2lEDA Joules on the data aggregation of the2l bits (l bits collected by itself and another

l bits by its ith member), whereEDA is set as5nJ/bit as in [11] and listed in Table I. The

resulting data is assumed ofl(1 + ηki) bits, whereηki is data aggregation residue ratio and

assumed to be complementary exponential, specifically,

ηki = 1 − e−αrki, 0 < α < 1, (8)

where α is a small positive real number whose magnitude depends on specific phenomenon

of interest. For example, the light, acoustic, seismic and thermal signals often show a strong

8
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correlation at short distance, and thus,α will have smaller values for such data. Sinceη is a

monotonically decreasing function ofα andr, η approaches zero for smallerα andr. This model

can approach the perfect-data-correlation assumption in [11] by decreasingα or approach the

no-data-aggregation assumption in [3], [4] by increasingα, thus, different scenarios can easily

be set up by varyingα.

B. Problem Formulation

Clustering has been widely used in pattern recognition, and we use it to obtain the energy-

efficient organization for WSN. From the data-centric view, the data collected by a node can be

sent back directly to the base station or relayed by a cluster head. The first case occurs if this

node is a cluster head; the data collected by headk is data-aggregated (with the data collected

by its members) and sent back to the base station. Thus, the energy cost for each bit of data

collected by headk is

JCH(k) = EDA + Eelec + ǫmpd
4
k, (9)

wheredk is the distance between headk and the base station.

For the second case, consider non-head memberki, the ith sensor in clusterk, with distance

rki to its cluster head, memberki sends its data to headk, and then headk performs data

aggregation on the data and sends the resulting data to the base station. Thus, the energy cost

for each bit of data collected by non-head memberki is

JCM(ki) = Eelec + ǫfsr
2
ki + Eelec + EDA + η(rki)(Eelec + ǫmpd

4
k), (10)

whereη(rki) is the data aggregation residue ratio introduced in Section IV-A.

Considering allc clusters, the overall cost is

Jtotal =

c∑
k=1

{JCH(k) +

Mk∑
i=1

JCM(ki)}, (11)

whereMk is the number of non-head members in clusterk.

Taking E[Jtotal] the expected value of the overall energy cost as the objective function, the

original problem is translated into an objective function clustering. If a central control scheme

is possible, an iterative algorithm can be run at the base station to minimizedE[Jtotal]. For

example, Fuzzy c-Means is utilized in [27] to minimize a Euclidean-distance-based functional

representing the energy cost in Wireless Personal Area Networks. However, since WSNs are

9
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working in ad hoc mode, clustering decision must be distributed to each sensor node. Thus, our

goal is using only local information to achieve energy-efficient clustering.

C. Influence Range

When a node finds no cluster head around, it should naturally elect to be a cluster head.

However, if a node is close to a cluster head, there could be some energy gain or loss if it

joins that cluster. In the following, we will discuss how a node decided to be a cluster head

when it finds a cluster head in its communication range. The energy gain diminishes when the

distance between the non-head member and the head increases. Consequently, the energy gain

approaches zero at some critical distance, termed as influence range. To determine the influence

range, consider a nodei with a headk at distancer. The node could choose to be a non-head

member or a head, which would consequently costJCM or JCH as in (10) and (9). Naturally,

the decision should be based on the comparison ofJCM andJCH as

JCM

CH

≷
CM

JCH , (12)

i.e., the decision rule for each sensor is:

Node i elects to be




a non-head member ifJCM < JCH

a cluster head ifJCM > JCH

(13)

We call this criterion as local energy efficiency criterion, because it is based on only the local

information. Substituting (9) and (10) into (12), we obtain

Eelec + ǫfsr
2
ik + Eelec + EDA + η(rik)(Eelec + ǫmpd

4
k) (14)

CH

≷
CM

EDA + Eelec + ǫmpd
4
i .

The influence range can be obtained by equating two sides though a closed form may be

unavailable. Obviously, the cluster radiusRc has to be much smaller than the influence range

because the energy gain is so low at the outer ring that a new cluster be formed. Although this

criterion is too complex to be used in real applications, it promotes usingRc instead ofc as

the clustering objective parameter to guide the election. Denote the areas occupied by the whole

WSN and the cluster bySN andSc respectively,

c ≈ SN

Sc
. (15)

10
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AssumeSN and Sc are both circular,Rc is related toc by

c =
πR2

πR2
c

= (
R

Rc
)2, (16)

whereR is the radius ofSN . Although it is mathematically equivalent to partition nodes into

c clusters or to organize nodes into clusters with radiusRc, the former is definitely a global

approach, which leads to dependence on the global information. Thus, the latter is more suitable

for a distributed algorithm.

D. Optimal Cluster Size

As indicated in (16), it is equivalent to determinec or Rc. Here, we try to analytically determine

the optimal value ofc using the introduced models. LEACH can only determine a rough range

copt ∈ [1, 6] for a similar 100-node network [11], while our analysis predicts the optimal value

of Rc in simulation with satisfying accuracy.

The typical scenario is that N nodes are distributed uniformly in a circular region with radius

R. There arec clusters with one cluster head andn− 1 non-head members within each cluster.

n is the average number of cluster members and related toc by

n ≈ N/c. (17)

Based on (11), the average total energy cost can be approximated by

J̄total = c(J̄CH + (n − 1)J̄CM)

= cJ̄CH + (N − c)J̄CM (18)

where J̄CH and J̄CM are the average energy cost for the cluster head and non-head member

respectively.

Following (9) and (10),

J̄CH = EDA + Eelec + ǫmpE[d4], (19)

J̄CM = Eelec + ǫfsE[r2] + Eelec + EDA + E[η(r)(Eelec + ǫmpd
4)]. (20)

Since all nodes are independently deployed,r andd are independent, thus, (20) can be written

as

J̄CM = Eelec + ǫfsE[r2] + Eelec + EDA + E[η(r)](Eelec + ǫmpE[d4]). (21)

11
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We estimate the expected values in (19) and (21) as follows. Assuming the cluster head is at

the center of mass of the cluster,

E[r2] =

∫ ∫
Sc

r2ρc(r, θ)rdrdθ

=

∫ 2π

0

∫ Rc

0

r2ρc(r, θ)rdrdθ

(22)

where ρc(r, θ) is the node distribution density. Since the nodes are assumed to be uniformly

distributed,ρc(r, θ) is a constant given by

ρc = 1/πR2
c = c/(πR2). (23)

Substituting (23) and (16) into (22),

E[r2] =
πρcR

4
c

2

=
R2

2c
(24)

Similarly,

E[η(r)] =

∫ ∫
Sc

(1 − e−αr)ρc(r, θ)rdrdθ

=
c

πR2

∫ 2π

0

∫ Rc

0

(1 − e−αr)rdrdθ

=
2c

R2

∫ Rc

0

(1 − e−αr)rdr (25)

= 1 +
2c

α2R2
(e

−
αR
√

c (
αR√

c
+ 1) − 1) (26)

E[d4] =

∫ ∫
SN

|r − rBS|4ρN(r, θ)rdrdθ

=
1

πR2

∫ 2π

0

∫ R

0

(r2 + r2
BS − 2rrBScos(θ − θBS))2rdrdθ (27)

SinceE[d4] is a function ofR and irrelevant toc, we keep it in the further derivation.

The optimal value ofc can be obtained by setting∂J̄total

∂c
to zero.

∂J̄total

∂c
= J̄CH − J̄CM + (N − c)

∂J̄CM

∂c

= ǫmpE[d4] − Eelec − ǫfs
R2

2c
− E[η(r)](Eelec + ǫmpE[d4])

+(N − c)(−ǫfsR
2

2c2
+

∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])), (28)
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∂2J̄total

∂c2
=

ǫfsR
2

2c2
− ∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])

−(−ǫfsR
2

2c2
+

∂E[η(r)]

∂c
(Eelec + ǫmpE[d4]))

+(N − c)(
ǫfsR

2

c3
+

∂2E[η(r)]

∂c2
(Eelec + ǫmpE[d4]))

=
ǫfsR

2

c2
+ (N − c)

ǫfsR
2

c3

−2
∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])

+(N − c)
∂2E[η(r)]

∂c2
(Eelec + ǫmpE[d4]) (29)

where ∂E[η(r)]
∂c

, ∂2E[η(r)]
∂c2

can be computed based on (26).

∂E[η(r)]

∂c
=

2

α2R2
(e

−αR
√

c (
αR√

c
+ 1) − 1) +

e
−

αR
√

c

c
(30)

∂2E[η(r)]

∂c2
=

αRe
−αR
√

c

2c5/2
(31)

Since it is impossible to solve (28) algebraically, we turn to the numerical solution. For example,

the base station is located at(rBS, θBS) = (125, 0) andN = 100, R = 50m in our experiments,

we can evaluate (27) as

E[d4] = 5.8997e + 008. (32)

In Fig. 4(a)(b), we plot∂J̄total

∂c
over c for α = 0.001 andα = 0.05 respectively. The corresponding

copt can be easily obtained by setting∂J̄total

∂c
= 0.

copt =

{
1.6569, for α = 0.001

20.2600, for α = 0.05
(33)

Note that ∂2J̄total

∂c2
|copt=1.6569= 2.98E − 7 > 0 and ∂2J̄total

∂c2
|copt=20.26= 2.51E − 9 > 0, which

indicatesJ̄total is minimized at thesecopt’s. According to (16), the correspondingRc is

Rc =

{
38m, for α = 0.001

11m, for α = 0.05
(34)

We are also interested in the relation ofN to copt. In Fig. 5(a)(b), we plotcopt over N for

α = 0.001 andα = 0.05 respectively. These figures show thatcopt is an increasing function of

N , which indicates the clustering objective parameter (c or Rc) should be adjusted adaptively if

N varies.
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V. M EDIUM -CONTENTION BASED ENERGY-EFFICIENT DISTRIBUTED CLUSTERING

Medium-contention based Energy-efficient DIstributed Clustering (MEDIC) is designed to

replace the cluster formation occurring at the beginning of each round in LEACH. We design

MEDIC based on the Dutch auction for its time efficiency. Note that in the Dutch auction, the

highest bidder always speaks first, and the auction ends right after its bid. On the other hand, the

English auction could start with a lower bid, and when this does happen, it might take several

rounds before a bidder dominates.

In MEDIC, there is no global broadcast. As shown in Fig. 6, each node firstly broadcasts its

vital information at the maximum radio power level so that the knowledge is spread as widely

as possible. Such “maximum-power” broadcasts are not frequent in MEDIC, which helps saving

energy. The vital information may include nodes’ energy, location, etc., though only energy

information is needed by MEDIC. Then, each node counts its neighbors and broadcasts the

number of its neighbors at an adjusted power level corresponding to the cluster radiusRc. The

cluster radiusRc is an important system parameter for energy efficiency. As shown in Section IV-

D, given a specific type of application,Rc is mainly determined by the node density. In MEDIC,

each node should choose an appropriateRc according the neighbor count in its transmission

range, which is a good estimator of the local density.

If a node’s headship potentialqualifiesas a head compared to its neighbors’, it will try to claim

the headship by broadcasting locally, which can be viewed as placing a bid for the headship. A

node’s “neighbors” are defined as the nearby nodes within distanceRc from that node. Due to

the possible contention for the headship, such bids could fail, which is indicated by the collision

of “headship claims”. Using the modified MAC described below, the bidders will contend with

each other until a node with satisfactory potential wins. By doing so, the head-to-be expels

other possible heads in its neighborhood, and in consequence, the clusters with desired size are

formed.

The headship potential is an important parameter, which replaces the self-electing probability

used in native LEACH. As discussed in [11], the node’s energy is important to determine its

potential because the headship can be rotated among nodes by assigning more potential to

the nodes with higher energy. In addition, we propose taking the number of neighbors into

consideration, because the energy gain is prominent only in the neighborhood of the head as
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shown in Section IV-C and thus it is energy-efficient to let the node with more neighbors win

the headship.

Based on these considerations, the qualification conditions are set as below. For any node, let

N denote the set of its neighbors,E(i) and B(i) be the energy and the number of neighbors

of the ith neighbor respectively,i ∈ N . The thresholds are set as the linear combination of the

maximum and mean value of corresponding parameters as in (35) and (36) so that the thresholds

are adapted to the current distribution of parameters and take values between the maximum and

mean.

ETh
△
= γ1max

i∈N
E(i) + (1 − γ1)mean

i∈N
E(i) (35)

BTh
△
= γ2max

i∈N
B(i) + (1 − γ2)mean

i∈N
B(i) (36)

The conditions can be relaxed by decreasingγ1, γ2, whereγ1, γ2 ∈ [0, 1]. Since there is no closed-

form objective function, it is difficult to determine optimalγ1, γ2 analytically. Fortunately, our

experiments show that the performance is not sensitive to the setting ofγ1, γ2. Thus, we simply

choose a smaller value forγ1 and a larger value forγ2 asγ1 = 0, γ2 = 0.8, because we want

to emphasize the position condition in order to achieve energy efficiency and relax the energy

condition in order to accept more nodes into the headship auction.

Depending on their conditions, the nodes classify themselves into three categories shown in

Fig. 7. Each node can classify itself into one of the three categories by comparing itself to its

neighbors. The nodes meeting both conditions consider themselves in Category-A, meeting one

of the conditions indicates Category-B, and Category-C for the rest which fail both conditions.

Note thatDIFSB = DIFSA + CWmin in Fig. 8, Category-B bidders have to waitCWmin

longer than Category-A to ascertain there are no Category-A bidders in their neighborhoods.

That is, no matter which slot Category-A nodes randomly choose to send out the claim, there is

no chance for a Category-B node to access the channel if there is one Category-A node in its

neighborhood. The extreme case that no heads are elected is avoided by permitting Category-B

bidders into the headship auction because it is impossible that there are only Category-C nodes

in the neighborhood.

Once a node successfully sends out the “headship claim”, its neighbors must join it by sending

“Request to join”. Since these requests can be eavesdropped by their neighbors, their neighbors

can correspondingly correct their numbers of unclustered neighbors. If a node finds all its
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neighbors are clustered, it can elect to be a cluster head by sending out a “headship claim”.

Those nodes outside the neighborhood of existing cluster heads cannot join any clusters. When

the public channel is idle again, which indicates there is no node in its neighborhood trying to

join existing clusters, another round of auction will begin until all nodes are clustered.

VI. SIMULATIONS

In this section, we compare the performance of MEDIC and LEACH using computer simula-

tions. 100 nodes with 2J initial energy were evenly distributed in a circular region with diameter

100m, and the base station was located at(125m, 0). We ran LEACH and MEDIC over 1000

random network topologies for eachc or Rc and took average of collected data. Since the steady

state is much longer than the cluster formation phase, the time and energy used in the cluster

formation is generally two orders of magnitude less than in the steady state, whose effect is safe

to neglect.

A. MEDIC vs. LEACH

In this case, MEDIC is compared to native LEACH for nearly perfect data correlation (α =

0.001). Fig.9(a)(b) plot the received data in the base station over time and the energy dissipated,

respectively, and Fig.9(c)(d) plot the number of survival nodes whose batteries are not completely

exhausted over time and per given amount of received data in the base station, respectively. The

results show that themaximum transportation, the total data delivered back to the base station

during a simulation, was maximized atc ≈ 7 for LEACH and Rc ≈ 40m for MEDIC (See

Fig. 12 and Fig. 13).

At first glance, LEACH seems have longer lifetime than MEDIC as shown in Fig. 9(a).

However, a further study of Fig. 10 reveals that LEACH cannot guarantee the data delivery

during the later phase. The reason is that the ill result of random election (e.g. too few heads are

elected) often puts tremendous burden on the heads whose energy is already low during the later

phase. After the heads are exhausted quickly, the cluster members remain idle during the rest

of that round, which seems to extend the lifetime. Therefore, we define the effective lifetime as

when the data loss remains below 10 percent. Fig. 10 shows that MEDIC extends the effective

lifetime by about3200s.
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Another good measurement of energy efficiency is the ratio of data transportation over energy

consumption, termed as Data/Energy Ratio (DER), which is indicated by the slope in Fig. 9(b).

Higher slope implies the corresponding scheme can transport more data with given amount of

energy dissipation. Fig. 9(b) shows MEDIC increased DER by about 25%. The energy efficiency

improvement is achieved by successfully electing required number of cluster heads and evenly

distributing them among the whole sensor networks. In MEDIC, once a node successfully wins

the bid for cluster headship, it also elimininate all its neighbor’s possibility to be a cluster head.

And the nodes outside its influence range still have chance to be a cluster head. In this way,

MEDIC avoids electing too many or too few cluster heads in the simulation, and the elected

cluster heads are evenly laid out. The mean and std of cluster heads are plotted in Fig.11. The

higher variation in the head election of LEACH indicates the clustering in the LEACH led to

worse result, which is the the main reason for its damaged energy efficency.

The analysis in section IV-D indicates thatRc should be adapted to the decreasing node density.

Since the death of nodes decreases the node density, we expect the optimalRc to decrease

accordingly. However, since MEDIC remarkably extends the effective lifetime, the number of

survival nodes does not decrease visibly during most of the network lifetime. Therefore, we need

not adaptRc to keep energy efficiency.

B. OptimalRc at Varying Data Aggregation Effect

In this case, MEDIC is evaluated at differentα. We ran 1000 simulations at differentRc with

α = 0.05 to determine optimalRc. Fig.14 shows that the performance of MEDIC is optimal at

aroundRc = 10m, which is far fromRc = 40m with α = 0.001. The reason that the smaller

clusters are formed is that the influence range shrinks when the data correlation decreases. These

values ofRc agree well with the analysis in section IV-D for both values ofα. This shows the

advantage of MEDIC over original LEACH; the clusters resulting from MEDIC conform to the

energy-efficient expectation. This also shows the advantage of our data correlation model; we

can easily fit the simulation scenarios for the phenomena of interest by varyingα.

VII. CONCLUSION

The previous clustering researches often take a global approach, which is appropriate for global

optimization. However, when a distributed clustering is desired, the already-answered questions
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such as “How many clusters should the nodes be partitioned into?” have to be translated into a

distributed version, that is, ’‘What’s the appropriate cluster size?”, because it is easier for a node

to know its cluster size than the number of clusters in the whole network. In this paper, we take a

fully distributed approach to energy efficiency for WSN. Motivated by the local energy efficiency

criterion, we propose using the cluster size instead of the number of clusters as the clustering

objective parameter in clustering. Furthermore, we utilize the medium contention to implement

the headship auction to keep the cluster size within an ideal range. As shown by the simulations,

although the proposed MEDIC uses only local information, it achieves better energy efficiency

than native LEACH in terms of Data/Energy Ratio and effective lifetime. The simulations also

show that the optimal cluster radius obtained from the experiments agrees well with the analysis

of optimal clustering, which indicates the performance of our distributed clustering is close to

that of the global optimal one.
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TABLE I

COMMUNICATION ENERGY PARAMETERS

Name Value

d0 86.2m

Eelec 50nJ/bit

EDA 5nJ/bit

ǫfs 10pJ/bit/m2

ǫmp 0.0013pJ/bit/m4

TABLE II

OUTCOME OF100 NODES ELECTING5 HEADS.

n: number of elected heads Pr(n elected heads)

0 0.0059

1 0.0312

2 0.0812

3 0.1396

4 0.1781

5 0.1800

6 0.1500

7 0.1060

8 0.0649

9 0.0349

≥ 10 0.0341

21

277 of 816



L IST OF FIGURES

1 Time line showing LEACH’s frame structure. . . . . . . . . . . . . . . . .. . . . . 21

2 100 nodes elect 5 heads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 A generic MAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Plot of ∂J̄total

∂c
for N = 100, R = 50m and (rBS, θBS) = (125, 0).(a)α = 0.001.

(b)α = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Plot of copt vs. N for R = 50m and(rBS, θBS) = (125, 0).(a)α = 0.001. (b)α = 0.05. 22

6 Flow chart of a node in MEDIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Categories of bidders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 The Medium Access Control used in MEDIC. . . . . . . . . . . . . . . . . . . . . 24

9 MEDIC vs. LEACH. (a) Amount of data received at the base station over time.

(b) Amount of data received at the base station per given amount of energy. (c)

Number of survival nodes over time. (d) Number of survival nodes per amount of

data received in the base station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 MEDIC vs. LEACH. Node-to-basestation throughput over time. . . . . . . . . . . . 25

11 The elected number of heads (Average and std). . . . . . . . . . . . . . . . . . . . 25

12 Data of LEACH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

13 Data of MEDIC atα = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 Data of MEDIC atα = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

List of Figures : 1

278 of 816



Round

Set-up
(Random Access)

Steady-State
(Scheduled

Access)

Frame

...

1 2 3 5 74 6 ...

Slot

...
Time
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Fig. 2. 100 nodes elect 5 heads (Heads marked by pentagrams).(a) Five heads are elected and evenly distributed. (b) Five

heads are elected and clump in the right semicircle. (c) Only one head is elected. (d) Nine heads are elected.
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10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N

c op
t

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

N

c op
t

(a) (b)
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Abstract

Query processing has been studied extensively in traditional database systems. However, few existing methods can be
directly applied to wireless sensor database systems (WSDSs) due to their characteristics, such as decentralized nature, lim-
ited computational power, imperfect information recorded, and energy scarcity in individual sensor nodes. This paper pro-
poses a quality-guaranteed and energy-efficient (QGEE) algorithm. QGEE utilizes in-network query processing method to
task WSDSs through declarative queries, and confidence interval strategy to determine the accuracy of query answers. In
QGEE, the correlation between a query and a node is calculated by vector space model (VSM), and a query correlation
indicator (QCI) is designed to quantify the priority of becoming active for individual nodes. Given a query, the QGEE
algorithm will adaptively form an optimal query plan in terms of energy efficiency and quality awareness. This approach
can reduce disturbance from measurements with extreme error and minimize energy consumption, while providing satis-
fying service for various applications. Simulation results demonstrate that QGEE can reduce resource usage by about 50%
and frame loss rate by about 20%. Moreover, the confidence of query answers is always higher than, or equal to, the users’
pre-specified precision.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Wireless sensor database system; Query processing; Energy-efficiency; Space vector model; Imagine chain; k-Partial cover set
problem; Energy reservation; Query optimization; Multipath routing
1. Introduction

Recent developments in integrated circuit technology have allowed the construction of low-cost sensor
nodes that are generally equipped with sensing capability, wireless communication, as well as limited power
supply and memory. Embedded those devices into environment, an emerging new type of network is created:
wireless sensor network (WSN) [34]. Moreover, most of high-level tasks of WSNs, such as monitoring specific
events, collecting and processing information, are accomplished by cooperation of multiple sensor nodes.
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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WSNs are being intended for a broad range of environmental sensing applications from weather data collec-
tion to vehicle tracking to habitat monitoring [44,8].

In WSNs, the widespread deployment of sensor nodes is transforming the physical world into a computing
platform. Sensor nodes not only respond to physical signals for producing data, but also are equipped with
computing and communicating capabilities. They are thus able to store, process locally, and transfer data pro-
duced. From data storage and process point of view, a WSN can be regarded as a kind of database – distrib-
uted wireless sensor database system (WSDS). Compared with traditional database systems, WSDSs store
data within system and allow queries to be injected anywhere through query processing operators.

In a WSDS, the query execution usually starts from front-end nodes that issue queries into the system. Sen-
sor nodes are viewed as data sources that provide relevant information for query processing operators. Gen-
erally, queries in a WSDS can be classified into three categories depending on the type of data (past, present,
or future) requested:

• Historical queries
This type of query is mainly used for the analysis of historical data stored at front-end nodes. For example,
‘‘what was the temperature two hours ago in the northwest quadrant?’’

• One-time queries
This type of query gives a snapshot view of a system. For example, ‘‘what is the temperature in the north-
west quadrant?’’

• Persistent queries
This type of query is mainly used to monitor a system over a time interval with respect to some parameters.
For example, ‘‘report the temperature in the northwest quadrant for next two hours’’.

Warehousing and on-demand approaches are two conventional ways of handling queries [25]. In the ware-
housing approach, base stations collect and store data, periodically, depending on a set of predefined parameters.
There are two specific limitations for this approach: users can only query base stations, and query processing is
very expensive as it utilizes valuable resources like channel bandwidth and energy. In the on-demand way, data is
collected based on users’ requests. However the drawbacks are that the delay for queries is unacceptable for time
critical data, and the flooding of the entire system might be wasteful for one-time queries.

Lessons learned from developing network protocols for WSNs in the last couple of years show that using
traditional layered networking approach has several drawbacks in system performance and efficiency. Quite
often, significant improvements are possible for network protocols, but they require a great amount of infor-
mation to be passed along the layers of system. Although this approach, in principle, allows independence
among various protocols, it incurs significant overhead in parameter transfer. Moreover, improvements per-
formed in a specific layer can cause impairments, or even be counterproductive for other layers. Therefore,
optimization can be more effective when taking into account overall system and using all available knowledge.
In other words, cross-layer design approach is a viable approach for WSNs’ energy and quality problems.

The goal of monitoring through sensor nodes is to infer information about objects from measurements
made from remote locations. Moreover, inference processes are always less than perfect. Consequently, the
problem of uncertainty, which stands for the quality of query answer, is central to monitoring applications.
Hence, to build useful information systems, it is necessary to learn how to represent and reason with imperfect
information [43]. As a result, Motro [28] is interested in how imperfect information may be represented in a
database system. In [42] and [31], they proposed methods of dealing with the uncertainty of moving objective
databases. In [41], they presented a unified fuzzy-probabilistic framework for modelling processes of medical
diagnosis. In their work, the belief computation is related to diagnostic inference. The final conclusion of infer-
ence is the diagnosis with the greatest belief value. It is also shown how their membership functions and basic
probability assignments are estimated on the basis of experimental data.

In general, imperfect information is typically handled by attaching a number to it, which represents a sub-
jective measure of the certainty according to the observer. The way, in which the number is manipulated,
depends upon the theory that underlies the number. There are possibilistic databases [35] and probabilistic
databases [7,32,33]. Probabilistic approach has begun to be used by WSDSs to process query with limited
information [2]. In [38], they discussed how to handle aggregate operations in probabilistic databases. They
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devised a formal linear programming method, analyzed its complexity, and introduced several families of
approximation algorithm that run in polynomial time. In [12], a new semantics for database queries is intro-
duced, which supports uncertain matches and ranked results through combining probabilistic relational alge-
bras and models for belief. However, those existing works do not consider the energy constraint problem, nor
how to reason and represent the uncertainty introduced by network natures.

Most algorithms for determining query processing strategy for WSDSs are static in nature. In [3], Bodorik
proposed the aborted join last (AJL) method to substitute static mechanisms with an adaptive one that owns
low overhead and delay to decide when to correct a strategy. In AJL, the decision to correct is computation-
ally simple and, moreover, a corrective strategy is already existed when it is decided to correct. In [14], the
phases of adaptive query processing (AQP) is decoupled, and generic framework is constructed. Their work
advocated an approach based on self-monitoring algebraic operators. This approach is shown to be generic,
independent of any specific adaptation mechanism, easily implementable, and portable.

Considering energy constraint issues, some energy efficient solutions are proposed. Query processing based
on random walk technique [1] is an alternative scheme to implement failure recovery in dynamic environ-
ments. The robustness of this approach under dynamic situation follows the simplicity of processing, which
only requires the connectivity of moving neighbors. In [11] and [21], they proposed an indexing method that
supports content-based retrieval queries on a wireless data stream and a tree-structured index to increase the
energy efficiency of query processing. To reduce network traffic when accessing and manipulating data, in-net-
work query processing requires placing not only a tree of query processing operators such as filters and aggre-
gations, but also the correlation of nodes. In [4], an adaptive and decentralized algorithm is proposed. This
algorithm progressively refines the placement of query processing operators by walking through neighbors.
Thus, an initial arbitrary placement of query processing operators can be progressively refined toward an opti-
mal placement.

Existing query processing systems for WSDSs, including Directed Diffusion [19], TinyDB [24], U-DBMS [9]
and Cougar [47], provide high-level interfaces that allow users to collect and process such continuous streams.
Note that they are especially attractive as ways to efficiently implement monitoring applications without forc-
ing users to write complex, low-level codes for managing multihop network topology and acquiring samples
from sensor nodes. TinyDB, Directed Diffusion and Cougar are relatively mature research prototypes that
give some ideas on how future query processing system will function for WSDSs.

In this paper, we propose a quality-guaranteed and energy-efficient (QGEE) query processing algorithm for
distributed and heterogeneous WSDSs. In the following sections, we outline the QGEE algorithm, explain its
key features, and describe the details using a particular example of environmental temperature monitoring.
The local rules are specified to select desired sensor nodes and the strategies are stated to acquire bounded
query answers. Moreover, leveraging cross-layer designing idea, we combine the application layer, network
layer and physical layer to implement this quality-guaranteed and energy-efficient algorithm. In doing so,
we show how QGEE differs from existing query processing algorithms, and qualitatively argue that this par-
adigm offering scaling, robustness and energy efficiency benefits. We quantify some of these benefits through
detailed packet-level simulations on QGEE.

The remainder of this paper is organized as follows: Some preliminaries are provided in Sections 2; 3 for-
mulates problems we considered; Section 4 presents the QGEE algorithm; Simulation results are given in Sec-
tions 5; 6 concludes this paper.

2. Preliminaries

2.1. Vector space model

Vector space model (VSM) [10,46] is a way to represent documents through words that they contain. VSM
has been widely used in traditional information retrieval (IR) field [15,17]. Most search engines also use sim-
ilarity measures based on this model to rank Web documents. VSM creates a space in which both documents
and queries are represented by vectors. For a fixed collection of documents, an m-dimensional vector is gen-
erated for each document and query from sets of terms with associated weights. Then, a vector similarity func-
tion such as the inner product can be used to compute the similarity between a document and a query.
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In VSM, weights associated with the terms are calculated based on the following two numbers:

• term frequency, fij, the number of occurrence of term yi in document xi; and
• inverse document frequency, gi = log(N/dj), where N is the total number of documents in a collection and dj

is the number of documents containing term yi.

The similarity simvs(q,xi) between a query q and a document xi can be defined as an inner product of query
vector Q and document vector Xi:
simvsðq; xiÞ ¼ Q � X i ¼

Pm
j¼1

vj � wijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

ðv2
j Þ �
Pm
j¼1

ðw2
ijÞ

s ð1Þ
where m is the number of unique terms in a document collection. Document weight wi,j and query weight vj are
wij ¼ fijwij ¼ fijlogðN=djÞ and

vj ¼ logðN=djÞ yj is a term in q

0 otherwise:

�
ð2Þ
2.2. k-Partial set cover problem

Covering problems are widely studied in discrete optimization. Basically, these problems involve picking a
least-cost collection of sets to cover elements. Classical problems in this framework include general set cover
problem and partial covering problem. k-Partial set cover problem [13] as a partial covering problem is about
how to choose a minimum number of sets to cover at least n elements, and which k elements should be chosen.
k-Partial set cover problem can be formulated as an integer program as following:
MINIMIZE:
Xm

j¼1

cðSjÞ � xj ð3Þ

SUBJECT TO: yi þ
X

j:ti2Sj

xj P 1

Xn

i¼1

yi 6 n� k ð4Þ

xj P 0; j ¼ 1; 2; . . . ;m; and yi P 0; i ¼ 1; 2; . . . ; n;
where xi 2 {0,1} corresponds to each Sj 2 S. Iff set Sj belongs to the cover, then xj = 1. Iff set tj is not covered,
then yi = 1. ti 2 C.

3. Problem statement

As a motivation for the quality-guaranteed and energy-efficient query processing algorithm, we describe a
scenario:

• A great multitude of temperature sensor nodes are randomly deployed in an interested region. Individual
sensor nodes (or in short, nodes) are connected to other nodes in their vicinity through wireless communi-
cation interface, and use a multihop routing protocol to communicate with nodes that are spatially distant.
All nodes are interconnected to at least one gateway directly or through intermedial nodes. Gateways are in
charge of relaying data to a powered PC (front-end node) and, on the opposite direction, disseminating
queries to related nodes. Within this WSDS, each node owns equal computing and sensing capability,
but measurement quality for sensor parts might not be identical.
This scenario involves such a kind of region-based query:
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Fig. 1. Average temperature query in SQL form.
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• Environmental Temperature Monitoring: With p confidence, tell the average temperature of nodes in the
region defined by a rectangle (a,b,c,d).

Written in SQL-like language [16] or MeshSQL [22], this query is shown in Fig. 1.

3.1. Source of imperfect information

Imperfect information is ubiquitous (almost all information that we have about the real world is not cer-
tain, complete or precise). In most occasions, there are four types of imperfection in an information system:
uncertainty, incompleteness, ambiguity and imprecision [5,6]. Incompleteness arises from the absence of val-
ues, imprecision is caused by the existence of values that cannot be measured with suitable precision, ambigu-
ity is introduced by vague statements, and uncertainty arises from the fact that an agent has constructed a
subjective opinion on the truth of a fact that it does not know for certain.

In the context of analyzing and understanding the uncertainty of query answer, one significant challenge is
how to correctly understand the nature and source of uncertainty of the information derived from remote
sensing. Image chain approach [39] is one of the most important and useful models for describing remote sens-
ing process. It can identify steps in remote sensing process (or links in chain) completely and illustrate the
interrelation nature of those steps.

Analyzing the working process of this temperature monitoring application, there are three main kinds of
imperfect information source: measurement quality, point spread function (PSF) and link quality. Fig. 2 illus-
trates the image chain model we exploit. Links in the chain represent various steps from nodes collecting
related information (Input), to flowing data records back to related front-end nodes (Collection) at run-time,
to obtaining query answers through processing all collected information at front-end nodes (Output).

• Measurement quality

As we know, the quality of nodes’ sensing part usually boils down to their measurement stability and accu-
racy. In general, as measurement stability and accuracy increase, so do their power requirement and cost,
which are all troublesome for general nodes. Therefore, inaccurate measurements generated by sensing
parts are very common. Measurement quality of nodes introduces uncertainty and imprecise information
into query answers.

• Point spread function (PSF)

Temperature monitoring application is interested in the temperature over a region instead of one point in
space. However considering the operation feasibility, as well as the cost on hardware and time, sampling
method is widely used rather than completely measuring. In this aspect, another imperfect information
source – PSF is raised. PSF is caused by nodes’ nonuniform sensitivity within their monitoring space. In
Fig. 2. Image chain model.
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general, nodes exhibit sensitivity variation following Gaussian distribution. That is, nodes are more sensi-
tive to the center than toward the edge of their regions. PSF of nodes introduces ambiguity into query
answers.

• Link quality
The dynamic and lossy nature of wireless communication pose the major challenge to reliable, self-orga-
nized WNSs. Failure transmissions may happen during data transmission because of collision, node dying
out (no battery), node being busy, or node’s mobility. Moreover, in physical layer, sensor node’s mobility
generates channel fading during data transmission, which degrades the performance in terms of bit error
rate (BER) and frame error rate (FER). Packet loss due to poor link quality introduces incompleteness into
query answers.

In a set of temperature monitoring experiments, such as finding the highest temperature, the lowest temper-
ature and the average temperature over a region, we vary measurement quality, PSF and link quality respec-
tively to check the impact of those imperfect information sources on the confidence of query answers. During
those experiments, we fix other parameters, such as the number of nodes, node density, communication range,
sensing range and network coverage. Assuming true results are known beforehand. Experiment results are
shown in Table 1. We observe the following:

• Measure quality

When employing nodes with poor measurement quality, whose measurements have 0.1 standard deviation,
the error of query answers is much larger (around ten times) than the one when using nodes whose mea-
surements just have 0.01 standard deviation.

• PSF

When using large disks to cover a monitoring region, i.e., the radius r of disks is 1.96 meter, query answers
deviate from the true values much more than those, in which disks with 1.65 meter radius are used. Note
that, more information is missed since less nodes are employed, thus large error is introduced into query
answers.

• Link quality
When using more reliable links to forward collected data, in which there is only 0.1 percentage of links bro-
ken during information transmission, more data reach query processing operators. Thus, the more missing
information is caused by link broken, the more the difference between the true values and the acquired val-
ues becomes.

In conclusion, with measurement errors, misrepresent errors, and/or missing information increased, the
error introduced into query answers is obviously increased, consequently the confidence of query answers is
reduced. Even though those conclusions are derived from the temperature monitoring application, they are
still valuable for other remote sensing applications, such as humidity monitoring, hurt gas monitoring, etc.

3.2. Source of energy consumption

Sensor nodes are very limited in their processing, computation, communication, storage and power supply.
For example, a typical Crossbow MICA mote MPR300CB [36] has a low-speed 4 MHz processor equipped
Table 1
Using root mean square of error (RMSE) to quantify the error of query answers

RMSE Measure quality PSF (r2 = 1) Link quality

r = 0.01 r = 0.1 r = 1.65 m r = 1.96 m LBR = 0.14 LBR = 0.5

MAXIMUM 0.2537 2.5618 22.882 25.17 0.2069 0.7132
MINIMUM 0.2541 2.5416 22.905 25.195 0.1291 0.5895
AVERAGE 0.0102 0.0944 3.0802 3.5202 0.0936 0.3127

r is the standard deviation of nodes’ measurements. r is the radius utilized for modelling nodes’ sensing space. LBR stands for link break
rate.
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with only 128 KB flash, 4 KB SRAM and 4 KB EEPROM. It has a maximal data rate of 40 kbps, a transmis-
sion range of about 100 feet, and is powered by two AA batteries. However, communication, not only trans-
mitting, but also receiving, or merely scanning channel, can use up to half energy [40]. Therefore wireless
transmitting and receiving are the most energy consuming operations inside nodes. Recently, some researchers
have begun studying the problem of reducing power consumption on wireless interface. One approach is
reducing energy consumption for transmitting/receiving each bit [37], the other is reducing the amount of
information exchanged over networks.

Low cost on devices makes it feasible to generate high density network. This kind of dense deployment can
help to improve a WSDS’s reliability. Somehow, within a WSDS, not all available nodes provide useful/
related information that improves the accuracy of query answers. For example, if nodes are far away from
the interested region, the information collected by those nodes is less useful/lower correlative. Furthermore,
some information might be redundant because nodes closing to each other would have similar data. From
those prospects, collecting raw readings from all nodes involves large amounts of readings, which will lead
to shorter network lifetime.

For example, there is a WSDS with n nodes. Assuming that the power for all nodes is Pinit, each query con-
sumes same energy Pea for processing a query, and queries submitted to the network are processed sequently.
If there are x queries (i.e., A1, A2, . . . , and Ax) relating to certain regions in this network, c1 nodes participate
query A1 relating to area SA1

; c2 nodes participate query A2 relating area SA2
; . . ., and cx nodes participate

query Ax relating to area SAxðc1 þ c2 þ � � � þ cx ¼ nÞ. In this case, the node density is nPx

i¼1
SAi

and the network

lifetime is Lt;w ¼ x P init

P ea
. Note that with node density decreasing ði:e:; n

SA1
> n

SA1
þSA2

> nPx

i¼1
SAi

Þ, the network life-
time is increased (i.e., Lt,1 < Lt,2 < Lt,x).

For the energy reservation issue on data collection, previous networking researches approach data aggre-
gation [48] as an application specific technique to reduce the amount of data sent over a network. But where
the aggregation should be carried out is a very essential and tough problem, which relates to the correctness
and effectiveness of operations.
4. Description and discussion on quality-guaranteed and energy-efficient (QGEE) query processing algorithm

Keeping those two primary problems: quality-required and energy-constraint in mind, we propose a qual-
ity-guaranteed and energy-efficient (QGEE) query processing algorithm for WSDSs. Acquisitional query pro-
cessing (ACQP) [24] is employed to task network through declarative queries. Compared with typical
methods, QGEE focuses on betaking the significantly new opportunity risen in WSDSs: smart sensor nodes
have the capability to control over where, when, and how often data is physically acquired (i.e., sampled)
and delivered to query processing operators.

In QGEE, only a subset of nodes will be chosen to acquire readings or samplings corresponding to the fields
or attributes referenced in queries. During data’s forwarding, nodes’ mobility, link quality and battery level
are considered to establish multiple paths. The overall goals of this approach are reducing disturbance from
measurements with extreme error, decreasing information loss from link failure and minimizing energy con-
sumption, but still providing satisfying service for various applications. Furthermore, according to the anal-
ysis and classification on the sources of imperfect information, probabilistic method is employed to formulate
their distributions. Finally probabilistic query answers are acquired on uncertain data. The probability corre-
sponding with query answers can be used to determine the amount of confidence the users should have.
4.1. Confidence control for query answer

4.1.1. Query vector space model (VSM) design and active node selection

In information retrieval, VSM is one of efficient methods to quantify the correlation between a query and
all candidate documents. If treating sensor nodes as candidate documents for a query, the correlation between
a query and a node can be quantified by utilizing the same principle. However, redesign on the VSM vector is
needed to implement quality and energy control. Based on the study mentioned above, following factors are
considered:
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• Location
Given a piece of space, number and location of nodes determine the monitoring coverage. In order to
employ as few as possible nodes to cover as large as possible area, those nodes, located at some special loca-
tions called optimal locations, should be selected. The detail on determining optimal locations is presented
in Section 4.1.2.

• Measurement quality
Since the cost and measurement quality of sensor node are related to each other, sensor nodes owning a
variety of qualities are always deployed simultaneously in a WSN for economical reasons. Moreover,
through a query, database users supply not only what information they are interested in, but also the expec-
tation on answers’ quality, i.e., the confidence of answers. In this case, suitable nodes should be selected to
response queries rather than all of them.

• Battery
Remaining battery capacity of sensor nodes is the third factor, but not the least important one. When the
battery of a node is used up, the uncertainty of answers, at some degree, will increase caused by missing
data. It inspires us to select those nodes with high remaining battery capacity, so that all expected data
could be collected with best effort.

In the QGEE algorithm, VSM is employed to incorporate above all factors for electing the most related
nodes (called active nodes) for query processing. Query vector is designed as = [Rl,Ad,Bm].

• Rl stands for location relativity. It is the indicator of the distance between the location of a sensor node at
(x,y) and the optimal location at (x0,y0).
Rl ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

L
ð5Þ
where L is the factor to ensure Rl to be a positive numeric value. For instance, L can be equal to the max-
imum distance of two nodes within a network. Small value of Rl indicates a node closing to an optimum
location.

• Ad stands for measurement quality. Ad is equal to the confidence of measurement bias. For example, for
speed detecting sensor nodes, CXM539 [36], the bias is ±1 m Gauss and owns 0.95 confidence. In this case,
Ad = 0.95.

• Bm stands for remaining battery capacity.

When a query is submitted, the related top-end node fixes the optimal locations, and translates this query
into a query VSM vector 0 = [1, Ad,0,Bm,0]. For instance, 0 = [1,p, 5] according to the query given in Fig. 1.
Assuming the maximum battery capacity for nodes is 5J. 0 and information on optimal locations will be
flooded over the network. Then, nodes update their query VSM vectors (i = [Rl, i,Ad, i,Bm,i] (i = 1, 2, . . . ,n)).
Assuming there are n nodes in this network. For node i the node location Rl,i is defined as:
Rl;i ¼ max
j
frl;i;jg ð6Þ
where rl;i;j ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�x0;jÞ2þðyi�y0;jÞ2
p

L ; ðxi; yiÞ is the position of node i, and (x0,j,y0,j) is the position of the jth opti-
mal location.

A query correlation indicator (QCI) is designed, which is referred as f, to represent the correlation between
individual nodes and a query. f is formulated as follows.
f� 0;� i
¼ simvsð� 0; � iÞ ¼ � 0 � � i ¼

1� Rl;i þ Ad;0 � Ad;i þ Bm;0 � Bm;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ A2

d;0 þ B2
m;0ÞðR2

l;i þ A2
d;i þ B2

m;iÞ
q ð7Þ
Observe that, QCI f� 0;� i
is a function of query quality Ad,o, node’s energy Bm,i, measurement quality Ad,i and

node location Rl,i. Moreover, f� 0;� i
is computed by nodes through a distributed way.
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f directly indicates the similarity between a query and a node. Inspired by this, the criterion for active node
choosing is formed: the decision – which nodes are active to respond queries – is based on nodes’ QCIs. That is,
nodes with highest QCI among their one-hop neighbors are chosen to participate in related query processing. In
QGEE, active nodes are chosen locally leveraging cooperation among nodes. Assuming that each node knows
QCIs of its one-hop neighbors, which can be achieved by requiring each node to broadcast its QCI initially.
This distributed calculation balances the working load for QCIs over the entire network so that the overhead
introduced by VSM for each node is extremely reduced. Furthermore, according to (7), the computing com-
plexity is only around O (16). Therefore, it is safe to claim that the overhead caused by VSM is minor, even
though the processing capability for general nodes is limited (i.e., 4 MIPS for Berkeley MICA Mote [48]).

4.1.2. Optimal location determination

Modelling the problem – determining optimal locations for a query – as a k-partial set cover problem. This
problem is defined as follows: Let n be the number of all sensor nodes, n 0 be a given positive integer so that
n 0 6 n. If we have k disks with radius r, the k-partial set cover problem tries to solve whether and which k disks
can cover at least n 0 nodes. In this paper, sensor nodes on a plane (the dimension is 2) are only considered.

Unfortunately, this kind of k-partial set cover problem is a NP problem. At present, all known algorithms
for NP problem require time that is exponential to the problem size. It is unknown whether there is any faster
algorithm. Therefore, to solve a NP problem for any nontrivial problem size, one of approaches is approxi-
mation algorithm, which can acquire solution during polynomial time. The SETCOVER algorithm [13] is a
good approximation method to determine the value of k and locations of those disks on a plane. QGEE
chooses the centers of those k disks as the optimal locations, and lets n 0 = n. Therefore, for QGEE, nodes
locating at the centers of those disks can monitor the entire interested region.

According to users’ requirements, QGEE, considering the impact of PSF on the uncertainty of query
answers, adaptively adjusts the radius r instead of fixing it. Assuming PSF g(d) of nodes in a WSDS is defined
by (8) and the confidence of query answer is required to be at least equal to p as shown in the example in
Fig. 1. Here d is the distance between a point and the center on a disk.
gðdÞ ¼ e�pd2 ð8Þ

It is obviously that, among various locations on a disk, measurements own the lowest sensitivity/confidence
when they stand for the situation at a disk’s edge. This nature inspires us to design a criterion to calculate
suitable value for r. That is, if the sensitivity/confidence is equal to or higher than p at the edge of disks, it
is ensure that the measurements of all active nodes can represent the situation within their disks, at least, with
p confidence. Deriving (9) from (8) to determine the suitable value for r.
r ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1

p
lnp

r
ð9Þ
Note that, r is a function of standard deviation r of PSF and quality requirement p. If fixing r, r will decrease
with the increase of p. That means, with higher query quality, smaller disks should be used to search the opti-
mum locations and more active nodes are needed for a query.

4.1.3. Sample size determination and semi-manufactured query answer acquisition

A set of nodes has been chosen to respond a query. While, ‘‘How many measurements should be included in
one sample (any subset of a population)?’’ is the question that will be answered in this Section. Sample size
determination refers to the process of determining exactly how many samples should be measured/observed
in order that the sampling distribution of estimators meets users’ pre-specified precision [27].

As a matter of fact, nodes’ readings are subject to errors caused by limitations of devices’ hardware and
environmental noise. Consequently, uncertainty is inherent regarding a true value. In this paper, the formula
for a node’s reading x is:
x ¼ vþ em þ g ð10Þ

where v is the true value, em is the measurement error introduced by limitations of device’s hardware, and g is
the environmental noise considered as white Gaussian noise in this paper and g � Nð0; N0

2
Þ. Based on central
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limit theorem [30], the probability distribution of measurement errors complies with a normal distribution.
That is, em � Nð0; r2

eÞ. Generally, in product’s technical datasheet, manufactories supply the information
on measurement errors. For example, as mentioned above, the bias for CXM539 is ±1Gauss with 0.95 con-
fidence. In this case, r2

e ¼ 0:1302. For general cases, if knowing the maximum bias Dx and its confidence p, the
general expression of r2

e can be obtained. That is
r2
e ¼

Dx2

Q�1 1�p
2

� �� �2
ð11Þ
where Q(x) stands for Q-function, defined as QðxÞ¼M 1ffiffiffiffi
2p
p
R1

x e�
y2

2 dy.

Moreover, em and no are independent. Therefore, node reading also complies with a Gaussian distribution
with lx-mean and rx-standard deviation given as follows:
lx ¼ v and rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e þ
N 0

2

r
ð12Þ
Therefore the PDF of node reading x is
fX ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðr2
e þ N 0

2
Þ2

q e
� ðx�vÞ2

2ðr2
eþ

N0
2
Þ2 ð13Þ
Using sample mean to estimate the mean of a random variable is an unbiased estimation, in which the esti-
mator aims at the true value or the correct average [29]. Thus, an unbiased estimation on the true value v

is done when choosing sample mean as the estimator, i.e. v̂n ¼ 1
n

Pn
j¼1xj. Here n is sample size. In this case,

the probability density function of v̂nðfbV n
ðv̂nÞÞ is similar to fX(x) with lv̂n

¼ lx and r2
v̂n
¼ 1

n r2
x . That is
fbV n
ðv̂nÞ ¼

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðr2
e þ

N0

2
Þ

q e
� nðv̂n�vÞ2

2ðr2
eþ

N0
2
Þ ð14Þ
QGEE lets Dx as the error margin between the estimator v̂n and the true value v to reflect the target precision
of query answers, and specifies the capability for ensuring this error not to be smaller than p. The criterion for
sample size determination is simply stated as:
P rfjv̂n � vj 6 DxgP p ð15Þ

The probability of the estimation error not larger than Dx is
P rfjv̂n � vj 6 Dxg ¼ 1� 2Q
Dxffiffiffiffiffiffiffiffiffi
r2

eþ
N0
2

n

q
0
B@

1
CA ð16Þ
Solving (15) and (16) for sample size n, we obtain
n P
ðr2

e þ
N0

2
Þ½Q�1ð1�p

2
Þ�2

Dx2
ð17Þ
Since a statistic measurement on samples can rarely, if ever, be expected to be exactly equal to a parameter, it
is important for estimations to be accompanied by statements that describe their precision. Confidence interval
[45] provides a method of stating both how close the value of a statistic being likely to be value of a parameter
and the chance of being close. A confidence interval of an attribute denoted by Ui is a interval [li,hi] such that li
and hi are real-valued, and the condition hi P li holds. Note that (15) is the same statement made when defin-
ing a 100 · p% confidence interval, and Dx is about half of the width of this confidence interval. Using the
sample size computed by (17) to estimate the true value (v), we have
P rfv̂n � Dx < v < v̂n þ DxgP p ð18Þ

With (18), a bounded value: v 2 ½v̂n � Dx; v̂n þ Dx� is obtained, which is called ‘‘semi-manufactured’’ query
answer.
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Since heterogeneity is one of natures of general WSDSs, that is, measurement quality pi, sample size ni and
confidence interval Ui for individual nodes might vary. For node i, accompanying confidence pi, ni and Ui are
given as follows:
ni ¼
r2

e;i þ
N0

2

� 	
Q�1 1�pi

2

� �� �2

Dx2
i

6664
7775 and vi 2 ½v̂ni � Dxi; v̂ni þ Dxi� ð19Þ
4.1.4. Data collection

After active nodes being chosen, a data centric routing algorithm, EM-GMR [23] is employed, which is a
multipath, power-aware and mobility-aware routing scheme. It is used to establish route-tree from active
nodes to front-end nodes for query answers’ return. EM-GMR uses reactive networking approach, in which
a route is found only when a message is to be delivered from a source to a destination.

In EM-GMR, distance to the destination, remaining battery capacity, and mobility of each sensor node are
considered. The geographical locations of destination node are known to source nodes (as in [20]), and the
physical location of each node can be estimated easily if the locations of three nodes (within a communication
range) are known in a WSN. This scheme is a fully distributed approach where each sensor only needs the
above three parameters, and fuzzy logic systems (FLS) are utilized to handle those three parameters. The
EM-GMR scheme consists of route discovery phase, route reconstruction phase and route deletion phase.

• Route discovery phase

The source node uses a fuzzy logic system (FLS) [26] to evaluate all eligible nodes (closer to the destination
location) based on the parameters of each node: distance to the destination, remaining battery capacity, and
degree of mobility. It chooses the top M nodes based on the degree of the possibility (output of FLS). The
source node sends a Route Notification (RN) packet to each desired node, and each desired node would
reply using a REPLY packet if it is available. After a certain period of time, if the source node does not
receive REPLY from some desired nodes, it will pick the node with the M + 1st degree of selection possi-
bility. In the second hop, selected nodes in each path will choose its next hop node using a FLS.

• Route reconstruction phase

Because each node is mobile, it may be possible that some nodes move out of the communication range or
some nodes die out, which will lead to link failure. Then a route reconstruction phase is started. The last-
hop of the failure node in the routing path will apply FLS to determine the selection possibility for all of its
eligible neighbor nodes, and choose the top one degree node (via RNREPLAY procedure). The new node
will determine its next node accordingly.

• Route deletion phase

Energy, mobility and physical location of each node are changing. It may be possible that a node (in path)
observes that its next node is not the optimal after a while, and then this node will initiate a route deletion
phase. This node will send an RN packet to the optimal node via common control channel, and this RN
packet will also be received by the original relay node, which will notice that the original path is deleted.

In EM-GMR for M-path routing, the source node selects M nodes in its communication range for the first
hop relay. Assume there are N (N > M) nodes in its communication range, nodes who are further to the des-
tination node than the source node are not considered. Choosing M nodes from remaining eligible nodes is
based on a FLS. Starting the second hop, each node in the M-path selects its next hop node also using a
FLS. For example, as illustrated in Fig. 3, node B needs to choose one node from eligible nodes C, D, E,
F, H based on their three parameters, and sends RN packet to the selected node and waits for REPLY. If
the top one node is unavailable (selected by another path or busy), then the top second node will be selected.
By this means, M paths can be set up.

Note that EM-GMR considers distance, remaining battery capacity, and mobility of each node during
route path setting up. This scheme could tremendously reduce frame loss rate and link failure rate since mobil-
ity is considered, so that incompleteness information caused by poor link quality can be reduced at certain
degree.
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4.2. Energy consumption control for query processing

In energy consumption control, three strategies are employed. There are active node number control, sam-
ple size control and link quality control.

Firstly, in query SVM design, nodes’ location is considered besides measurement quality and remaining
battery capacity, since it is directly related to the number of active nodes. Through solving optimal location
problem, as few as possible nodes can be employed to cover as large as possible monitoring space so as to
carry out energy reservation task.

However, too large sample size implies a waste of resources, and too small sample size will diminish the
utility of results. QGEE achieves (19) to specify the value of sample size during information sensing, so that
it can acquire enough samples to meet users’ pre-specified precision, and reduce energy consumption for data
sensing.

Third, frame loss rate and link failure rate are tremendously reduced through choosing more suitable nodes
to set up route-tree for queries. With this improvement, energy consumption is reduced for route-tree main-
tenance and information retransmission.

4.3. Final query answer acquisition

Once query processing strategies have been optimized, disseminated, and semi-manufactured query answers
have been acquired from active nodes, query processing operators continue to acquire final query answers.
Aggregations are required in many database applications. Common functions applied to collections of
numeric value include SUM, AVERAGE, MAXIMUM, and MINIMUM. This paper will specifically discuss
how to obtain final query answers, as examples, which focus on those most often used aggregation operations:
MAXIMUM, MINIMUM, and AVERAGE.

Returned semi-manufactured answers have a confidence interval form, i.e. ½v̂ni � Dxi; v̂ni þ Dxi� with confi-
dence pi (i = 1, 2 . . . ,w). For simplified reason, letting li ¼ v̂ni � Dxi; hi ¼ v̂ni þ Dxi. Assuming there are w active
nodes for a query.

4.3.1. MAXIMUM/MINIMUM aggregation

The cumulative distribution function (CDF) of v̂ni is given as follows according to (14).
F bV ni

ðv̂niÞ ¼ Q
ffiffiffiffi
ni
p ðv̂ni � lxi

Þ
rxi


 �
ð20Þ
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Since measurements from individual active nodes are independent with each other, the CDFs for Zmax¼M
maxiðv̂niÞ and Zmin¼M miniðv̂niÞ (i = 1, 2, . . . ,w) are given as follows for MAXIMUM and MINIMUM.
F ZmaxðzÞ ¼
Yw
i¼1

F bV ni

ðzÞ ¼
Yw
i¼1

Q
ffiffiffiffi
ni
p ðz� lxi

Þ
rxi


 �
ð21Þ
and
F Zmin
ðzÞ ¼ 1�

Yw
i¼1

f1� F bV ni

ðzÞg ¼ 1�
Yw
i¼1

1� Q
ffiffiffiffi
ni
p ðz� lxi

Þ
rxi


 �� �
ð22Þ
For the MAXIMUM aggregation, the final query answer is Zmax 2 [lmax,hmax] with pmax confidence in
bounded probability form. Here
lmax ¼ arg max
i
flig and hmax ¼ arg max

i
fhig; pmax ¼

1

w

Xw

i¼1

pi ð23Þ
For MINIMUM aggregation, the final query answer is Zmin 2 [lmin,hmin] with pmin confidence in bounded
probability form. Where
lmin ¼ arg min
i
flig and hmin ¼ arg min

i
fhig; pmin ¼

1

w

Xw

i¼1

pi ð24Þ
4.3.2. AVERAGE aggregation
In this aggregation operation, a derivative value over a group of active nodes’ data is returned. The PDF

for Zavg¼
M 1

w

Pw
j¼1x̂nj;jðfZavgðzÞÞ has the similar distribution to fX̂ n

ðx̂nÞ. But the mean and variance are 1
w Rw

j¼1l̂nj;j

and 1
nw2

Pw
j¼1r̂

2
nj;j

individually.

For AVG aggregation, the final query answer is Zavg 2 [lavg,havg] with pavg confidence in bounded proba-
bility form. Where
lavg ¼
1

w

Xw

j¼1

li and havg ¼
1

w

Xw

j¼1

hi; pavg ¼
1

w

Xw

i¼1

pi ð25Þ
5. Simulation and performance evaluation

In the simulations, nodes are randomly deployed in an area 10 · 10 m2, and sensing range for individual
nodes is 1 m. Initial energy of nodes uniformly distributes within [0, 5] J. Monte Carlo simulations are run
to remove the randomicity of simulation results. We compare QGEE against the query processing method
without any query optimization.

The energy consumption model for data sensing is shown as follows:
Eq ¼ Ese � St ð26Þ

where Eq is the total energy consumed by sensing, Ese is the energy consumed by sensing unit sample, St is the
sample period. In this simulation, Ese = 5 nJ/sample.

Same energy consumption model is used as in [18] for radio hardware. To transmit an l-symbol message for
a distance d, the radio expends:
ETxðl; dÞ ¼ ETx-elecðlÞ þ T Tx-ampðl;dÞ ¼ l� Eelec þ l� efs � d2 ð27Þ
and to receive this message, the radio expends:
ERx ¼ l� Eelec ð28Þ
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The electronics energy, Eelec, as described in [18], depends on factors such as coding, modulation, pulse-shap-
ing and matched filtering. The amplifier energy, efs · d2 depends on the distance to the receiver and the accept-
able bit error rate. In this paper, Eelec = 50 nJ/syn and efs = 10 pJ/sym/m2.

5.1. Energy reservation performance

In this simulation, before active nodes selection, nodes individually update their VSM vectors, i.e., deter-
mining latest values for Rl, Ad and Bm. Based on this query VSM vector, its OCI f can be determined. Through
collaboration among nodes, each node can acquire their neighbors’ OCIs. Then active nodes can be distrib-
utedly selected according to those OCIs. Data Sensing, packet transmitting and receiving are considered for
energy consumption. Except for active nodes, other nodes in a network will enter energy saving mode – sleep-
ing mode. Assuming that in sleep mode there is no data sensing nor communication. Moreover, a node is
excluded from experiments when its power is used up. Same number of nodes is used for different algorithms
and queries are submitted to the network until all nodes are dead.

In Fig. 4, we plot query index versus nodes dead time. We can see that after processing about 20 queries, all
nodes, without query optimization, use up their energy. But for QGEE, the whole network is not down until
53 queries are completed. Therefore, QGEE can reserve 50% of energy on processing same number of queries.

In Fig. 5, we compare the coverage of these two schemes. Observed that, QGEE employs 70 � 45 = 25 less
nodes to cover 90% area interested. This simulation result illustrates the reason why QGEE can implement
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energy reservation. That is, about 25
70
� 100 ¼ 35:71% nodes switch to energy saving model during query

processing.
By employing QGEE, the energy is saved and the network lifetime is extended. But the cost to achieve this

improvement is the decrease of coverage. Fig. 6 shows that the biggest decrease of monitoring coverage is
16.6% for QGEE.

5.2. Quality guarantee performance

In this simulation, various requirements on query answers’ confidence are given (i.e., various value for p).
To simplify the simulation scenarios, enough nodes are set up to satisfy measurement quality requirements.
For MAXIMUM, MINIMUM and AVERAGE aggregation operation, we check the probability of true val-
ues locating within the confidence intervals acquired at front-end nodes (see Table 2). Note that QGEE can
successfully obtain suitable confidence intervals to guarantee the true value located within them with a prob-
ability p2, which is equal to or larger than the pre-specified probability p1. In reality, maybe, all available nodes
do not own enough measurement quality to satisfy users’ requirement. Then, even using QGEE, expected
results still cannot be acquired. However, QGEE processes query with best effort.

5.3. EM-GMR performance

We compare EM-GMR against the geographical multipath routing (GMR) [20] scheme where only dis-
tance to the destination is considered. We run the simulations using OPNET. 60 nodes in total are deployed
initially. There are 5 couples of source and destination nodes communicating at the same time in this network.
Table 2
Confidence for query answers

p1 MAXIMUM MINIMUM AVERAGE
p2 p2 p2

0.8 0.8133 0.8133 0.8112
0.9 0.9139 0.9151 0.9144
0.9050 0.912 0.9122 0.9144
0.9246 0.93 0.9318 0.9301
0.9334 0.948 0.942 0.9428
0.95 0.958 0.9561 0.9551
0.99 0.9939 0.9924 0.9938

p1 is the pre-specified value for p. p2 is the acquired value for p using QGEE.
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Each node (including source and destination nodes) has moving speed ranging from 0 to 10 m/s, and its mov-
ing speed changes in every 10 s. The frame length is 512 symbols and symbol rate is 9.6 ksym/s in this simu-
lation. Each sensor locally broadcasts a beacon message in every 2 s to keep link alive, so that neighbor table
can be updated (including new neighbor joins in, and old neighbors expire). That information is used for route
discovery, reconstruction, and deletion. The coherence time is set as 10 s.

In Fig. 7, we plot the simulation time versus the number of nodes dead. Observe that when 50% nodes (30
nodes) die out, the network lifetime for EM-GMR has been extended about 175�125

125
¼ 40%. In Fig. 8, we com-

pare the frame loss rate of these two scheme. Observe that EM-GMR outperforms GMR by about 20% on
frame loss. The average latency during transmission (end-to-end) is 419.68 ms for EM-GMR and 407.5 ms
for GMR, and link failure rate for EM-GMR is 5.68%, but for GMR it is 10.42%.

6. Conclusions

This paper proposes a quality-guaranteed and energy-efficient (QGEE) algorithm for WSDSs. It employs
an in-network query processing method to task WSDSs through declarative queries, and uses confidence inter-
val strategy to determine the accuracy of a query answer. In QGEE, the correlation between a query and a
node is calculated by vector space model (VSM), and a query correlation indicator (QCI) is designed to
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quantify the priority of becoming active for individual nodes. Given a query, QGEE will adaptively form an
optimal query plan in terms of energy efficiency and quality awareness. This approach can reduce the distur-
bance from measurements with extreme error and minimize energy consumption, while providing satisfying
service for various applications. Furthermore, probabilistic method is employed to formulate the distribution
of imperfect information and the accuracy of each query answer. The probability corresponding with each
query answer can be used to determine the amount of confidence the users should have.

Simulation results demonstrate that QGEE can reduce resource usage by about 50% and frame loss rate by
about 20%. Moreover, the confidence of acquired query answers is always higher than, or equal to, users’ pre-
specified precision.
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Abstract

Foliage clutter, generally much larger than receiver noise, is a crucial factor that de-

grades the target detection performance. Conventional research have investigated land

clutter or sea clutter but not much work on foliage clutter beforehand. In this paper, we

propose a new statistical model using log-logistic distribution. On a basis of pragmatic

ultra-wideband (UWB) radar measurement, we analyze two different data sets by maxi-

mum likelihood (ML) parameter estimation as well as the root mean square error (RMSE)

calculation. We not only investigate log-logistic model, but compare it with other popular

clutter models, namely log-normal, Weibull and Nakagami. It shows that the log-logistic

model not only achieves the smallest standard divination (STD) error on estimated model

parameters, but also the best goodness-of-fit and smallest RMSE for both poor and good

clutter signals.

Index Terms : foliage clutter, log-logistic, log-normal, Weibull, Nakagami, goodness-of-fit

1 Introduction and Motivation

Detection and identification of military equipment in a strong clutter background, such as

foliage, soil cover or building has been a long-standing subject of intensive study. It is believed

that solving the target detection through foliage environment will significantly benefit sense-
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through-wall and many other subsurface sensing problems. However, to this date, the detection

of foliage-covered military targets with the required probability of detection and false alarm still

remains a challenging issue. Recent investigations on environment behavior of tree canopies

have shown that both signal backscattering and attenuation are significantly influenced by tree

architecture [11]. Therefore use the return signal from foliage to establish the clutter model

that accounts for environment effects is crucial for the sense-through-foliage radar detection.

Clutter is a term used to define all unwanted echoes from natural environment [26]. The

nature of clutter may necessarily vary on a basis of different applications and radar parameters.

Most previous studies have investigated land clutter or sea clutter, and some conclusions have

been reached. For example, log-normal, Weibull, and K-distributions have been proven to

be better suited for the clutter description other than Rayleigh and Rician models in high

resolution radar systems. Fred [19] did statistical comparisons and found that sea clutter

at low grazing angles and high range resolution is spiky based on the data measured from

various sites in Kauai and Hawaii. David generalized radar clutter models using noncentral

chi-square density by allowing the noncentrality parameter to fluctuate according to the gamma

distribution [4]. Furthermore, Henry et al. used a Neural-Network-based approach to predict

sea clutter model [9] [34].

However, as far as clutter modeling in forest is concerned, it is still of great interest and

will be likely to take some time to reach any agreement. A team of researchers from MIT [7]

and U. S. Army Research Laboratory (ARL) [14] [22] have measured ultra-wideband (UWB)

backscatter signals in foliage for different polarizations and frequency ranges. The measure-

ments show that the foliage clutter is impulsively corrupted with multipath fading, which leads

to inaccuracy of the K-distributions description [32]. The Air Force Office of Scientific Research

(AFOSR) has conducted field measurement experiment concerning foliage penetration radar

since 2004 and noted that metallic targets may be more easily identified with wideband than

with narrowband signals

In this investigation, we will apply ultra-wide band (UWB) radar to model the foliage

2
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clutter. UWB radar emissions are at a relatively low frequency-typically between 100 MHz

and 3 GHz. Additionally, the fractional bandwidth of the signal is very large (greater than

0.2). Such a radar sensor has exceptional range resolution that also has an ability to penetrate

many common materials (e.g., walls). Law enforcement personnel have used UWB ground pen-

etrating radars (GPRs) for at least a decade. Like the GPR, sense-through-foliage radar takes

advantage of UWB’s very fine resolution (time gating) as well as low frequency of operation.

In our present work, we investigate the use of the log-logistic distribution to model foliage

clutter and illustrate the goodness-of-fit to real UWB clutter data conducted by AFOSR.

Additionally, we compare the goodness-of-fit with existing popular models namely log-normal,

Weibull, and Nakagami by means of maximum likelihood estimation (MLE) and the root

mean square error (RMSE). The result shows that log-logistic model provides the best fit to

the foliage clutter. Our contribution is not only the new proposal on the foliage clutter model

with estimated concrete parameters, but also provide the criteria and approaches based on

which the statistical analysis is deduced. Further, the theoretical study about the probability

of detection as well as the probability of false alarm is discussed.

The rest of this paper is organized as follows. Section 2 provides a statistical model review

on log-logistic, log-normal, Weibull and Nakagami distributions and discuss their properties

and applicability as models for foliage clutter. Section 3 summarizes the measurement and the

2 sets of clutter data that we used in this paper. Section 4 discusses estimation on parameters

and the goodness-of-fit for log-logistic, log-normal, Weibull and Nakagami models respectively.

Section 5 analyzes the performance of radar detection at presence of foliage clutter. Finally,

section 6 concludes this paper and describes some future research topics.

2 Clutter Models

Many radar clutter models have been proposed in terms of distinct statistical distributions,

most of which describe the characteristics of clutter amplitude or power. Before detailed

3
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analysis, first we would like to discuss the properties and applicability of log-logistic, log-

normal, Weibull, and Nakagami statistic distributions, which are designated as “curve fit”

models in section 4, since they are more likely to provide good fit to our collections of pragmatic

clutter data in general. Detailed explanations would be given in following subsections.

2.1 Log-logistic Model

Recently Log-logistic model has been applied in hydrological analysis. This distribution is a

special case of Burr’s type-XII distribution [1] as well as a special case of the kappa distribution

proposed by Mielke and Jonson [15]. Lee et al. employed the LLD for frequency analysis of

multiyear drought durations [13], whereas Shoukri et al. employed LLD to analyse extensive

Canadian precipitation data [27], and Narda & Malik used LLD to develop a model of root

growth and water uptake in wheat [17]. In spite of its intensive application in precipitation

and stream-flow data, the log-logistic distribution (LLD) [8] statistical model, to the best of

our knowledge, has never been applied to radar foliage clutter. The motivation for considering

log-logistic model is based on its higher kurtosis and longer tails, as well as its PDF curve

similarity to log-normal and Weibull distributions. It is intended to be employed to estimate

how well the model matches our collected foliage clutter statistics.

Here we apply the two-parameter distribution with parameters µ and σ. The PDF for this

distribution is given by

f(x) =
e

ln x−µ
σ

σx(1 + e
ln x−µ

σ )2
, x > 0, σ > 0 (1)

where µ is scale parameter and σ is shape parameter. The mean of the the LLD is

E{x} = eµΓ(1 + σ)Γ(1− σ) (2)

The variance is given by

V ar{x} = e2µ{Γ(1 + 2σ)Γ(1− 2σ)− [Γ(1 + σ)Γ(1− σ)]2} (3)
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while the moment of order k is

E{xk} = σeµB(kσ, 1− kσ), k <
1
σ

(4)

where

B(m,n) =
∫ 1

0
xm−1(1− x)n−1dx (5)

PDFs for LLD for selected µ’s and σ’s are illustrated in Fig. 1.

2.2 Log-normal Model

Most previous experimental data have resulted in clutter being modeled using a log-normal

distribution, which is most frequently used when the radar sees land clutter [31] or sea clutter

[29] at low grazing angles (≤ 5 degrees) since log-normal has a long tail. However, it has been

reported that the log-normal model tends to overestimate the dynamic range of the real clutter

distribution [21]. Furthermore, most previous research applies log-normal model to land and

sea clutter, but how accurately it models foliage clutter requires detailed analysis.

The log-normal distribution [12] is also a two-parameter distribution with parameters µ

and σ. The PDF for this distribution is given by

f(x) =
1

xσ
√

2π
e
− (ln x−µ)2

2σ2
, x > 0, σ > 0 (6)

where µ is the scale parameter and σ is the shape parameter. The mean, variance and the

moment of order k are given respectively by

E{x} = eµ+σ2

2 (7)

V ar{x} = (eσ2 − 1)e2µ+σ2
(8)

E{xk} = ekµ+ k2σ2

2 (9)

PDFs for selected µ’s and σ’s for log-normal distribution are shown in Fig. 2.
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2.3 Weibull Model

The Weibull distribution, which is named after Waloddi Weibull, can be made to fit clutter

measurements that lie between the Rayleigh and log-normal distribution [33]. It has been

applied to land clutter [3] [24], sea clutter [6] [25] and weather clutter [23]. However, in

very spiky sea and foliage clutter, the description of the clutter statistics provided by Weibull

distributions may not always be sufficiently accurate [30].

The Weibull distribution is also a two-parameter distribution with parameters a and b.

The PDF for this distribution is given by

f(x) = ba−bxb−1e−(x/a)b
, x > 0, a > 0, b > 0 (10)

where b is the shape parameter and a is the scale parameter. The mean, variance and the

moment of order k are given respectively by

E{x} = aΓ(1 +
1
b
) (11)

V ar{x} = a2{Γ(1 +
2
b
)− [Γ(1 +

1
b
)]2} (12)

E{xk} = akΓ(1 +
k

b
) (13)

PDFs for selected a’s and b’s for Weibull distribution are shown in Fig. 3.

2.4 Nakagami Model

In the foliage penetration setting, the target returns suffer from multipath effects corrupted

with fading. As Nakagami distribution is used to model scattered fading signals that reach

a receiver by multiple paths, it is natural to investigate how well it fits the foliage clutter

statistics.

The PDF for Nakagami distribution is given by

f(x) = 2(
µ

ω
)

µ 1
Γ(µ)

x
(2µ−1)

e
− µ

ω x2

, x > 0, ω > 0 (14)
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where µ is the shape parameter and ω is the scale parameter. The mean, variance and the

moment of order k of Nakagami distribution are given respectively by

E{x} =
Γ(µ + 1

2)
Γ(µ)

(
ω

µ
)

1
2 (15)

V ar{x} = ω[1− 1
µ

(
Γ(µ + 1

2)
Γ(µ)

)2] (16)

E{xk} =
Γ(µ + k

2 )
Γ(µ)

(
ω

µ
)

k
2 (17)

The PDFs for selected µ’s and ω’s for the Nakagami distribution are illustrated in Fig. 4.

3 Experiment Setup and Data Collection

The foliage penetration measurement effort began in August 2005 and continued through

December 2005. Working in August through the fall of 2005, the foliage measured included late

summer foliage and fall and early winter foliage. Late summer foliage, because of the limited

rainfall, involved foliage with decreased water content. Late fall and winter measurements

involved largely defoliated but dense forest. A picture of experiment site is shown in Fig.5.

The principle pieces of equipment are:

• Dual antenna mounting stand

• Two antennas

• A trihedral reflector target

• Barth pulse source (Barth Electronics, Inc. model 732 GL) for UWB

• Tektronix model 7704 B oscilloscope

• Rack system

• HP signal Generator

• IBM laptop

7
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• Custom RF switch and power supply

• Weather shield (small hut)

A bistatic UWB radar (individual transmit and receive antennas) was used (see Fig. 6) as

it was believed that circulators did not exist for wideband signals at that time. The foliage

clutter was a round trip distance of 600 feet from the bistatic antennas (300 feet one way).

An 18 foot distance between antennas was chosen to reduce the signal coupling between

transmitter and the receiver [10]. The radar was constructed on a seven-ton man lift, which

had a total lifting capacity of 450 kg. The limit of the lifting capacity was reached during

the experiment as essentially the entire measuring apparatus was placed on the lift (as shown

in Fig. 7). Throughout this work, a Barth pulse source (Barth Electronics, Inc. model 732

GL) was used. The pulse generator uses a coaxial reed switch to discharge a charge line for a

very fast rise time pulse outputs. The model 732 pulse generator provides pulses of less than

50 picoseconds (ps) rise time, with amplitude from 150 V to greater than 2 KV into any load

impedance through a 50 ohm coaxial line. The generator is capable of producing pulses with

a minimum width of 750 ps and a maximum of 1 microsecond. This output pulse width is

determined by charge line length for rectangular pulses, or by capacitors for 1/e decay pulses.

For the return data we used in this paper, each sample is spaced at 50 picoseconds in-

terval, and 16,000 samples were collected for each collection for a total time duration of 0.8

microseconds at a rate of approximately 20 Hz. We considered two sets of data from this

experiment. Initially, the Barth pulse source was operated at lower amplitude and 35 pulses of

clutter signals were obtained at each site but different time. These pulses have been averaged

to remove the random noise. Data have been collected from 10 different sites. one collection

of transmitted pulse and received backscattering are shown in Fig. 8(a) and (b) respectively.

The unit of clutter amplitude in this paper is “V”. Although pulse-to-pulse variability was

noted for collections of received echoes, the fading tendency of different returned signals are

the same. These data is referred to as data set I.

8
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Later, additional improvements were made in the measurement procedure, include the

improved isolation of transmit and receive antennas, the addition of a log-periodic antenna

(Antenna Research Associates LPC-2010-C) as a transmit antenna, and the EMCO ridged

waveguide horn (Microwave horn, EMCO 3106). Echoes for data set II were collected using

this higher amplitude transmitted pulses. 2 collections at different site with 100 pulsese average

have been obtained, one of which is shown in Fig. 8(c). To make them clearer to readers, we

provide expanded views of received traces from sample 10,000 to 12,000 in Fig. 9.

4 Statistical Analysis of the Foliage Clutter Data

4.1 Maximum Likelihood Estimation

Using the collected clutter data mentioned above, we apply Maximum Likelihood Estimation

(MLE) approach to estimate the parameters of the log-logistic, log-normal, Weibull, and Nak-

agami models. MLE is often used when the sample data are known and parameters of the

underlying probability distribution are to be estimated [5] [2]. It is generalized as follows:

Let y1, y2, · · · , yN be N independent samples drawn from a random variable Y with m

parameters θ1, θ2, · · · , θm, where θi ∈ θ, then the likelihood function expressed as a function

of θ conditional on Y is

LN (Y|θ) =
N∏

k=1

fY |θ(yk|θ1, θ2, · · · , θm) (18)

The maximum likelihood estimate of θ1, θ2, · · · , θm is the set of values θ̂1, θ̂2, · · · , θ̂m that

maximize the likelihood function LN (Y|θ).
As the logarithmic function is monotonically increasing, maximizing LN (Y|θ) is equiva-

lent to maximizing ln(LN (Y|θ)). Hence, it can be shown that a necessary but not sufficient

condition to obtain the ML estimate θ̂ is to solve the likelihood equation

∂

∂θ
ln(LN (Y|θ)) = 0 (19)
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Note that the amplitude of foliage clutter faded with the increase of sample time. Even At

the same sample, it varies for different collections. In order to better analyze its randomness,

we studied each collection. Using the collected clutter radar mentioned above, we apply MLE

to obtain µ̂ and σ̂ for log-logistic, µ̂ and σ̂ for the log-normal, â and b̂ for the Weibull, and µ̂

and ω̂ for the Nakagami. The estimation results for data set I are listed in table 1. We also

explore the standard deviation (STD) error of each parameter. These descriptions are shown

in table 1 in the form of εx, where x denotes different parameter for each model. We also

calculate the average values of estimated parameters and their STD errors in table 2.

From table 1 and 2 we can see STD error for log-logistic and log-normal parameters are less

than 0.02 and their estimated parameters vary little from data to data compared to Weibull

and Nakagami. It is obvious that log-logistic model provides the smallest STD error for all the

10 collections compared to log-normal. It is obvious that apply both Weibull and Nakagami

models, accurate shape parameter estimation can be achieved but the result of scale parameter

estimations are not acceptable.

The estimation results for data set II are shown in table 3. Due to the improvement on this

set of signal, STD error for log-logistic and log-normal parameters have been reduced compared

those of data set I. However, for Weibull and Nakagami, it is a different case, which implies

log-logistic and log-normal are much more accurate to model foliage clutter.

In the view of error on parameter estimation, log-logistic model fits the collected data best

compared to log-normal, Weibull, and Nakagami. Log-normal is also acceptable.

4.2 Goodness-of-fit in curve and RMSE

We may also observe the extend to which the PDF curve of the statistic model matches that

of clutter data by calculating the averaged root mean square error (RMSE) for each data set.

Let i (i=1, 2, · · · , n) be the sample index of clutter amplitude, ci is the corresponding PDF

value whereas ĉi is the PDF value of the statistical model with estimated parameters by means

of MSE. The RMSE is obtained through

10
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RMSE =
1
k

∑

k

√√√√ 1
n

n∑

i=1

(ci − ĉi)2 (20)

Here we apply n=100 for each model and k is the number of data collections for each set.

In Fig. 10 and 11, we use one collection from data set I and II respectively to illustrate

the goodness-of-fit in curve. Also, we calculate the averaged RMSE of each model for both

collected data set I and II. The PDF of absolute amplitude of one collection of clutter data is

presented by means of histogram bars. In Fig. 10, it can be seen obviously that log-logistic

model with MLE parameters provides the best goodness-of-fit compared to the other models,

since it provides the most suitable kurtosis, slope and tail. As for the maximum PDF value, the

log-logistic is about 1×10−3, while that of other models are over 1.2×10−3. For the slope part,

which connects the kurtosis and the tail and which is in the range from 0.1×104 to 0.5×104 in

view of x axes, the log-logistic provides the smallest skewness whereas Nakagami provides the

largest. Examination of the tails show that log-logistic and log-normal provide very similar-

valued tails, while tails of the Weibull and the Nakagami are lager than the collected data.

Meanwhile, we obtain that RMSElog−logistic = 2.5425 × 10−5, RMSElog−normal = 3.2704 × 10−5,

RMSEWeibull = 3.7234 × 10−5, RMSENakagami = 5.4326 × 10−5. This also shows that the log-

logistic model is more accurate than the other three models.

Similarly, in Fig. 11 histogram bars denote the PDF of the absolute amplitude of one

collection of clutter data from set II. Compared to Fig 10, the log-logistic and the log-

normal provide more similar extend of goodness-of-fit. Weibull is worse since it cannot fit

well in either kurtosis or tail, while Nakagami is the worst and unacceptable. Also, we obtain

RMSElog−logistic = 2.739 × 10−5, RMSElog−normal = 3.1866 × 10−5, RMSEWeibull = 3.6361 × 10−5,

RMSENakagami = 4.4045× 10−5. This illustrates that for clutter backscattering data set II, the

log-logistic model still fits the best.
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5 Target Detection Performance

As we have mentioned previously, one of the primary goal to be carried out by a radar is target

detection. On a basis of the clutter model that have been just studied, we may apply a special

case of the Bayesian criterion named Neyman-Person criterion to analyze the target detection

performance in the foliage environment.

If the received sample signal to be tested is R, then the two hypotheses are shown as follows:

H0 : R = C + n

H1 : R = S + C + n
(21)

where C and n represent the random variable of clutter and noise respectively. C follows

log-logistic model with both parameters µ and σ, and n is gaussian noise with zero mean and

variance ν2. S is the target signal, which assumes to be a constant for simplicity.

Therefore f(R|H0) and f(R|H1) mean:

f(R|H0) = PDF of R given that a target was not present

f(R|H1) = PDF of R given that a target was present

They can be denoted as follows:

f(R|H0) =
∫ ∞

0

e
lnr−µ

σ

σr(1 + e
lnr−µ

σ )2
× 1√

2πν
e−

(R−r)2

2ν2 dr (22)

f(R|H1) =
∫ ∞

0

e
ln(r−s)−µ

σ

σ(r − s)(1 + e
ln(r−s)−µ

σ )2
× 1√

2πν
e−

(R−s−r)2

2ν2 dr (23)

If the probability that a target was not present is P (H0) whereas that of a target was

present is P (H1), then PDF of R is

f(R) = P (H0)f(R|H0) + P (H1)f(R|H1) (24)

To decide whether there is a target or not, Neyman-Pearson detection rule is shown as

f(R|H0)
f(R|H1)

H0
>
<
H1

P (H1)
P (H0)

(25)
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In case of P (H1) = P (H0), (26) is simplified as

f(R|H0)

H0
>
<
H1

f(R|H1) (26)

which actually is

e[
s2−2s(R−r)

2ν2 +
ln( r

r−s )

σ
]

r
r−s [

1+e
lnr−µ

σ

1+e
ln(r−s)−µ

σ

]2

H0
>
<
H1

1 (27)

It is easy to obtain the decision threshold T in terms of the above function

T = −ν2

s
ln[

1 + e
lnr−µ

σ

1 + e
ln(r−s)−µ

σ

]2 +
ν2[ln( r

r−s)− σ]
sσ

+
s

2
+ r (28)

Under hypothesis H0, a false alarm occurs anytime R > T , therefore the probability of false

alarm is

PFA =
∫ ∞

T
f(R|H0)dR

=
1√

2πσν

∫ ∞

T

∫ ∞

0

e[− (R−r)2

2ν2 + lnr−µ
σ

]

(1 + e
lnr−µ

σ )2r
drdR (29)

Similarly, Under hypothesis H1, when R > T , the target is detectable. Therefore the proba-

bility of detection is

PD =
∫ ∞

T
f(R|H1)dR

=
1√

2πσν

∫ ∞

T

∫ ∞

0

e[− (R−r−s)2

2ν2 +
ln(r−s)−µ

σ
]

(1 + e
ln(r−s)−µ

σ )2(r − s)
drdR (30)

Fig. 12 shows the probability of detection for a fluctuating radar target using Monte Carlo

simulation. The “no clutter” curve describes the situation when there are only radar echoes

and noise. Swerling II model is applied for the detection [20]. “SCR” stands for signal to

clutter ratio, where log-logistic clutter model is used, and “SNR” is the signal to noise ratio.

These curves show that no matter what SCR is, the clutter generally reduces the probability

of detection. The higher SNR, the less reduction compared to the case without clutter. When

SCR increases, the probability of detection will become more close to the value of “no clutter”

case along with the increase of SNR. Similarly, Fig. 13 illustrates the probability of false alarm,

which shows that the clutter tremendously increase the probability of false alarm.
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6 Conclusion

On a basis of two sets of foliage clutter data using UWB radar, we show that it is more

accurate to describe the amplitude of foliage clutter using log-logistic statistic model other

than log-normal, Weibull, or Nakagami. Log-normal is also acceptable. The goodness-of-fit for

Weibull is worse whereas that of Nakagami is the worst. Our contribution is not only the new

proposal on the foliage clutter model with estimated parameters, but also provide the criteria

and approaches based on which the statistical analysis is deduced. Further, the theoretical

study on the probability of detection and the probability of false alarm at the presence of

foliage clutter is discussed. Future research will investigate the characteristics of targets and

the design of radar receiver under this clutter to improve the target detection, tracking and

imaging.
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Table 1: Estimated Parameters for Data Set I

PDF Log-Logistic Log-normal Weibull Nakagami

data 1

µ̂ = 7.24161
σ̂ = 1.06483

εµ = 0.0141212
εσ = 0.00724181

µ̂ = 7.0455
σ̂ = 2.20761

εµ = 0.0174527
εσ = 0.0123415

â = 2975.33
b̂ = 0.594979
εa = 41.6157

εb = 0.00356925

µ̂ = 0.177062
ω̂ = 9.09663e + 007

εµ = 0.00150615
εω = 1.70907e + 006

data 2

µ̂ = 6.9716
σ̂ = 1.2126

εµ = 0.014747
εσ = 0.00773723

µ̂ = 6.72573
σ̂ = 2.33617

εµ = 0.0184691
εσ = 0.0130602

â = 2285.13
b̂ = 0.563747
εa = 33.7127

εb = 0.00337485

µ̂ = 0.162375
ω̂ = 7.4776e + 007
εµ = 0.00137422

εω = 1.46679e + 006

data 3

µ̂ = 7.00554
σ̂ = 1.10741

εµ = 0.0145728
εσ = 0.0076303

µ̂ = 6.76262
σ̂ = 2.31258

εµ = 0.0182825
εσ = 0.0129283

â = 2341.52
b̂ = 0.57073
εa = 34.1207

εb = 0.00341448

µ̂ = 0.164695
ω̂ = 7.46366e + 007

εµ = 0.001395
εω = 1.45459e + 006

data 4

µ̂ = 7.03055
σ̂ = 1.07858

εµ = 0.0142027
εσ = 0.00741556

µ̂ = 6.80711
σ̂ = 2.25973

εµ = 0.0178647
εσ = 0.0126329

â = 2395.85
b̂ = 0.579381
εa = 34.4066

εb = 0.00345156

µ̂ = 0.167391
ω̂ = 7.4926e + 007

εµ = 0.0014916
εω = 1.44727e + 006

data 5

µ̂ = 7.16226
σ̂ = 1.10132

εµ = 0.014605
εσ = 0.00750067

µ̂ = 6.95712
σ̂ = 2.26592

εµ = 0.0179137
εσ = 0.0126675

â = 2806.76
b̂ = 0.577823
εa = 40.4226

εb = 0.00347389

µ̂ = 0.17112
ω̂ = 9.03298e + 007

εµ = 0.00145265
εω = 1.72749e + 006

data 6

µ̂ = 7.01527
σ̂ = 1.10123

εµ = 0.0144902
εσ = 0.00758568

µ̂ = 6.77515
σ̂ = 2.30286

εµ = 0.0182057
εσ = 0.012874

â = 2360.33
b̂ = 0.572749
εa = 34.2753

εb = 0.00342376

µ̂ = 0.165292
ω̂ = 7.50824e + 007

εµ = 0.00140035
εω = 1.46145e + 006

data 7

µ̂ = 7.14523
σ̂ = 1.09486

εµ = 0.0145132
εσ = 0.00745994

µ̂ = 6.94201
σ̂ = 2.25621

εµ = 0.0178369
εσ = 0.0126132

â = 2753.69
b̂ = 0.578948
εa = 39.585

εb = 0.00347442

µ̂ = 0.170964
ω̂ = 8.80474e + 007

εµ = 0.00145125
εω = 1.68382e + 006

data 8

µ̂ = 6.95411
σ̂ = 1.11486

εµ = 0.0146774
εσ = 0.00768003

µ̂ = 6.71591
σ̂ = 2.31898

εµ = 0.0183331
εσ = 0.0129641

â = 2250.66
b̂ = 0.564989
εa = 33.1387

εb = 0.0033763

µ̂ = 0.162448
ω̂ = 7.31436e + 007

εµ = 0.00137488
εω = 1.4338e + 006

data 9

µ̂ = 7.18561
σ̂ = 1.09854

εµ = 0.0145483
εσ = 0.00749265

µ̂ = 6.9715
σ̂ = 2.27088

εµ = 0.0179529
εσ = 0.0126952

â = 2840.72
b̂ = 0.581219
εa = 40.6593

εb = 0.0034984

µ̂ = 0.172324
ω̂ = 8.97304e + 007

εµ = 0.00146348
εω = 1.70923e + 006

data 10

µ̂ = 7.192
σ̂ = 1.0866

εµ = 0.0144166
εσ = 0.0073916

µ̂ = 6.99196
σ̂ = 2.23975

εµ = 0.0177067
εσ = 0.0125211

â = 2869.65
b̂ = 0.584803
εa = 40.837

εb = 0.00351294

µ̂ = 0.173572
ω̂ = 9.01631e + 007

εµ = 0.0014747
εω = 1.71142e + 006
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Table 2: Averaged Estimated Parameters for Data Set I

PDF Log-Logistic Log-normal Weibull Nakagami

average

µ̂ = 7.0904
σ̂ = 1.1061
εµ = 0.0145
εσ = 0.0075

µ̂ = 6.8695
σ̂ = 2.2771
εµ = 0.0180
εσ = 0.0127

â = 2588
b̂ = 0.5769

εa = 37.4316
εb = 0.0035

µ̂ = 0.1687
ω̂ = 8.218e + 007

εµ = 0.0014
εω = 1.4905e + 006

Table 3: Estimated and Averaged Parameters for Data Set II

PDF Log-Logistic Log-normal Weibull Nakagami

data 1

µ̂ = 7.76868
σ̂ = 0.786511

εµ = 0.0107792
εσ = 0.00521601

µ̂ = 7.79566
σ̂ = 1.41771

εµ = 0.011208
εσ = 0.00792559

â = 4901.07
b̂ = 0.743223
εa = 55.3011

εb = 0.00434465

µ̂ = 0.239587
ω̂ = 1.16839e + 008

εµ = 0.00207912
εω = 1.88719e + 006

data 2

µ̂ = 7.78096
σ̂ = 0.787426

εµ = 0.0107917
εσ = 0.0052213

µ̂ = 7.8046
σ̂ = 1.41855

εµ = 0.0112147
εσ = 0.00793033

â = 4942.48
b̂ = 0.745233
εa = 55.6114

εb = 0.0043612

µ̂ = 0.240593
ω̂ = 1.17237e + 008

εµ = 0.00208848
εω = 1.88953e + 006

average

µ̂ = 7.7748
σ̂ = 0.7870
εµ = 0.0108
εσ = 0.0052

µ̂ = 7.7881
σ̂ = 1.4181
εµ = 0.0112
εσ = 0.0079

â = 4921.8
b̂ = 0.7442

εa = 55.4565
εb = 0.0044

µ̂ = 0.2401
ω̂ = 1.1704 + 008

εµ = 0.0021
εω = 1.8884 + 006
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Figure 1: Log-logistic distribution PDF for µ = 0.5 and σ = 0.5, µ = 0.5 and σ = 1, µ = 2
and σ = 0.5, µ = 2 and σ = 1

Figure 2: Log-normal distribution PDF for µ = 0.5 and σ = 0.5, µ = 0.5 and σ = 1, µ = 2
and σ = 0.5, µ = 2 and σ = 1
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Figure 3: Weibull distribution PDF for a = 2 and b = 1, a = 4 and b = 1, a = 2 and b = 4,
a = 4 and b = 4

Figure 4: Nakagami distribution PDF for µ = 0.5 and ω = 0.5, µ = 0.5 and ω = 4, µ = 2 and
ω = 0.5, µ = 2 and ω = 4
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Figure 5: A picture of foliage

Receiver Transmitter

Foliage

Figure 6: Illustration for the experimental radar antennas
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Figure 7: This figure shows the lift with the experiment. The antennas are at the far end
of the lift from the viewer under the roof that was built to shield the equipment from the
elements. This picture was taken in September with the foliage largely still present. The
cables coming from the lift are a ground cable to an earth ground and one of 4 tethers used in
windy conditions.

23

329 of 816



0 2000 4000 6000 8000 10000 12000 14000 16000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4

Sample Index

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

sample index

C
lu

tte
r 

A
m

pl
itu

de

(b)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

sample index

C
lu

tte
r 

A
m

pl
itu

de

(c)

Figure 8: Clutter data (a)transmitted pulse before antenna amplification (b) an example of
received echoes from data set I, and (c) an example of received echoes from data set II
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Figure 9: Expanded view from clutter samples 10,000 to 12,000 (a) from data set I, and (b)
from data set II
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Figure 10: Clutter model comparison from data set I (a) log-logistic vs. log-normal, and
(b) log-logistic vs. Weibull (c) log-logistic vs. Nakagami. RMSElog−logistic = 2.5425 × 10−5,
RMSElog−normal = 3.2704× 10−5, RMSEWeibull = 3.7234× 10−5, RMSENakagami = 5.4326× 10−5.26
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Figure 11: Clutter model comparison from data set II (a) log-Logistic vs. log-normal, and
(b) log-logistic vs. Weibull (c) log-logistic vs. Nakagami. RMSElog−logistic = 2.739 × 10−5,
RMSElog−normal = 3.1866× 10−5, RMSEWeibull = 3.6361× 10−5, RMSENakagami = 4.4045× 10−5.27
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Figure 13: Probability of false alarm
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Abstract: Latency and energy efficiency are two important parameters to evaluate
the Wireless Sensor Networks (WSN). To reduce delays in the WSN, the sensor node
will send out redundant packets. Suppose the WSN has a cell-partitioned structure
and the two-hop relay algorithm is adopted, the relay/destination nodes selection will
determine the networks performance. The FLS is applied to the nodes selection. In
contrast with the cases that only consider one descriptor, the FLS application can
manage the delay/energy tradeoffs to meet the network performance requirements.
Another work discussed is packets transmission in wireless sensor networks. We pro-
posed FLS in the optimization of SIR threshold selection. Average delay and distance
of a node to the source node are selected as antecedents for the FLS. The output of
FLS provided adjusting factors for the SIR threshold. Simulation results showed the
fuzzy optimization could achieve a better network efficiency, reduce the average delay,
and extend the network lifetime.
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1 INTRODUCTION

WSNs are likely to be widely deployed in commercial and
military applications. However, several obstacles need to
be overcome, such as latency-aware and energy efficiency

(Akyildiz et al., 2002; Heinzelman et al., 2002). Latency-
aware means to transfer the packets among sensors as
quickly as possible. Energy efficiency means to the net-

Copyright c© 200x Inderscience Enterprises Ltd.
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works should function for as long as possible (Xia and
Liang, 2008).

The cell-partitioned model is adopted in this chapter
(Fig.1). We can assume that the network is divided into
non-overlapping cells, each cell is of equal size (Neely et al.,
2002).

Figure 1: A Cell-partitioning Wireless Sensor Network

The sensor nodes are roaming independently from one
cell to another. If two sensor nodes are in the same cell,
they can transfer packets with each other, and sensor nodes
within different cells cannot communicate with each other.
The sensor nodes have a variable mobility speed and the
actual mobility can be described by one-step Markov path
model (Hou and Tsai, 1998). Each sensor node can gen-
erate packets with a Poisson distribution and each sensor
node can reserve original and relay packets. Each packet
enters its subqueue according to its destination node ID.
This model can simplify the scheduling complexity and fa-
cilitates analysis. It can also conceal the detail of global
network topology from the individual sensor node (Nakano
and Olariu, 2000).

In this chapter, we consider the tradeoffs between the
delay performance and the energy efficiency offered by
the cell partitioned wireless model. The contributions are
twofold: First, we classified the sensor service into two pri-
orities: high and low. The higher priority, the better delay
performance and more energy consumption. We realized
it with the two-hop relay algorithm, and we establish en-
ergy/delay tradeoffs curve for the performance of the two-
hop relay algorithm. Second, The FLS is used to elect the
three relay nodes. When there are several pairs within one
cell, we use the FLS to elect the destination node.

Generally, a node with the maximum remaining energy
capacity or a node with the nearest distance to the source
node or a node with the highest degree of mobility is
elected as the relay/destination node.

The remainder of this chapter is structured as following.
In Section 2, we introduced the energy, delay, and the two-
hop relay algorithm. In Section 3, we applied the FLS
into the two-hop relay algorithm. Simulation results and
discussions were presented in Section 4. In Section 5, we
concluded the chapter.

In this chapter, we designed a FLS for relay/destination
nodes election. The rules were designed to be based on the
knowledge from a group of network experts.

2 Energy And The 2-Hop Relay Algorithm

2.1 Energy

A sensor node consumes significant power when it either
transmits a packet or when it receives a packet. It will
also consume energy when the sensor node is idle be-
cause the sensor node keeps moving. The energy con-
sumption ratio of Transmit: Receive: Idle is approximately
40:20:1 (Raghavendra et al., 2002).

2.2 The Two-hop Relay Algorithm

This relay algorithm restricts packets to 2-hop paths, and
the relay packet is inserted into the subqueue of the relay
sensors until a source encounters its destination.

We summarize the two-hop relay algorithm as follows
(Grossglauser and Tse, 2002):

1)If there exists source-destination pairs within a cell,
there are two options:

• If there exists one source-destination pair within a cell
and if the source contains a new packet intended for
that destination, transmit.

• If there exists more than one source-destination pair
within a cell, choose the sensor with the longest sub-
sequeue as the source and choose the sensor with the
energy most as the destination and transmit it.

2)If there is no source-destination pair in a cell, there
are two options:

• Send a relay packet to its destination: if the desig-
nated transmitter has a packet destined for the desig-
nated receiver, send the packets to the receiver.

• Send a new relay packet:

1. For high priority sensor: if the designated trans-
mitter has a new packet that has never before
been transmitted, conserve the packet in its own
subqueue according to its destination. Choose
the three energy most sensors as the relay desti-
nations and transmit three copies to them.

2. For low priority sensor: conserve the packet in
its own subqueue according to its destination.

This algorithm restricts all routes to 2-hop while the
relay packets are only allowed to transmit to their desti-
nations. We pick up the packet reserved in the subqueue
with the longest queuing length to keep the queuing length
in balance among the sensors in order to reduce the time
jitter. We chose the sensors with most energy as the des-
tination to keep the energy in balance among sensors.

2.3 Cell Location Algorithm

Each sensor node knows its location (X position, Y posi-
tion). As all the cells are of equal size, each sensor node
can determine the cell serial number it belongs to.
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For example, the network size is N × N and it is parti-
tioned into C = S2 cells:

Csn = [
X · S

N
] + [

Y · S
N

] · S + 1 (1)

Where [ ] refers to the round function and it will round
the value of the float argument to the nearest integer value.

Every sensor node will send a “Hello” message with its
cell serial number Csn and other information to other sen-
sor nodes between a constant time interval. When a sensor
node with ID number A receives a “Hello” message sent
by sensor node B, sensor node A compares its cell serial
number Csna with the cell serial number Csnb of sensor
node B.

• If Csna is equal to Csnb, which means sensor node
A and sensor node B are in the same cell and if the
information of sensor node B is already in the database
of sensor node A, update the information of sensor
node B.

• If Csna is equal to Csnb, which means sensor node
A and sensor node B are in the same cell and if the
information of sensor node B is not in the database of
sensor node A, record the information of sensor node
B.

• If Csna is not equal to Csnb, which means sensor node
A and sensor node B are not in the same cell and if
the information of sensor node B is in the database of
sensor node A, delete the information of sensor node
B.

• If Csna is not euqal to Csnb, which means sensor node
A and sensor node B are not in the same cell and if the
information of sensor node B is not in the database of
sensor node A, remain idle.

Notice that a sensor node only keeps the information of
the sensor nodes that in the same cell and keeps updating
it. The sensor node can reduce the memory usage and keep
the latest information.

2.4 In-cell Feedback Algorithm

As there is redundancy in the network, when a packet has
been delivered to its destination, its remnant versions of
this packet should be ignored by the network. We assume
all packets have a sending serials number Psn. Psn com-
bining with the source node ID is unique in the network.
When sensor node A receives a packet, it will send out
a “notice” message with its sending serials number Psn,
source sensor ID B and destination sensor node ID A.

When a sensor node receives the “notice” message, it
will search packet in its A subqueue. If there is a packet
with sending serials number Psn and source node ID B,
remove it from its subqueue. Otherwise, remain idle.

Notice that, no packet will be transmitted to its desti-
nation twice. We can reduce the energy consumption and
shorten average delay.

3 The FLS application for the two-hop relay algorithm

The effect of transmitting redundant packets will consume
more energy, however, it will also increase the chance that
the nodes which hold the original or relay packets to reach
their destination node. How to elect the relay/destination
nodes will determine the energy and latency performance.

We collect the knowledge for node election based on the
following three descriptors:

1. distance of a node to the source node,

2. its remaining energy, and

3. its degree of mobility.

The linguistic variables used to represent the distance of
a node to the source node were divided into three levels:
near, moderate, and far ; and those to represent its remain-
ing energy and degree of mobility were divided into three
levels: low, moderate, and high. The consequent – the pos-
sibility that this node will be elected as a relay/destination
nodes – was divided into 5 levels, Very Strong, Strong,
Medium, Weak, Very Weak.

We designed questions such as:

IF distance of a node to the source node is near, and its
remaining energy is low, and its degree of mobility is
moderate, THEN the possibility that this node will be

elected as a relay/destination nodes is .

so we need to set up 33 = 27 (because every antecedent
has 3 fuzzy sub-sets, and there are 3 antecedents) rules for
this FLS.

We created one survey for the network experts. We used
rules obtained from the knowledge of 6 network experts.
These experts were requested to choose a consequent using
one of the five linguistic variables. Different experts gave
different answers to the questions in the survey. Table 1
summarizes the questions used in this survey, and Table 2
captures the results from the completed survey.

We used trapezoidal membership functions (MFs) to
represent near, low, far, and high, and triangle MFs to
represent moderate. We show these MFs in Fig.2.

near, low moderate far, high

0 2 4 6 8 10

0.5

1

Figure 2: MFs for antecedents

In our approach to form a rule base, we chose a sin-
gle consequent for each rule. To do this, we averaged the
centroids of all the responses for each rule and used this
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average in place of the rule consequent centroid. Doing
this leads to rules that have the following form:

Rl : IF distance of a node to the source node (x1) is F1

l ,
and its remaining energy (x2) is F2

l , and its degree of
mobility (x3) is F3

l , THEN the possibility that this node
will be elected as a relay/destination node (y) is cl

avg.

where l = 1, . . . , 27. cl
avg is defined as

cl
avg =

∑
5

i=1
wl

ic
i∑

5

i=1
wl

i

(2)

in which wl
i is the number of people choosing linguistic la-

bel i for the consequent of rule l (i = 1, · · · , 5; l = 1, . . . , 27)
(see Table 2); and, ci is the centroid of the ith consequent
set (i = 1, 2, · · · , 5). The centroids of the three fuzzy sets
depicted in Fig.3 are c1 = 1.0561, c2 = 3, c3 = 5, c4 = 7,
and c5 = 8.9439.

-0.1 -0.06 -0.02 0.02 0.06 0.1

0.5

1.0

1.5

Highly Decrease Decrease UnchangeIncrease Highly Increase

Figure 3: MFs for consequent

To illustrate the use of (2), note, for example, that

c11

avg =
3c1 + 2c2 + c3

3 + 2 + 1
= 2.3614 (3)

All 27 cl
avg values are listed in Table 2.

For every input (x1, x2, x3), the output is computed us-
ing

y(x1, x2, x3) =

∑
27

l=1
µF1

l

(x1)µF2

l

(x2)µF3

l

(x3)c
l
avg∑

27

l=1
µF1

l

(x1)µF2

l

(x2)µF3

l

(x3)
(4)

4 Simulation

We implemented the simulation model using the OPNET
modeler. The simulation region is 180×180 meters, and
it is divided into 9 non-overlapping cells. Each cell is of
equal size, that is 60×60 meters. In the previous section,
we know that the energy consumption ratio is 40:20:1. So
we can assume that the sensor node consumes approxi-
mately 3×10−5 watts when idle, 1.2×10−3 watts during
transmissions and 6×10−4 watts during reception.

There were 80 sensor nodes in the simulation model,
and the sensor nodes were roaming independently with the
ground speed from 1 m/s to 9 m/s. The mobility model
is called one-step Markov path model. The probability of
moving in the same direction as the previous move is higher
than other directions in this model; That means this model
has memory.

 Simulation Time
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Algorithm with redundancy

Figure 4: Average latency performance of the two algo-
rithms

4.1 Average Latency

We use the average latency to evaluate the network perfor-
mance. It is the average transmission delay of the entire
received packet, which is in the same priority. Each packet
is labeled a timestamp when it was generated by the source
sensor node. When its destination sensor node receives it,
the time interval is the transmission delay.

AverageLatency =

∑K

i=1
Di

K
(5)

Observe Fig.4 the latency performance of the algorithm
with redundancy for high priority packets is much better
than that of the algorithm without redundancy for the low
priory packets. Not only the average delay of high priority
packets is much smaller than that of the low priority pack-
ets, but also the time jitter is much better. Time jitter
refers to short-term variation or instability in the duration
of a specified time interval. We can draw a conclusion: if
the service is time-sensitive, such as video or audio service,
we can adopt the scheduling algorithm with redundancy to
improve their delay performance.

4.2 Energy Efficiency

The algorithm for high priority packets uses the multi-
cast technique to transmit redundant packets to improve
the latency performance, however, transmitting redundant
packets will consume more energy. The algorithm with re-
dundancy will make its energy efficiency worse than that of
the algorithm without redundancy. In the wireless sensor
networks, we use two parameters: the number of sensor
nodes alive and the remaining energy to describe the en-
ergy efficiency.

When the remaining energy of a sensor node is lower
than a certain threshold, the sensor is considered as
“dead”. In this simulation, we choose 1.2×10−3 as the
threshold. This threshold is the minimum energy to trans-
fer a lK bits packets in a 1K bps bandwidth wireless chan-
nel. A sensor is “dead” means it cannot transmit/receive
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Figure 5: Sensor nodes alive of the two algorithms

packets any longer, so it will be removed from the sen-
sor network. Sensors are used to collect data and trans-
mit the packets. The number of sensors of wireless sensor
networks, which is below a certain threshold, means this
network does not work. As Fig.5 showed, the remaining
sensor nodes alive of the algorithm with redundancy for
high priority packets were decreasing much quicker that of
the algorithm without redundancy. As descried in the 2-
Hop relay algorithm, we chose the sensors with most energy
as the destination; we could keep the energy consumption
balance among sensors. We could observe from Fig.5 that
the curve was dropping sharply. Comparing with the av-
erage delay performance, we could find it was a tradeoff
between network life and delay performance. The simula-
tion result could be a reference when we design the WSNs.

Fig.6 showed the remaining energy of the two scheduling
algorithm. We assumed that the energy of each sensor was
10J and the packet size was 125 bytes (1K bits), and the
channel transmission rate is 1K bps. So when the sensor
transmitted or received a packet, it would cost 1 second.
And we adopt CSMA/CA protocol to solve the packets
collision problem. If a sensor node transmitted Ns packets
(each packet cost 1 second) and received Nr packets (each
packets also cost 1 second) and it was roaming in the net-
work for Tm, we could get the remaining energy Ei of this
sensor node:

Ei = 10−(3×10−5×Tm +1.2×10−3×Ns +6×10−4×Nr)
(6)

The remaining energy Ew of the whole networks is de-
scribed as:

Ew =
40∑

i=1

Ei (7)

Fig.6 showed the remaining energy of the algorithm
without redundancy is not dropping as sharply as that of
the algorithm without redundancy. It illustrated that the
algorithm without redundancy cost less energy.
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Figure 6: Remaining energy of the two algorithms
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Figure 7: Packets received of the two algorithms

4.3 Network Quality

The role of the wireless sensor network in the real world
is to collect data and transmit packets. In our simulation,
we assumed the collecting data distribution of the sen-
sor node is Poisson distribution and the arriving interval
was 1 second. Observing from Fig.7, although the lifetime
of the algorithm with redundancy was shorter than that
of the algorithm without redundancy, but it could collect
and transmit more packets. One of the main reasons was
that the sensors in the networks were keeping moving, that
meant it kept consuming energy. For the algorithm with-
out redundancy, the sensor node consumed more energy
under idle condition, although the sensor node of the al-
gorithm with redundancy consumed more energy when it
transmitted or received packets.

From Fig.4 to Fig.7, we could observe that the simula-
tion time of the algorithm with redundancy was shorter
than that of the algorithm without redundancy, which
meant the networks lifetime of the algorithm with redun-
dancy was shorter.
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Figure 8: The FLS application vs the degree of mobility. (a) average delay, (b) packets received

4.4 FLS vs Mobility

We obtained the simulation result of FLS application,
which considered three antecedents. If we only considered
one antecedent: the degree of mobility, the performance of
average delay would be better. As plotted in Fig.8(a), the
performance of average delay which only considered the
degree of mobility was about 6% better than that of FLS
application. However, the FLS application could achieve
a better performance for packets received, about 18%, as
plotted in Fig.8(b).

4.5 FLS vs the Remaining Energy

Similarly, we considered only one antecedent: the remain-
ing energy, the performance of first “dead” node would be
better. As plotted in Fig.9(a), the life time of the first
“dead” node was 3 minutes longer than that of FLS ap-
plication. However, the FLS application achieved a better
performance for the network life, about 8 hours longer.
The reason was that we adopted the path loss model in
the simulation and the FLS had considered another an-
tecedent: the distance to the source node. The nearer
distance, the less energy consumed. At the same time, the
FLS application also achieved a better performance for the
packets received, about 5%, as plotted in Fig.9(b).

Simulation results showed that the FLS application
could manage the delay/energy tradeoffs to meet the net-
works performance requirement.

5 Conclusion

In order to meet different performance requirement of the
service, we classified the services into high priority and low
priority. Considering the effect of transmitting redundant
packets, the 2-Hop relay algorithm was introduced. The
algorithm with redundancy could improve the delay perfor-
mance, but cost more energy to reduce the system life. In
the two-hop relay algorithm, the relay/destination nodes

election would determine the network performance. The
simulation result showed that the two-Hop relay algorithm
with/without redundancy could establish the delay/energy
tradeoffs to meet different performance requirement of the
services in WSN. We applied FLS to the relay/destination
nodes selection. Three descriptors were used: the distance
to the source node, the remaining energy and the degree
of mobility. We obtained the linguistic knowledge from a
group of experts. Based on the linguistic knowledge, we set
up 27 rules. The nodes possibility was the output of FLS.
We elected the nodes with the highest three possibilities as
the relay nodes and we elected the node with the highest
possibility as the destination node. Further more, simu-
lation results suggested that if we designed different FLS
for the two-hop relay algorithm, we could meet different
performance requirement in WSN.
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Figure 9: The FLS application vs the remaining energy. (a) nodes alive, (b) packets received
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Table 1: The questions for Nodes Election for the two-Hop

Relay Algorithm

Antecedent 1 is distance of a node to the source node,

Antecedent 2 is its remaining energy, Antecedent 3 is its

degree of mobility, and Consequent is the possibility that

this node will be elected. The experts were asked to fill in

the blank for the Consequent using one of five linguistic

labels (very weak, weak, medium, strong, very strong).

Q # Ant 1 Ant 2 Ant 3 Cont

1 near low high

2 near low moderate

3 near low low

4 near moderate high

5 near moderate moderate

6 near moderate low

7 near high high

8 near high moderate

9 near high low

10 moderate low high

11 moderate low moderate

12 moderate low low

13 moderate moderate high

14 moderate moderate moderate

15 moderate moderate low

16 moderate high high

17 moderate high moderate

18 moderate high low

19 far low high

20 far low moderate

21 far low low

22 far moderate high

23 far moderate moderate

24 far moderate low

25 far high high

26 far high moderate

27 far high low

Table 2: Histograms of expert responses about Nodes Elec-

tion for the Two-Hop Relay Algorithm.

6 network experts answered the questions. The entries in

the second – sixth columns correspond to the weights wl
1
,

wl
2
, wl

3
, wl

4
, and wl

5
, respectively.

R # (l) VW W M S VS cl
avg

1 0 3 3 0 0 4.0

2 1 5 0 0 0 2.676

3 3 1 2 0 0 2.6947

4 0 0 3 3 0 6.0

5 0 0 0 5 1 7.3240

6 0 4 1 1 0 4.0

7 0 0 0 1 5 8.6199

8 0 0 1 5 0 6.6667

9 0 1 4 1 0 5.0

10 0 4 2 0 0 3.6667

11 3 2 1 0 0 2.3614

12 4 1 1 0 0 2.0374

13 0 1 3 2 0 5.3333

14 1 1 4 0 0 4.0093

15 2 3 0 1 0 3.0187

16 0 0 2 3 1 6.6573

17 0 1 2 3 0 5.6667

18 0 3 2 1 0 4.3333

19 2 4 0 0 0 2.3520

20 5 1 0 0 0 1.3801

21 5 1 0 0 0 1.3801

22 1 4 1 0 0 3.0093

23 1 4 1 0 0 3.0093

24 5 0 1 0 0 1.7134

25 0 2 2 2 0 5.0

26 0 0 2 3 1 6.6573

27 0 2 2 1 1 5.3240
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Abstract

In radar sensor network (RSN), the interferences among radars can be effectively reduced

when waveforms are properly designed. In this paper, we perform some theoretical studies

on co-existence of phase coded waveforms in RSN, then we give the definition of a new kind

of ternary codes–optimized punctured Zero Correlation Zone sequence-Pair Set (ZCZPS) and

analyze their properties. Besides, we apply our newly provided ternary codes and equal gain

combination technique to RSN and study the detection performance versus different number of

radars in RSN under the condition of either Doppler shift or time delay among transmitting

sensors. Simulation results show that no matter whether the target is moving in the system,

detection performances of RSN using our optimized punctured ZCZPS are superior to those of

single radar using the traditional compression codes.

Index Terms : zero correlation zone, optimized punctured ZCZ sequence-pair, radar sensor

network, Doppler shift

1
343 of 816



1 Introduction

Recently, the idea of networking radar sensors has attracted considerable interest. A network of

multiple radar sensors can be introduced to overcome performance degradation of single radar along

with waveform optimization. In the existing works on radar waveform design, Bell [2] who intro-

duced information theory to radar waveform design, concluded that distributing energy is a good

choice to better detect targets. Sowelam and Tewfik [18] applied a sequential experiment design

procedure to select signal for radar target classification. In their work, each waveform selected

maximizes the Kullback/Leibler information number that measures the dissimilarity between the

observed target and the alternative targets in order to minimize the decision time. All the above

researches only focused on the waveform design for a single active radar. Nevertheless, in [11], Liang

studied constant frequency (CF) pulse waveform design and proposed maximum-likelihood (ML)

automatic target recognition (ATR) approach for both nonfluctuating and fluctuating targets in a

network of multiple radar sensors. Furthermore, RSN design based on linear frequency modulation

(LFM) waveform was studied and LFM waveform design was applied to RSN with application to

ATR with delay-Doppler uncertainty by Liang [12] as well. In addition, binary coded pulses using

simulated annealing in RSN are highlighted in [4].

In addition to the above radar waveform design work, phase coded waveform design is one of

the widely used waveform design methods for pulse compression technique which allows a radar

to simultaneously achieve the energy of a long pulse and the resolution of a short pulse without

the high peak power which is required by a high energy short duration pulse [2]. Since high range

sidelobes could mask returns from targets in radar system, there has been considerable interest

in study of reducing range sidelobe of corresponding codes in radar system. In addition to the

well-known Barker code, by suffering a small S/N loss, the authors [16] present several binary

pulse compression codes to greatly reduce sidelobes. In [17], pulse compression using a digital-
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analog hybrid technique is studied to achieve very low range sidelobes for potential application to

spaceborne rain radar. Tanner et al.[21] uses time-domain weighting of the transmitted pulse to

achieve a range sidelobe level of -55 dB or better in flight tests. Nevertheless, the range sidelobes

in the above work could hardly reach as low as zero in the previous work.

In this paper, we theoretically study RSN design based on phase coded waveforms: the con-

ditions of waveforms co-existence. Then we apply our newly proposed ternary code–optimized

punctured ZCZ sequence-Pair Set (ZCZPS) as the phase coded waveforms to RSN. The newly

proposed codes could reach zero autocorrelation sidelobe and zero mutual cross correlation values

during zero correlation zone. We perform studies on the codes’ properties, especially the cross

correlation property and analyze the performance of optimized punctured ZCZPS in RSN system

under the environment of Doppler shift and time delay among transmitting radar sensors. Monte

Carlo simulation results show that RSN based on our optimized punctured ZCZ sequence-pairs

performs much better than that of single radar, in terms of probability of miss and false alarm

detection.

The rest of the paper is organized as follows. In Section 2, we study the co-existence of phase

coded waveforms. Section 3 introduces the definition and properties of our newly provided ternary

coded waveform–optimized punctured ZCZ sequence-pair set, especially the outstanding autocor-

relation and cross correlation property. In Section 4, we study the performance versus different

number of radars in RSN either under the condition of Doppler shift or not, by applying our ternary

codes and equal gain combination technique to the system simulation. In Section 5, conclusions

are drawn on radar sensor network using our optimized punctured ZCZPS.
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2 CO-EXISTENCE OF PHASE CODED WAVEFORMS IN RSN

In RSN, it is easy to see that radar sensors are likely to interfere with each other and the perfor-

mances may degrade if their waveforms are not properly designed.

The phase coded waveform can be defined as

x(t) =
M−1∑
n=0

x(n)(t− ntb) (1)

Here, 0 < t ≤ tb. M is the period of the modulation signal, each bit of duration tb and T = Mtb.

The bits are phase modulated by the phase sequence β(n) of length M :

x(n)(t) =




exp(j2πβ(n)t) 0 ≤ t ≤ tb

0 elsewhere
(2)

For t > T or t < 0, within the duration of the signal, the periodicity implies that the complex

envelope of the transmitted signal x(t) obeys

x(t) = x(t+ iT ), i = 0,±1,±2, ... (3)

We assume there are N radars networking together in a self-organizing fashion in our RSN. The

radar i transmits a waveform as

xi(t) =
M−1∑
n=0

x
(n)
i (t− ntb) =

M−1∑
n=0

exp(j2πβ(n)
i (t− ntb)) (4)

Here, 0 < t ≤ tb.

The cross correlation between xi(t) and xj(t) could be expressed as:

R(τ) = R(mtb) =
1
T

∫ T/2

−T/2
xi(t)x∗j (t− τ)dt (5)

=
N−1∑
n=0

∫ −T/2+(n+1)tb

−T/2+ntb

exp[j2πβ(n+1)
i (t− (n + 1)tb)]exp∗[j2πβ

(M−m+n+1)
j (t− (M −m+ n+ 1)tb)]dt

=
1
M

M−1∑
n=0

exp[j2π[β(M−m+n+1)
j (Mtb −mtb +

T

2
+
tb
2

) + β
(n+1)
i (−T

2
− tb

2
)]]

sinc[tb(β
(n+1)
i − β

(M−m+n+1)
j )]
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In order to reduce the interference of different waveforms, we would like to achieve that when

i �= j, R(τ) should be as small as possible. According to equation (5), if πtb(β
(n+1)
i −β(M−m+n+1)

j ) =

kπ, k = 1, 2, 3..., then R(τ) = 0. This result is used later in the paper. Observing the equation (5),

when i = j and m = 0, then sinc[tb(β
(n+1)
i − β

(M−m+n+1)
j )] = 1 and R(τ) could be normalized as

1. It is obvious that this is desirable in a radar sensor network.

It is known that orthogonal waveforms could provide optimized correlation property as

1
T

∫ T/2

−T/2
xi(t)x∗j (t− τ)dt =




1 i = j and m = 0

0 i �= j or m �= 0
(6)

As a result, orthogonal waveforms, which could minimize or remove the interference from one

waveform to the other, can work well simultaneously in Radar Sensor Network.

Nevertheless, there are time delay and Doppler shift ambiguity that will introduce interference

to waveforms in RSN. Ambiguity function (AF) [15] generally identified with Woodward [23][24]

is usually used to succinctly characterize the behavior of a waveform paired with its matched filter.

So it is an analytical tool for waveform design especially there are time delay and Doppler shift

ambiguity.

PAF (Periodic Ambiguity Function) is introduced by Levanon [3] as an extension of the periodic

autocorrelation for Doppler shift. And the single-periodic complex envelope would be:

A(τ, FD) ≡ | 1
T

∫ T/2

−T/2
x(t+

τ

2
)ej2πFDtx∗(t− τ

2
)dt| ≡ |Â(τ, FD)| (7)

Where τ is the time delay, T is one period of the signal and FD is the Doppler shift.
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Accordingly, the single-periodic ambiguity function of phase coded waveform here can be

A(τ, FD) (8)

= | 1
T

∫ T
2

−T
2

x(t)exp(j2πFDt)x∗(t− τ)dt|

= | 1
T

M−1∑
n=0

∫ −T
2
+(n+1)tb

−T
2

+ntb

exp[j2πβ(n+1)(t− (n+ 1)tb)]exp∗[j2πβ(M−m+n+1)(t− (M −m+ n+ 1))]

exp(j2πFDt)dt|

= | 1
M

M−1∑
n=0

exp[j2π[β(M−m+n+1)[(M −m)tb +
tb
2

+
T

2
] + β(n+1)(− tb

2
− T

2
) + FD(−T

2
+ (n+ 1)tb)]

sinc[tb(β(n) − β(n−m) + FD)]|

When it is satisfied that

πtb(β(n) − β(n−m) + FD) = kπ, k = 1, 2, 3... (9)

The amplitude of ambiguity function turns to be zero. Stating differently, based on the result that

when πtb(β
(n+1)
i −β(M−m+n+1)

j ) = kπ, k = 1, 2, 3..., then R(τ) = 0, it is achieved that A(τ, FD) = 0,

when FD = k
tb
, k = 0, 1, 2...

The ambiguity function of MIMO radar systems have been analyzed in [19]. We extend the ideas

of single-periodic ambiguity to RSN in this paper. In the RSN, all the radar sensors are transmitting

signals, the radar i not only receives its own back-scattered waveform, but also scattered signals

generated by other radars which caused interference to radar i. Assuming it is well synchronized

that there are no time delay among the transmitting radars t1 = t2 = ... = tN = 0, we study

the interferences from all the other N − 1 radars (j �= i). Also assuming time delay τ = mtb for

6
348 of 816



receiving radar i, the ambiguity function of radar i with phase coded waveform can be

Ai(τ, FD1 , ..., FDN
) (10)

= |
N∑

j=1

1
T

∫ T
2

−T
2

xj(t)exp(j2πFDi t)x
∗
i (t− τ)dt|

= | 1
M

N∑
j=1

M−1∑
n=0

exp[j2π[β(M−m+n+1)
i [(M −m+

1
2
)tb +

T

2
] + β

(n+1)
j (− tb

2
+
T

2
) + FDj [−

T

2
+ (n+ 1)tb]]]

sinc[tb(β
(n+1)
j − β

(M−m+n+1)
i + FDj )]|

Here, 0 < i ≤ N . (10) consists of two parts: useful signal(reflected signal from the transmitting

radar i waveform), j = i part in the (10); and interferences from other N − 1 radar waveforms,

j �= i parts in (10).

3 Optimized Punctured ZCZ Sequence-Pair Set

Zero correlation zone (ZCZ) is a new concept provided by Fan [5][6] [7] [8] in which both auto-

correlation and cross correlation sidelobes are zero while the time delay is kept within the Zero

Correlation Zone instead of the whole period of time domain.

Matsufuji and Torii have provided some methods of constructing ZCZ sequences in [14] [22]. In

this section, we apply optimized punctured sequence-pair [9] to zero correlation zone to construct

a new kind of ternary codes–optimized punctured ZCZ sequence-pair set, and prove that the newly

provided ternary code which has good autocorrelation and cross correlation properties in ZCZ can

be good candidates for phase coded waveforms in RSN.

3.1 The Definition of Optimized Punctured ZCZ Sequence-Pair Set

We introduce some useful definitions first.

Definition 3-1 Assume (x(n)
i , y

(n)
i ) is a sequence-pair set that consists of K sequence-pairs of

length N , where n = 1, 2, 3, ...,M − 1, i = 0, 1, 2, ...,K − 1, if all the sequences in the set satisfy the
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following equation:

Rxiyj (τ) =
M−1∑
n=0

x
(n)
i y

∗(n+m) mod M
j =




λM, for τ = 0 and i = j

0, for τ = 0 and i �= j

0, for 0 < |τ | ≤ Z0tb

(11)

where tb is the duration of each bit, τ = mtb and 0 < λ ≤ 1, then (x(n)
i , y

(n)
i ) is called ZCZ

sequence-pair set. 0 < |τ | ≤ Z0tb is the Zero Correlation Zone during which the autocorrelation

and cross correlation values could be kept zero. ZCZPS(M,K,Z0) is an abbreviation.

Definition 3-2 [9] Sequence u = (u(0), u(1), ..., u(M−1)) is the punctured sequence for v =

(v(0), v(1), ..., v(M−1)),

u(n) =




0, if n ∈ p punctured bits

v(n), if n ∈ Non-punctured bits
(12)

Where p is the number of punctured bits in sequence v, suppose v(n)ε(−1, 1) and u(n)ε(−1, 0, 1), u

is p-punctured binary sequence, (u,v) is called a punctured binary sequence-pair.

Definition 3-3 [9] The autocorrelation of punctured sequence-pair (u,v) is defined

Ruv(τ) = Ruv(mtb) =
M−1∑
n=0

u(n)v∗(n+m) mod M , 0 ≤ τ ≤ M − 1 (13)

If the punctured sequence-pair has the following autocorrelation property:

Ruv(τ) =




E, if τ ≡ 0modM

0, others
(14)

the punctured sequence-pair is called optimized punctured sequence-pair [9]. Where,

E =
∑M−1

n=0 u
(n)v∗(n+m) mod M = M − p, is the energy of the punctured sequence-pair.

The properties, Fourier transform characteristics, existing necessary conditions and some con-

struction methods with help of already known sequences of punctured sequence-pairs have been
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studied by Jiang [9]. An amount of optimized punctured sequence-pairs have been found of length

from 3 to 31 so far.

Definition 3-4 If (x(n)
i , y

(n)
i ) in Definition 3-1 is constructed by optimized punctured sequence-

pair and a certain matrix, such as Hadamard matrix or an orthogonal matrix, where

x
(n)
i ∈ (−1, 1), i = 0, 1, 2, ...,M − 1

y
(n)
i ∈ (−1, 0, 1), i = 0, 1, 2, ...,M − 1

Rxiyj (τ) =
M−1∑
n=0

x
(n)
i y

∗(n+m) mod M
j =




λM, for τ = 0 and i = j

0, for τ = 0 and i �= j

0, for 0 < |τ | ≤ Z0tb

(15)

where τ = mtb and 0 < λ ≤ 1, then (x(n)
i , y

(n)
i ) can be called optimized punctured ZCZ sequence-

pair set, and we use OPZCZPS(M,K,Z0) as its abbreviation.

3.2 Design for Optimized Punctured ZCZ Sequence-pair Set

Based on odd length optimized punctured binary sequence pairs and a Hadamard matrix, we

provide a method to construct an optimized punctured ZCZ sequence-pair set.

Step 1: Considering an odd length optimized punctured binary sequence-pair (u,v), the length

of each sequence is M1

u = u(0), u(1), ..., u(M1−1), u(n) ∈ (−1, 1),

v = v(0), v(1), ..., v(M1−1), v(n) ∈ (−1, 0, 1),

n = 0, 1, 2, ...,M1 − 1,M1

Step 2: Considering a Hadamard matrix B of order M2, the length of each sequence in B

equals to the number of the sequences as M2. Here, any Hadamard matrix order is possible and bi
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is the row vector.

B = [b0;b1; ...;bM2−1)],

bi = (b(0)i , b
(1)
i , ..., b

(M2−1)
i ),

Rbibj
=




M2, if i = j

0, if i �= j

Step 3: Doing bit-multiplication on the optimized punctured binary sequence-pair and each

row of Hadamard matrix B, then sequence-pair set (X,Y) is obtained,

bi = (b(0)i , b
(1)
i , ..., b

(M2−1)
i ), i = 0, 1, ...,M2 − 1,

x
(n)
i = u(n mod M1)b

(n mod M2)
i , 0 ≤ i ≤M2 − 1, 0 ≤ n ≤M − 1,

X = (x0;x1; ...;xM2−1),

y
(n)
i = v(n mod M1)b

(n mod M2)
i , 0 ≤ i ≤M2 − 1, 0 ≤ n ≤M − 1,

Y = (y0;y1; ...;yM2−1)

Since the optimized punctured binary sequence-pairs used here are of odd lengths and the length

of Walsh sequence in Hadamard matrix is 2k, k = 1, 2, ..., it is easy to see that GCD(M1,M2) = 1

(greatest common divisor of M1 and M2 is 1) and M = M1 ∗M2.

To sum up, the sequence-pair set (X,Y) is optimized punctured ZCZPS and M1 −1 is the Zero

Correlation Zone coefficient Z0. The length of each sequence in optimized punctured ZCZ sequence-

pair set isM = M1∗M2 that depends on the product of length of optimized punctured sequence-pair

and the length of Walsh sequence each row in Hadamard matrix. The number of sequence-pairs

in optimized punctured ZCZ sequence-pair set rests on the order of the Hadamard matrix. The

sequence xi in sequence set X and the corresponding sequence yi in sequence set Y construct an

optimized punctured ZCZ sequence-pair (xi,yi) that can be used as a pulse compression code. The
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correlation property of the sequence-pairs in optimized punctured ZCZ sequence-pair set is:

Rxiyj (τ) = Ruv((m mod M1)tb)Rbibj
((m mod M2)tb) =




EN2, if m = 0 and i = j

0, if 0 < |m| ≤M1 − 1 and i = j

0, if i �= j

(16)

where τ = mtb is the time delay and tb is one bit duration.

Proof:

1) When i = j,

m = 0,

Ruv(0) = E,Rbibj
(0) = M2, Rxiyj (0) = Ruv(0)Rbibj

(0) = EM2;

0 < |m| ≤M1 − 1,

Ruv(mtb) = 0, Rxiyj (mtb) = Ruv((m mod M1)tb)Rbibj
((m mod M2)tb) = 0;

2) When i �= j,

m = 0,

Rbibj
(0) = 0, Rxiyj (0) = Rxjyi(0) = Ruv((m mod M1)tb)Rbibj

((m mod M2)tb) = 0;

0 < |m| ≤M1 − 1,

Ruv(mtb) = 0, Rxiyj (mtb) = Ruv((m mod M1)tb)Rbibj
((m mod M2)tb) = 0.

According to Definition 3-1 and Definition 3-4, it is obvious that the sequence-pair set

constructed by the above method is an optimized punctured ZCZ sequence-pair set.

3.3 Properties of Optimized Punctured ZCZ Sequence-pair set

Constructed by the above method, the autocorrelation and cross correlation properties of OPZCZPS

can be simulated and analyzed. For example, the 124-bit long optimized punctured ZCZPS (X,Y)
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is constructed by 31-bit long optimized punctured binary sequence-pair (u,v),u = [++++−−−+

−+−+++−−−−+−−+−−+++−++−],v = [++++000+0+0+++0000+00+00+++0++0]

(using ′+′ and ′−′ symbols for ′1′ and ′ − 1′) and Hadamard matrix H of order 4. The number

of sequence-pairs here is 4, and the length of each sequence is 31 ∗ 4 = 124. The first row of each

matrix X = [x1;x2;x3;x4] and Y = [y1;y2;y3;y4] constitute a certain optimized punctured ZCZP

(x1,y1). Similarly, the second row of each matrix X and Y constitute another optimized punctured

ZCZ sequence-pair (x2,y2) and so on.

x1 = [+ + + + −−− + − + − + + + −−−− + −− + −− + + + − + + − + + + + −−− +

− + − + + + −−−− + −− + −− + + + − + + − + + + + −−− + − + − + + + −−−

− + −− + −− + + + − + + − + + + + −−− + − + − + + + −−−− + − + − + + − +

− + + + + − + + + − +],

y1 = [+ + + + 000 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0 + + + 000

0 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0 + + +

+000 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0];

x2 = [+ − + −− + −−−−−− + −− + − + + + −−− + + − + + + −−− + − + + − + +

+ + + − + + − + −−− + + + −− + −−− + + + − + −− + −−−−−− + −− + −

+ + + −−− + + − + + + −−− + − + + − + + + + + + − + + − + −−− + + + −−

+ −−− ++],

y2 = [+ − + − 000 − 0 − 0 − + − 0000 + 00 − 00 + − + 0 + −0 − + − +000 + 0 + 0 + − + 00

00 − 00 + 00 − + − 0 − +0 + − + −000 − 0 − 0 − + − 0000 + 00 − +00 + − + +0 + − +

0 − + + − + +000 + 0 + 0 + − + 0000 − 00 + 00 − + − 0 − +0].
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Optimized punctured ZCZ sequence-pairs (x1,y1) and (x2,y2) are simulated and studied in the

following parts.

3.3.1 Autocorrelation and Cross Correlation Properties

The autocorrelation property and cross correlation property of 124-bit long optimized punctured

ZCZ sequence-pair set (X,Y) are shown in Figs. 1 and 2.

From the Figs. 1 and 2, the autocorrelation function (ACF) sidelobe of optimized punctured

ZCZPS and the cross correlation function (CCF) can be kept as low as 0 when the time delay is

kept within Z0 = N1 − 1 = 30 (Zero Correlation Zone).

It is known that a traditional criterion for evaluating code of length M is the signal peak to

sidelobe ratio (PSR) of their aperiodic ACF, which can be bounded by [20]

[PSR]dB ≤ 20logM = [PSRmax]dB (17)

The only uniform aperiodic phase codes that can reach the PSRmax are the Barker codes whose

length is equal or less than 13. Considering the periodic sequences, the m-sequences or Legendre

sequences could achieve the lowest periodic ACF of |Ri(τ �= 0) = 1|. For non-binary sequences, it

is possible to find perfect sequences of ideal ACF. Golomb codes are a kind of two-valued (biphase)

perfect codes which obtain zero periodic ACF but result in large mismatch power loss. The Ipatov

code shows a way of designing code pairs with perfect periodic autocorrelation (the cross correlation

of the code pair) and minimal mismatch loss. In addition, zero periodic autocorrelation function for

all nonzero shifts could be obtained by polyphase codes, such as Frank and Zadoff codes. However,

for both binary and non-binary sequences, it is not possible for the sequences to have perfect ACF

and CCF simultaneously although ideal CCFs could be achieved alone. According to Figs. 1 and

2, both of ACF and CCF sidelobe of the new code could reach as low as 0. Stating differently,

the signal peak to sidelobes can be as large as infinite. In addition, the reference sequence of our
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proposed codes is made of -1,0,1 which is much less complicated than some other perfect ternary

codes such as Ipatvo code. The reference code for Ipatov code is of a three-element alphabet which

might not always be integer.

Nevertheless, there might be the concern that multiple peaks of the autocorrelation function

would lead to ambiguity in ranging. Since we are studying the single target system in this research,

well controlled the PRF (pulse repetition frequency), the only concern is that multiple peaks of

single transmitting signal reflected from one target may affect determining the main peak of ACF.

As a matter of fact, the matched filter here could shift at the period of ZCZ length to track each

peak instead of shifting bit by bit after the first peak is acquired. Hence, in this way could it

be working more efficiently. Alike the tracking technology in synchronization of CDMA system,

checking several peaks instead of only one peak guarantee the precision of PD and avoidance of

PFA. In addition, those obtained peaks could be averaged before the detection in order to reduce

the effect of random noise in the channel so that the detection performance could be improved.

3.3.2 Ambiguity Function

When the transmitted impulse is reflected by a moving target, the reflected echo signal includes a

linear phase shift which corresponds to a Doppler shift FD [15]. As a result of the Doppler shift

FD, the main peak of the autocorrelation function is reduced and so as to the SNR degradation

shown as following:

[d]dB = 10log

∫ T/2
−T/2 x(t)x

∗(t)dt∫ T/2
−T/2 x(t)e

j2πFDtx∗(t)dt
(18)

The sidelobe structure is also changed because of the Doppler shift.

Considering the sequence-pair (x,y) and the periodic correlation property of the sequence-pair,
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we use the single-periodic ambiguity function [3] and rewrite it as

A(τ, FD) = | 1
T

∫ T/2

−T/2
x(t)exp(j2πFDt)y∗(t− τ)dt| (19)

Equation (19) can be used to analyze the autocorrelation performance within Doppler shift, and

is plotted in Fig. 3 in a three-dimensional surface plot to analyze the time-Doppler performance

of the OPZCZPS. Here, maximal time delay is 1 unit (normalized to length of the code, in units

of Mtb) and maximal Doppler shift is 3 units for ACF (normalized to the inverse of the length of

the code, in units of 1/(Mtb)). From Fig. 3, it is easy to see that there is relative uniform plateau

suggesting low and uninform sidelobes, minimizing target masking effect in zero correlation zone

of time domain, where Z0 = 30, −31 < τ < 31, τ �= 0.

3.4 Co-existence of Optimized Punctured ZCZ Sequence-Pairs

Considering interference from another radar j, if there are time delay between two transmitting

radars and Doppler shift, the ambiguity function of radar i can be expressed as

Ai(τ, FDi , FDj ) = | 1
T

∫ T/2

−T/2
(xi(t)exp(j2πFDi t) + xj(t)exp(j2πFDj t))y

∗
i (t− τ)dt| (20)

Where τ is the time delay for ith receiving radar, FDi and FDj are the Doppler shift for signals

transmitting from ith and jth radar antennas respectively.

Fig. 4 is three-dimensional surface plot to analyze the ambiguity function of radar i (considering

interference from radar j). Generally speaking, Fig. 4 closely resembles Fig. 3. There is relative

uniform plateau suggesting low and uninform sidelobes, minimizing target masking effect in zero

correlation zone of time domain, where Z0 = 30, −31 < τ < 31, τ �= 0. It is obvious that even

considering the interference from another radar j, the radar i may work as well as there is no

interference.

The output of matched filter of radar i (considering interference from radar j) is illustrated in
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Fig. 5 under the condition of no Doppler shift. Figs. 1 and 5 are similar. There are regular high

peaks on multiples of period 31 that is the length of the optimized punctured sequence-pair used in

the constructing method. And the sidelobe can be as low as 0 when the time delay is kept among

zero correlation zone −31 < τ < 31, τ �= 0. The high peak on zero time delay point can be used to

detect targets.

Assuming that precise synchronization could be obtained between the reflected signal and the

matched filter on the receiving side, the output of matched filter of radar i (considering interference

from radar j) with no time delay, is illustrated in Fig. 6. Here, the Doppler shift is kept among 5

units (normalized to the inverse of the length of the code, in units of 1/Mtb). Fig. 6 shows that

while the Doppler shift is less than 1 unit (normalized to length of the code, in units of Mtb), the

amplitude decreases sharply. The amplitude has a downward trend on the whole frequency domain.

For some traditional phase coded waveforms, such as the Barker code, when Doppler frequencies

equal to multiples of the pulse repetition frequency (PRF = 1/PRI = 1/tb) the ambiguity value

turns to be zero. Because of these zeros, such multiples of the pulse repetition frequency will

render the radar blind [1] to their velocities. However, in Fig. 6, ambiguity values are zero only

when Doppler frequencies are equal to odd multiples of the PRF. Therefore, using the optimized

punctured ZCZ sequence-pair in the RSN system could, to some extent, improves the blind speed

problem in moving target detection system.

4 System Simulation in Radar Sensor Network

In RSN of N radars, the combined signal for ith receiving radar is

ri(u, t) =
N∑

j=1

xj(t− tj)exp(j2πFDj t) + n(u, t) (21)
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Where FDj and tj are Doppler shift and time delay of reflected signal of jth transmitting radar

respectively. xj(t) is radar transmitting waveform and n(u, t) is additive white Gaussian noise

(AWGN).

According to the structure illustrated in Fig. 7, the combined received signal ri(u, t) is processed

by its corresponding matched filter yi(t) and the output of branch i is Zi(u). Each Zi(u) can be

equal gain combined to construct the final output Z(u).

The output of branch i is

|Zi(u)| = |
∫ T/2

−T/2
[

N∑
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t)]y∗i (t− ti)dt| (22)

Where ti is the time delay of matched filter yi(t) on ith receiving radar. n(u) =
∫ T/2
−T/2 n(u, t)y∗i (t−

ti)dt can be easily proved to be an AWGN.

We investigate the three special cases for |Zi(u)|:

1) If all the radar sensors transmit the signals synchronously and the target is not moving, stating

differently, there is no time delay for each radar sensor nor Doppler shift, t1 = t2 = ... = tN = 0

and FD1 = FD2 = ... = FDN
= 0, then

|Zi(u)| = |
∫ T/2

−T/2
[

N∑
j=1

xj(t) + n(u, t)]y∗i (t)dt| = |E + 0 + n(u)| (23)

2) Considering Doppler shift but no time delay for each transmitting signal, t1 = t2 = ... =

tN = 0, then

|Zi(u)| = |
∫ T/2

−T/2
[

N∑
j=1

xj(t)exp(j2πFDj ) + n(u, t)]y∗i (t)dt| (24)

In our work, we assume the Doppler shift could be estimated in the receiving radar sensor, so

the Doppler shift compensation factor exp∗(j2πFD) is introduced and FD is the estimated Doppler
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shift on the receiving radar here. The equation can be modified as:

|Zi(u)| = |
∫ T/2

−T/2
[

N∑
j=1

xj(t)exp(j2πFDj ) + n(u, t)]y∗i (t)exp∗(j2πFDit)dt| (25)

≤ |E| + |
∫ T/2

−T/2
[

N∑
j=1

xj(t)exp(j2π(FDj − FDi))y
∗
i (t)| + |

∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt|

According to the the third part of the equation (25), the magnitude of noise is reduced because

of the Doppler shift compensation factor.

Since we are studying the single moving target system and assuming that the Doppler shift

could be precisely estimated on the receiving antenna, it is reasonable to have FD1 = FD2 = ... =

FDj = FD, the equation (24) can be further simplified as

|Zi(u)| ≤ |E| + 0 + |
∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt| (26)

3) Considering both time delay and Doppler shift in the RSN, the Doppler shift compensation

factor is also introduced in the receiving sensor,

|Zi(u)| (27)

= |
∫ T/2

−T/2
[

N∑
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t)]y∗i (t− ti)exp∗(j2πFDi t)dt|

≤ |
∫ T/2

−T/2
[

N∑
j=1

xj(t− tj)exp(j2π(FDj − FDi))]y
∗
i (t− ti)| + |

∫ T/2

−T/2
n(u, t)y∗i (t− ti)exp∗(j2πFDit)dt|

Similarly, we assume that FD1 = FD2 = ... = FD,

|Zi(u)| ≤ |E| + |
∫ T/2

−T/2
[

N∑
j �=i

xj(t− tj)]y∗i (t− ti)dt| + |
∫ T/2

−T/2
n(u, t)y∗i (t− ti)exp∗(j2πFDit)dt| (28)

Because of the good periodic ACF and CCF of our codes, we modify the frame of receiving data

before the matched filter to improve the RSN performance. The frame of received data is illustrated

in Fig. 8. The data from bit M + 1 to bit max(tj) +M are added to data from bit 1 to bit M bit

by bit. It is easy to obtain that | ∫ T/2
−T/2[

∑N
j �=i xj(t− tj)]y∗i (t− ti)dt| = 0.
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Therefore, equation (28) is

|Zi(u)| ≤ |E| + 0 + |
∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt| (29)

Based on (26) and (29), it is obvious that using frame modification before the matched filter, the

performance of case 2) and 3) can be theoretically comparable. In other words, using our provided

codes and frame modification, the RSN under the condition of time delay for each transmitting

radar can, to some extent, work as well as the RSN where all the radar sensors transmit signal

synchronously.

We apply optimized punctured ZCZPS as a bank of phase coded waveforms together with

equal gain combination technique to RSN. We simulate and study the performance versus different

number of radars in RSN under the condition of either Doppler shift or not. According to [15],

PD(Probability of Detection), PFA(Probability of False Alarm) and PM (Probability of Miss) are

three probabilities of most interest in the radar system. Note that PM = 1−PD, thus, PD and PFA

suffice to specify all of the probabilities of interest in radar system. Hence, we respectively simulated

the above two probabilities of different number of radars using different number of optimized

punctured ZCZ sequence-pairs in single radar system, 4-radar system and 8-radar system. We also

compare its performance with single radar system using the Barker code respectively in this section.

Three special cases of performances have been simulated. They are detection performance under

the condition of transmitting signals synchronously and immovable target, under the condition

of transmitting signals synchronously and moving target and under the condition of transmitting

signals non-synchronously and moving target. 106 times of Monte-Carlo simulation has been run

for each SNR value. When multiple radars are working in RSN to detect a single moving target, we

assume that the Doppler shift are supposed to be precisely estimated in the receiving radar sensor

and the compensating factors are introduced in the receiving radars.

The probability of miss detection of the envelope detector in single radar, 4-radar, 8-radar and
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the single radar system using Barker code under the above three conditions are compared in Figs.

9(a), 9(b) and 9(c) respectively. According to the Fig. 9(a), to achieve the same PM = 10−3, single

radar system using Barker code requires about 2dB more SNR than that of 4-radars under the

environment of transmitting signals synchronously and moving target. Fig. 9(b) also illustrates

that when PM = 10−3, SNR of 8-radars are 2.2dB smaller than that of single radar system using

Barker code when the target is moving in the system. If we consider time delay among transmitting

radars, the system should at lease consist of two radars. Hence, we only simulate PM of 4-radar

and 8-radar system in Fig. 9(c). From Fig. 9(c), SNR of 8-radar RSN can gain 1.7dB smaller than

4-radar SNR to achieve the same PM = 10−3.

The probability of false alarm of envelope detector of different number of radars under the three

conditions are shown in Figs. 10(a), 10(b) and 10(c) respectively. Fig. 10(a) shows that the SNR

of single radar system using Barker code requires about 5dB greater than that of 8-radars to obtain

the same PFA = 10−2 under the condition of transmitting signals synchronously and immovable

target. When the target is moving in the system, it is illustrated in Fig. 10(b) that the SNR of

8-radars can be nearly 3.8dB smaller than that of single radar system using Barker code in order to

achieve the same PFA = 10−2. From Fig. 10(c), 4-radar system requires 1.7dB more than that of

8-radar RSN under the condition of transmitting signals non-synchronously and one single moving

target.

It is clear to see that, no matter how many radars have been exploited in the RSN, the perfor-

mances of system without Doppler shift are worse than that under Doppler shift condition. It is of

the reason that Doppler shift is precisely estimated and well compensated on the receiving radar

in the system. According to the equation (26),the Doppler shift compensating factor exp(j2πFDt)

in receiving radar also, to some extent, reduces the magnitude of Gaussian noise of the channel.

The above figures also clearly illustrate that no matter whether considering a moving target or
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an immovable one, performance of detection of multiradars (applying our optimized punctured

ZCZPS and equal gain combination) are superior to that of single radar. In addition, because of

the superior cross correlation property of our codes and the modified frame, the performances of

4-radar and 8-radar RSN under the condition of transmitting signals non-synchronously can be

comparable to those under the condition of transmitting synchronously.

Therefore, according to the above results, applying our optimized punctured ZCZPS in RSN, the

detection performances are much better than those of applying traditional phase coded waveforms

in a single radar system.

5 Conclusions

We have studied phase coded waveform design and spatial diversity under the condition of one

single moving target in radar sensor networks (RSN). We provided a new kind of ternary codes–

optimized punctured ZCZPS which could be used as phase coded waveforms in RSN. The significant

advantage of the optimized punctured ZCZPS is the considerably reduced sidelobe as low as zero

and zero mutual cross correlation value in the zero correlation zone. Because of the orthogonal

property of any two optimized punctured ZCZ sequence-pairs among one optimized punctured

ZCZPS, they can co-exist in RSN and achieve better detection performance than that of a single

radar. Consequently, the general conclusion can be drawn from the results presented in this paper

that the optimized punctured ZCZPS can effectively satisfy higher demands criterion for detection

accuracy of RSN in the modern military and security affairs. Since we are investigating the single

target radar system in this research, we will study the application of our codes in multiple-target

system especially the range resolution in the future work.
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Figure 1: Periodic autocorrelation property of optimized punctured ZCZPS
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Figure 2: Periodic cross correlation property of optimized punctured ZCZPS
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Figure 3: Amplitude of ACFs of several transmitting signals
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Figure 4: Ambiguity function of 124-length ZCZPS: autocorrelation
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Figure 5: Ambiguity function of radar i (considering interference from radar j)
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Figure 6: Output of matched filter of radar i (considering interference from radar j) with no Doppler

shift
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Figure 7: Output of matched filter of radar i (considering interference from radar j) with no time

delay
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Figure 8: Waveform diversity combining in RSN
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Figure 10: Probability of miss detection in RSN under the condition of: (a)No time delay nor

Doppler shift (b)No time delay but Doppler shift (c)Time delay and Doppler shift
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Figure 11: Probability of false alarm in RSN under the condition of: (a)No time delay nor Doppler

shift (b)No time delay but Doppler shift (c)Time delay and Doppler shift
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Abstract

Inspired by recent advances in MIMO radar, we introduce orthogonal pulse compression

codes to MIMO radar system in order to gain better range resolution and target direction

finding performance. We investigate the MIMO radar ambiguity function of the system using

phase coded waveforms. We also present and study a generalized MIMO radar system model

using orthogonal phase coded waveforms. Accordingly, we propose the concept and the design

methodology for a set of ternary phase coded waveforms that is the optimized punctured Zero

correlation Zone (ZCZ) sequence-Pair Set (ZCZPS). The method is to use the optimized punc-

tured sequence-pair along with Hadamard matrix in the ZCZ. We analyze the properties of our

proposed phase coded waveforms and show that better range resolution could be achieved. In

the end, we apply our proposed codes to MIMO radar system and simulate its target direction

finding performance. The simulation results show that diversity gain could be obtained by us-

ing our orthogonal pulse compression codes in the MIMO radar system. The more receiving

antennas used, the better target direction finding performance provided.

Index Terms : MIMO radar, ambiguity function, orthogonal, optimized punctured ZCZ

sequence-pair, phase coded waveform
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1 Introduction

It has been showed that processing data from a radar network with spatially distributed nodes

could offer significant performance improvement, as a result, there has been considerable interest

in MIMO radars which employ multiple antennas both at the transmitter and at the receiver.

On one hand, for the single radar system, there has been a lot of work on waveforms design.

In [1], stochastic waveforms, such as random noise or chaotic signals are studied and used in the

theoretical aspects of radar imaging. In addition, Y. Zhang [2] et al. studied the theory and

technique of angle-of -arrival (AOA) estimation using random-noise or other stochastic transmit

waveforms. And the experimental results also validate the theoretical predictions of random-noise

monopulse characteristics and suggest its potential applications. The authors in [3] proposed a new

technique for UWB random noise radar which combines median and anodization filtering so that

the high range sidelobes could be suppressed and the special merits of UWB random noise radars

could be still achieved at the same time. On the other hand, MIMO radars, unlike single radar

or phased array radars, transmit different waveforms on the different antennas of the transmitter,

which makes it necessary to do the waveform design for the system. The researchers have also done

some work on the MIMO radar using orthogonal waveforms [4], partial correlation waveforms [5]

or the more general non-orthogonal set of waveforms [6][7][8].

Ambiguity function [9], which is the response to a point target in the matched filter output,

determines the range resolution and Doppler resolution of the system. As a result, in the traditional

radar system, several waveform design methods [9] are based on optimization of the ambiguity

function in the traditional single radar system. Also in [10], generalized wideband ambiguity

function is proposed and investigated to study the performance of a coherent UWB random noise

radar. Recently, the radar ambiguity function has also been extended to the MIMO radar system

by San Antonio et al. [11]. In addition, pulse compression, known as a technique to raise the signal
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to maximum sidelobe (signal-to-sidelobe) ratio to improve the target detection and range resolution

abilities of the radar system, allows a radar to simultaneously achieve the energy of a long pulse

and the resolution of a short pulse without the high peak power [12]. In this paper, applying the

pulse compression technique to the MIMO radar system, we study and derive the MIMO radar

ambiguity function of the system using a set of phase coded waveforms. Later, we would use this

function to study the resolution of the MIMO radar system using our proposed codes as the phase

coded waveforms.

Apart from the MIMO radar ambiguity function, direction finding [13] [14] is another important

technology in MIMO radar system that a well known waveform is transmitted by an omnidirectional

antenna, and a target reflects some of the transmitted energy toward an array of sensors that is

used to estimate some unknown parameters, e.g. bearing, range, or speed. Also, beamforming [15]

is a process generally used in direction finding process that an array of receivers can steer a beam

toward any direction in space. The advantages of using an array of closely spaced sensors at the

receiver are the lack of any mechanical elements in the system, the ability to use advanced signal

processing techniques for improving performance, and the ability to steer multiple beams at once.

In this paper, we design a set of new orthogonal ternary codes for the MIMO radar system using

the pulse compression technology. To the best of our knowledge, it is the first time to introduce

phase coded waveforms to MIMO radar system to improve the range resolution and direction finding

performance. A generalized MIMO radar signal model using our orthogonal phase coded waveforms

is analyzed and the simulation results show that better performance could be obtained.

The rest of the paper is organized as follows. In Section 2, we study and derive the MIMO radar

ambiguity function within phase coded waveforms. Section 3 presents and analyzes a generalized

MIMO radar system using orthogonal phase coded waveforms. Section 4 introduces the definition

and properties of ZCZPS as well as a set of specific ZCZPS which is the optimized punctured
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ZCZPS. A method using optimized punctured sequence-pair and Hadamard matrix to construct

ZCZPS is also given and proved. In section 5, some simulation results are provided by using

specific examples with different number of uniform linear antennas at the transmitter and receiver

of MIMO radar system. In Section 6, conclusions are drawn on our newly provided orthogonal

pulse compression codes and their applications in the MIMO radar system.

2 MIMO Radar Ambiguity Functions

In this paper, we introduce the pulse compression technique to the MIMO radar system. In this

section, we derive the MIMO radar ambiguity function for the case that the pulse waveform consists

of the phase coded waveforms.

We write the phase coded waveforms as following:

u(t) =
1√
Ntb

N∑
n=1

u(n)rect[
t− (n− 1)tb

tb
] (1)

where u(n) = exp(jφ(n)) and the set of N phases φ(1), φ(2), ..., φ(n) is the phase code associated with

u(t). Ntb is the duration of waveform u(t).

As the MIMO radar ambiguity function is defined [16]

χ(τ, v, f, f ′) ∼=
M−1∑
m=0

M−1∑
m′=0

χm,m′(τ, v)ej2π(fm−f ′m′)r (2)

where

χm,m′(τ, v) ∼=
∫ ∞
−∞

um(t)v∗m′(t+ τ)ej2πvtdt (3)

Here, the target spatial frequency f and the assumed spatial frequency f ′ represent the spatial

mismatch. τ is the delay corresponding to the target range, and ν is the Doppler frequency of

the target. r ∼= dt/dr where the spacing between the transmitting elements is dt and the spacing
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between the receiving elements is dr. M is the number of transmitting antennas and the function

χm,m′(τ, ν) is called the cross ambiguity function.

The cross ambiguity function of phase coded waveforms could be expressed as

χm,m′(τ, ν) =
∫ Ntb

0
um(t)u∗m′ [(t+ τ) mod Ntb]ej2πνtdt (4)

=
∫ Ntb

0

1√
Ntb

N∑
n=1

u(n)
m rect[

t− (n− 1)tb
tb

]
1√
Ntb

N∑
n′=1

u
(n′)∗
m′ rect([

t− (n′ − 1)tb
tb

] mod N)ej2πνtdt

=
1
Ntb

N∑
n=1

N∑
n′=1

∫ tb

0
rect[

t− (n− 1)tb
tb

]rect([
t− (n′ − 1)tb

tb
] mod N)ej2πνtdt

=




tb
N

∑N
n=1

∑N
n′=1 u

(n)
m u

(n′)∗
m′ ejπνtbsinc(πνtb), [k − (n′ − n)] mod N = 0

0, [k − (n′ − n)] mod N �= 0

Where delay τ = ktb.

Using equation (2) in the definition of MIMO ambiguity function, we get

χ(τ, ν, f, f ′) =




tb
N

∑M−1
m=0

∑M−1
m′=0

∑N
n=1

∑N
n′=1 u

(n)
m v

(n′)∗
m′ ej2π(fm−f ′m′)rejπνtbsinc(πνtb), S = 0

0, S �= 0
(5)

where S = ([k − (n′ − n)] mod N) and τ = ktb.

According to equation (5), it is easy to see that pulses um(t) or sequence um only affect the

range and spatial resolution. This implies that the choice of the waveforms um(t) does not affect

the Doppler resolution. Therefore, we extract a function Ω(τ, f, f ′) from MIMO radar ambiguity

function to study the range resolution as

Ω(τ, f, f ′) =




tb
N

∑M−1
m=0

∑M−1
m′=0

∑N
n=1

∑N
n′=1 u

(n)
m u

(n′)∗
m′ ej2π(fm−f ′m′)r, S = 0

0, S �= 0
(6)

where S = [k − (n′ − n)] mod N , and τ = ktb.

The value |Ω(0, f, f)| represents the partial of matched filter output without mismatch. To

obtain better system range resolution, the function Ω(τ, f, f ′) should be sharp around the line

{(τ, f, f ′)|τ = 0, f = f ′}.
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For M = 1, the equation (6) reduces to

Ω0(τ, f, f) =




tb
N

∑N
n=1

∑N
n′=1 u

(n)u(n′)∗, [k − (n′ − n)] mod N = 0

0, [k − (n′ − n)] mod N �= 0
(7)

where S = ([k − (n′ − n)] mod N), and τ = ktb.

It is easy to see that equation (7) resembles the autocorrelation function of sequence um. For

the MIMO radar case that M > 1, the cross correlation function between pulses has also to be

taken into account in addition to the autocorrelation functions in order to have a sharp Ω(τ, f, f ′).

Observing the equation (6), if the waveforms are orthogonal, the waveforms have high peak

mainlobe, zero sidelobes of the autocorrelation function and have zero cross correlation values.

N−1∑
n=0

u(n)
m u

∗(n+k) mod N
m′ =




Es, for m = m′, k = 0

0, for m = m′, k �= 0

0, for m �= m′

(8)

The MIMO ambiguity function turns to be

χ(τ, ν, f, f ′) =




tb
NEs

∑M
m=1 e

j2π(f−f ′)mrejπνtbsinc(πνtb), for τ = 0

0, for τ = ktb,k=1,2,...,N−1

(9)

where Es =
∑N−1

n=0 u
(n)
m u

(n)∗
m is the energy of the sequence um.

Assuming there exists no mismatch in range and Doppler domain and f = f ′, the function

becomes

χ(0, 0, f, f) =
M∑

m=1

tb
N
Es = M

tb
N
Es (10)

It is obvious that the ambiguity function is a constant along the line (0, 0, f, f) which is inde-

pendent of the waveform design of um(t). It implies that when there exists no mismatch in range

and Doppler domain, the output of matched filter is independent of the waveform design but only

relating to the length of waveform. However, if considering the mismatch, the waveforms design
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should be taken into account so that the range resolution could be improved. Besides, comparing

equation (10) with (7), a diversity gain of M could be achieved here.

On the another hand, observing the right part of equation (9), Doppler resolution of the MIMO

radar ambiguity function is affected by ejπνtbsinc(πνtb). According to the property of sinc(πνtb),

when Doppler frequencies equal to multiples of the pulse repetition frequency (PRF = 1/PRI =

1/tb), all the ambiguity values turn to zero. That is the same as the single radar system widely

using the pulse compression technology. Overall, the Doppler resolution of MIMO radar ambiguity

function could keep the characteristics of the single radar system.

3 MIMO Radar Signal Model

In this section, we describe a signal model for the MIMO radar system using orthogonal pulse

compression codes to improve the direction finding performance. Assume a radar system that

utilizes an array withM antennas at the transmitter, andN antennas at the receiver. For simplicity,

we assume that the target scatters are laid out as a linear array, and the arrays at the transmitter

and receiver are parallel. A transmitting linear array made up of M elements equally spaced a

distance dt apart. The elements are assumed to be isotropic radiators in that they have uniform

response for signals from all directions. The first antenna will be taken as the reference with zero

phase. The signal radiated by the transmit antenna impinges at angle θ which is the angle of arrival

(AOA). From simple geometry, the difference in path length between adjacent elements for signals

transmitting at an angle θ with respect to the normal to the antenna, is dtsinθ. This gives a phase

difference between adjacent elements of φ = 2π(dt/λ)sinθ, where λ is wavelength of the received

signal. And the phase difference for m-th transmit antenna is φm = 2π((m − 1)dt/λ)sinθ. For

convenience, we take the amplitude of the signal at each element to be unity. A pulse compression

code Cm =
∑P−1

p=0 C
(p)
m (t− pτc) is applied to m-th transmit antenna, and the signal vector induced
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by the m-th transmit antenna is given by

Cm = [C(0)
m , C(1)

m , C(2)
m , ..., C(P−1)

m ]; (11)

gm = e−jφm [C(0)
m , C(1)

m , C(2)
m , ..., C(P−1)

m ], 1 ≤ m ≤M ;

The signal vectors are organized in the M×P transmit matrix G = [g1, g2, ..., gM ]T . The transmit-

ted waveforms are listed as a M × 1 matrix S = [s1, s2, ..., sM ]T . The transmitted waveforms could

be normalized such that |si|2 = 1/M . The normalizing method ensures that transmitted power is

not dependent of the number of antennas.

Similar to the transmitter, the model for the array at the receiver could be developed, resulting

in an N × P channel matrix K. Similarly, the first antenna on the receiving part will be taken as

the reference with zero phase. The signal radiated by the n-th receive antenna impinges at angle

θ0. The phase difference for n-th transmit antenna is ϕn = 2π((n − 1)dr/λ)sinθ0. For phase-

modulated pulse compression waveforms, the sum of the corresponding pulse compression codes

∑M
m=1 C

′
m =

∑M
m=1

∑P−1
p=0 C

′(p)
m (t − pτc) have to be applied to each receive antenna to implement

the matched filter. The signal vector arrived at the n-th receive antenna could be given by

C ′m = [C
′(0)
m , C

′(1)
m , C

′(2)
m , ..., C

′(P−1)
m ]; (12)

kn = e−jϕn

M∑
m=1

C ′m;

K = [k1, k2, ..., kN ]T

Assume there is a far field complex (multiple scatters) target and it is known that small changes

in the aspect angle of complex targets can cause major changes in the radar cross section (RCS).

Here, RCS for each receiver antenna is assumed to have isotropic reflectivity modeled by zero-mean,

unit-variance, independent and identically distributed (i.i.d.) Gaussian complex random variables

λi. The target is then modeled by the diagonal matrix
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Σ =
1√
2M




λ1 0 · · · 0

0 λ2
. . .

...

...
. . . . . . 0

0 ... 0 λM




(13)

where the normalization factor makes the target average RCS=
∑M

i=1 |λi|2 = 1 independent of the

number of transmitting antennas in the model. The nonfluctuating target modeled using non-zero

constants for λi is identified as ”Swerling0” or ”Swerling5” model. For the fluctuating target, if

|λi| is drawn from the Rayleigh pdf and vary independently from path to path, the target model

represents a classical ”Swerling2” model.

Processing the transmit RCS matrix, the target matrix and the receive matrix together, the

MIMO radar channel model is given by N ×M matrix shown in (14).

H = K[GHΣ] =




k1

k2

...

kN




[
gH
1 , g

H
2 , . . . , g

H
M

]




λ1 0 · · · 0

0 λ2
. . .

...

...
. . . . . . 0

0 ... 0 λM




(14)

=




λ1k1g
H
1 λ2k1g

H
2 . . . λMk1g

H
M

λ1k2g
H
1 λ2k2g

H
2 . . . λMk2g

H
M

...
...

...
...

λ1kNg
H
1 λ2kNg

H
2 . . . λMkNg

H
M




According to (14), it is easy to notice that each entry of the matrix could be expressed as

λmkng
H
m = λm[e−jϕn

M∑
m′=1

C ′m′ ][e−jφmCm]H = λme
j(φm−ϕn)

M∑
m′=1

C ′m′CH
m (15)
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If we select orthogonal pulse compression codes for transmit and receive antennas, it is satisfied

that

P−1∑
p=0

C(p)
m C

(p)′
m′ =




Es, m = m′

0, m �= m′
(16)

λmkng
H
m = λme

j(φm−ϕn)Es and the H matrix turns to be shown as (17).

H =




λ1e
j(φ1−ϕ1)Es λ2e

j(φ2−ϕ1)Es · · · λMe
j(φM−ϕ1)Es

λ1e
j(φ1−ϕ2)Es λ2e

j(φ2−ϕ2)Es · · · λMe
j(φM−ϕ2)Es

...
...

...
...

λ1e
j(φ1−ϕN )Es λ2e

j(φ2−ϕN )Es · · · λMe
j(φM−ϕN )Es




(17)

As a result, the signal vector received by the MIMO radar is given by

r = HS + n =




Es
∑M

m=1 λme
j(φm−ϕ1)sm

Es
∑M

m=1 λme
j(φm−ϕ2)sm

...

Es
∑M

m=1 λme
j(φm−ϕN )sm




+ n (18)

Where the additive white Gaussian noise vector n consists of i.i.d, zero-mean complex normal

distributed random variables. The transmitted waveforms are normalized. The normalizing factor

ensures that the transmitted power is independent of the number of transmit antennas. In this

case that the antennas transmit signals which are organized in the vector S = [s0, s1, ..., sM ]T .

If receiver antenna uses a beamformer to steer towards direction θ
′
0, ϕ

′
n = 2π((n−1)dr/λ)sinθ

′
0.

The beamformer is modeled by a vector

β(θ′0) = [e−jϕ
′
1, e−jϕ

′
2 , · · · , e−jϕ

′
M ]T (19)
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The following expression is evaluated:

y = βH(θ
′
0)r = βH(θ

′
0)(HS) + n

′
(20)

= Es

N∑
n=1

M∑
m=1

λme
j(φm−ϕn+ϕ′

n)sm + n
′

where Es >> σ2(n′).

In MIMO radar for direction finding (DF) purpose, the transmit antennas are sufficiently sep-

arated, so the phase shifts at the transmitter are set to zero. It is easy to see that when θ = 0,

φm = 2π(d/λ)sinθ = 0 and gm = [C(0)
m , C

(1)
m , C

(2)
m , ..., C

(P−1)
m ]T .

The output turns to be

y′ = Es(
M∑

m=1

λmsm)(
N∑

n=1

ej(ϕ
′
n−ϕn)) + n

′
(21)

The angle of arrival is estimated as the θ
′

which maximizes |y′|2. To prevent the effect that

signal components sm might destructively interfere with each other, orthogonal waveforms could

be employed here.

|y′|2 ≈ E2
s (

M∑
m=1

|λmsm|2)(|
N∑

n=1

ej(ϕ
′
n−ϕn)|2) + n

′′
(22)

It is easy to see that if the beamformer can well estimate the direction θ0 at the receiver antenna,

θ
′
0
∼= θ0 and ϕn = ϕ′n, a diversity gain of N2 which is square of the number of receiving antennas

could be obtained.

4 Orthogonal Pulse Compression Codes

According to the previous sections, orthogonal pulse compression codes could be introduced to the

MIMO radar system to improve the range resolution and direction finding performance. It is also

known that it is impossible to have perfect autocorrelation function (ACF) and cross correlation

function (CCF) simultaneously, since the corresponding parameters have to be limited by certain
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bounds, such as Welch bound [18], Sidelnikov bound [19] and Sarwate bound [20]. As a result,

based on the Zero Correlation Zone (ZCZ) [21][22][23], we propose a set of ternary codes, analyze

the concept and design the methodology of them which could be applied to MIMO radar system.

4.1 The Definition and Properties of ZCZ sequence-Pair Set

Here, we introduce sequence-pair into the ZCZ concept to construct ZCZPS. We consider ZCZPS

(X,Y), X to be a set of K sequences of length N and Y to be a set of K sequences of the same

length N :

xp ∈ X p = 0, 1, 2, ...,K − 1 (23)

yq ∈ Y q = 0, 1, 2, ...,K − 1 (24)

The autocorrelation function for sequence-pair (xp,yp) is defined by:

Rxpyp
(τ) =

N−1∑
i=0

x(i)
p y(i+τ)modN

p , 0 ≤ τ ≤ N− 1 (25)

The cross correlation function for sequence-pair (xp,yp) and (xq,yq), p �= q is defined by:

Cxpyq
(τ) =

N−1∑
i=0

x(i)
p y∗(i+τ)modN

q , 0 ≤ τ ≤ N − 1 (26)

Cxqyp
(τ) =

N−1∑
i=0

x(i)
q y∗(i+τ)modN

p , 0 ≤ τ ≤ N − 1 (27)

For pulse compression sequences, some properties are of particular concern in the optimization

for any design in engineering. They are the peak sidelobe level, the energy of autocorrelation

sidelobes and the energy of their mutual cross correlation [24]. Therefore, the peak sidelobe level

which represents a source of mutual interference and obscures weaker targets can be presented as

maxK |Rxpyp(τ)|, τ ∈ Z0 (zero correlation zone) for ZCZPS. Another optimization criterion for the

set of sequence-pair is the energy of autocorrelation sidelobes joined together with the energy of cross
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correlation. By minimizing the energy, it can be distributed evenly, and the peak autocorrelation

level can be minimized as well [24]. Here, the energy of ZCZPS can be employed as:

E =
K−1∑
p=0

Z0∑
τ=1

R2
xpyp

(τ) +
K−1∑
p=0

K−1∑
q=0

N−1∑
τ=0

Cxpyq
(τ) (p �= q) (28)

According to (28), it is obvious to see that the energy can be kept low while minimizing the

autocorrelation sidelobes and cross correlation of the sequence-pair set.

Then, the ZCZPS can be constructed to minimize the autocorrelation and cross correlation of

the sequence-pair set and the definition of ZCZPS can be expressed:

Definition 4-1: Assume (x(i)
p ,y(i)

p ) to be sequence-pair set of length N and the number of sequence-

pair K, where p = 1, 2, 3, ...,K − 1, i = 0, 1, 2, ..., N − 1, if all the sequences in the set satisfy the

following equation:

Rxpyq
(τ) =

N−1∑
i=0

x(i)
p y∗(i+τ)mod(N)

q =
N−1∑
i=0

y(i)
p x∗(i+τ)mod(N)

q

=




λN, for τ = 0, p = q

0, for τ = 0, p �= q

0, for 0 < |τ | ≤ Z0

(29)

where 0 < λ ≤ 1, then (x(i)
p , y

(i)
p ) is called a ZCZ sequence-Pair, ZCZP (N,K,Z0) is an abbreviation,

and (X,Y) is called a ZCZ sequence-Pair Set, ZCZPS(N,K,Z0) is an abbreviation.

4.2 Definition and Design for Optimized Punctured ZCZ Sequence-Pair Set

Matsufuji and Torii have provided some methods of constructing ZCZ sequences in [27] [28]. In

this section, a set of novel ternary codes, namely the optimized punctured ZCZ sequence-pair set,

is constructed through applying the optimized punctured sequence-pair [29] to the zero correlation

zone. In some other words, optimized punctured ZCZPS is a specific kind of ZCZPS.
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Definition 4-2 [29] Sequence u = (u(0), u(1), ..., u(N−1)) is the punctured sequence for v =

(v(0), v(1), ..., v(N−1)),

u(j) =




0, if bit u(j) is punctured

v(j), if bit u(j) is Non-punctured
(30)

Here P is the number of punctured bits in sequence v, suppose v(j) ∈ (−1, 1), u(j) ∈ (−1, 0, 1), u

is P -punctured binary sequence, (u,v) is called a punctured binary sequence-pair.

Definition 4-3 [29] The autocorrelation of punctured sequence-pair (u,v) is defined

Ruv(τ) =
N−1∑
i=0

u(i)v∗(i+τ)modN , 0 ≤ τ ≤ N − 1 (31)

If the punctured sequence-pair has the following autocorrelation property:

Ruv(τ) =




E, if τ ≡ 0modN

0, otherwise
(32)

the punctured sequence-pair is called optimized punctured sequence-pair [29]. Where, E =

∑N−1
i=0 u(i)v∗(i+τ)modN = N − P , is the energy of punctured sequence-pair.

If (x(i)
p , y

(i)
p ) in Definition 4-1 is constructed by optimized punctured sequence-pair and a certain

matrix, such as Hadamard matrix or an orthogonal matrix, where

x(i)
p ∈ (−1, 1), i = 0, 1, 2, ..., N − 1

y(i)
q ∈ (−1, 0, 1), i = 0, 1, 2, ..., N − 1

Rxpyq
(τ) =

N−1∑
i=0

x(i)
p y∗(i+τ)modN

q =
N−1∑
i=0

y(i)
p x∗(i+τ)modN

q

=




λN, for τ = 0, p = q

0, for τ = 0, p �= q

0, for 0 < |τ | ≤ Z0

(33)

14
388 of 816



where 0 < λ ≤ 1, then (x(i)
p , y

(i)
p ) can be called optimized punctured ZCZ sequence-pair set. Based

on odd length optimized punctured binary sequence pairs and a Hadamard matrix, an optimized

punctured ZCZPS can be constructed on following steps:

Step 1: Considering an odd length optimized punctured binary sequence-pair (u,v), the length

of each sequence is N1

u = u(0), u(1), ..., u(N1−1), u(i) ∈ (−1, 1),

v = v(0), v(1), ..., v(N1−1), v(i) ∈ (−1, 0, 1),

i = 0, 1, 2, ..., N1 − 1, N1 odd

Step 2: A Hadamard matrix B of order N2 is considered. The length of the sequence of the

matrix is N2 which is equal to the number of the sequences. Here, any Hadamard matrix order is

possible and bi is the row vector.

B = [b0,b1, ...,bN2−1]T ,

bi = (b(0)i , b
(1)
i , ..., b

(N2−1)
i ),

Rbibj
=




N2, if i = j

0, if i �= j

Step 3: Perform bit-multiplication on the optimized punctured binary sequence-pair and each

line of Walsh sequences set B (Hadamard matrix), then sequence-pair set (X,Y) is obtained,

bi = (b(0)i , b
(1)
i , ..., b

(N2−1)
i ), i = 0, 1, ..., N2 − 1,

x
(j)
i = u(jmodN1)b

(jmodN2)
i , 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

X = (x0,x1, ...,xN2−1)T ,

y
(j)
i = v(jmodN1)b

(jmodN2)
i , 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y0,y1, ...,yN2−1)
T
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Since we use the optimized punctured binary sequence-pairs of odd lengths here and the lengths

of Walsh sequence are 2n, n = 1, 2, ..., GCD(N1, N2) = 1, common divisor of N1 and N2 is 1,

N = N1 ∗N2. The sequence-pair set (X,Y) is optimized punctured ZCZPS and N1 − 1 is the zero

correlation zone Z0. The length of each sequence in optimized punctured ZCZPS is N = N1 ∗N2

that depends on the product of length of optimized punctured sequence-pair and the length of Walsh

sequence in Hadamard matrix. The number of sequence-pair in optimized punctured ZCZPS rests

on the order of the Hadamard matrix. The sequence xi in sequence set X and the corresponding

sequence yi in sequence set Y construct a sequence-pair (xi,yi) that can be used as a pulse

compression code.

The correlation property of the sequence-pair in optimized punctured ZCZPS is:

Rxiyj
(τ) = Rxjyi

(τ) = Ruv(τmodN1)Rbibj
(τmodN2)

= Ruv(τmodN1)Rbjbi
(τmodN2)

=




EN2, if τ = 0, i = j

0, if 0 < |τ | ≤ N1 − 1, i = j

0, if i �= j

(34)

where N1 − 1 is the zero correlation zone Z0.

Proof:
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1) When i = j,

τ = 0,

Ruv(0) = E,Rbibj
(0) = N2,

Rxiyj
(0) = Ruv(0)Rbibj

(0) = EN2;

0 < |τ | ≤ N1 − 1,

Ruv(τ) = 0,

Rxiyj
(τ) = Ruv(τmodN1)Rbibj

(τmodN2) = 0;

2) When i �= j,

τ = 0,

Rbibj
(0) = 0,

Rxiyj
(0) = Rxjyi

(0)

= Ruv(τmodN1)Rbibj
(τmodN2) = 0;

0 < |τ | ≤ N1 − 1,

Ruv(τ) = 0,

Rxiyj
(τ) = Rxjyi

(τ)

= Ruv(τmodN1)Rbibj
(τmodN2) = 0.

According to Definition 4-1, the sequence-pair set constructed by the above method is ZCZPS.

4.3 Properties of Optimized Punctured ZCZ Sequence-pair Set

Considering the optimized punctured ZCZPS that is constructed by the method mentioned in the

last part, the autocorrelation and cross correlation properties can be simulated and analyzed with

MATLAB. For example, the optimized punctured ZCZPS (X,Y) is constructed by 5-bit length
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optimized punctured binary sequence-pair (u,v),u = [++−+−],v = [++000] (using ′+′ and ′−′

symbols for ′1′ and ′− 1′) and Hadamard matrix H of order 4. We follow the three steps presented

in the previous section to construct the 20-bit length optimized punctured ZCZPS. The number

of sequence-pairs here is 4, and the length of each sequence is 5 ∗ 4 = 20. The first row of each

matrix X = [x1;x2;x3;x4] and Y = [y1;y2;y3;y4] constitute a certain optimized punctured ZCZP

(x1,y1). Similarly, the second row of each matrix X and Y constitute another optimized punctured

ZCZ sequence-pair (x2,y2) and so on.

X =




+ + − + − + + − + − + + − + − + + − +−

+ −−−−− + + + + + −−−−− + + ++

+ + + −− + − + + −−−− + + − + −−+

+ − + + −−−− + + − + −− + + + + −−




;

Y =




+ + 000 + +000 + +000 + +000

+ − 000 − +000 + −000 − +000

+ + 000 + −000 −−000 − +000

+ − 000 −−000 − +000 + +000



.

The autocorrelation property and cross correlation property of 20-bit length optimized punc-

tured ZCZ sequence pair set (X,Y) are shown in Figs. 1 and 2.

From the Figs. 1 and 2, the sidelobe of autocorrelation of ZCZPS can be as low as 0 when the

time delay is kept within Z0 = N1 = 5 (zero correlation zone) and the cross correlation value is

kept as low as 0 during the whole time domain.

It is known that a suitable criterion for evaluating code of length N is the ratio of the peak

signal divided by the peak signal sidelobe (PSR) of their autocorrelation function, which can be

bounded by [30]

[PSR]dB ≤ 20logN = [PSRmax]dB (35)
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Figure 1: Periodic autocorrelation property of optimized punctured ZCZPS
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Figure 2: Periodic cross correlation property of optimized punctured ZCZPS
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The only uniform phase codes that can reach the PSRmax are the Barker codes whose length is

equal or less than 13. The sidelobe of the new code shown in Fig. 1 can be as low as 0, so the peak

signal divided by the peak signal sidelobe can be as high as infinite. Besides, the length of the new

code is various and much longer than the length of the Barker code.

Referring to the MIMO ambiguity function of Section 2, the MIMO ambiguity function of the

system using our proposed codes is

χ(τ, ν, f, f ′) =




tb
NEs

∑M
m=1 e

j2π(f−f ′)mrejπνtbsinc(πνtb), for τ = 0

0, for τ = ktb, k = 1, 2, ..., N1 − 1
(36)

where Es =
∑N−1

n=0 u
(n)
m v

(n)∗
m is the energy of the sequence-pair and N1 is the ZCZ. Only the range

resolution is affected by the waveform design, so we would study the range resolution of proposed

codes. The function is

Ω(τ, f, f ′) =




tb
NEs

∑M
m=1 e

j2π(f−f ′)mr, for τ = 0

0, for τ = ktb, k = 1, 2, ..., N1 − 1
(37)

Assuming the estimated parameter equals the normalized spatial frequency of the target, f = f ′,

we get the function

Ω(τ, f, f) =




Mtb
N Es, for τ = 0

0, for τ = ktb, k = 1, 2, ..., N1 − 1
(38)

Take the same example of our proposed codes in this section into account. Here, Es = 8,M =

4, N1 = 5 and N = 20. We can easily get the range resolution shown as following

Ω(τ, f, f) =




1.6tb, for τ = 0

0, for τ = ktb, k = 1, 2, ..., 4
(39)

Accordingly, it is easy to draw the conclusion that the MIMO radar system using our proposed set

of orthogonal codes could improve the range resolution to 1
N (N is the length of the corresponding

sequence) of the original one. And the peak value is increased from tb of single radar system without
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using pulse compression technique to 1.6tb in the above case. However, the time delay should be

limited to the value of ZCZ of the codes here.

Nevertheless, if there is no limit to the time delay, the range resolution would be interfered.

We use the matlab to simulate the performance of three examples, such as 12x4 length ZCZ codes,

20x4 length ZCZ codes and 28x4 length ZCZ codes in Fig. 3.

The above figures show that the ambiguity function has high peaks at the period of the ZCZ

expect for a short sharp at zero time delay. However, there might be the concern that multiple peaks

of the autocorrelation function would lead to ambiguity in ranging. Since the periodic correlation

function is used in this paper, the peaks from other targets would not be high enough to mask

the peak of the target under the study. In addition, we are studying the single target system in

this research and well controlling the PRF (pulse repetition frequency), the only concern is that

multiple peaks of the transmitting signal reflected from one target may affect determining the main

peak of ACF. As a matter of fact, the matched filter here could shift at the period of ZCZ length to

track each peak instead of shifting bit by bit after the first peak is acquired, which could make the

system work more efficiently. Alike the tracking technology in synchronization of CDMA system,

checking several peaks instead of only one peak guarantee the precision of PD and avoidance of

PFA. And the range could be determined by obtaining the the middle point of time range of the

first and the last high peaks where we could achieve a short sharp.

5 Simulations and Analysis

In this section, we are running MATLAB simulations of the MIMO radar system using different

number of transmitting antennas and receiving antennas to see the direction finding performance.

The transmit antennas are spaced sufficiently and the antenna array is used in the receiving part.

The target fluctuating model in which the channel fluctuated according to a Rayleigh distribution
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Figure 3: Range Resolution
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(a) 12x4 ZCZ codes
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(b) 20x4 ZCZ codes
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(c) 28x4 ZCZ codes
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is considered besides the nonfluctuating model. Estimation MSE is used as the common figure

of merit for comparing the performance. Using nonfluctuating and fluctuating target model, the

MIMO radar systems of different antennas are illustrated in Fig. 4.

Figure 4: MSE of beamforming at the receiver
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(a) nonfluctuating model
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(b) fluctuating model

From the Fig. 4, it is easy to see that under the situation of both nonfluctuating and fluc-

tuating models the system of more receiving antennas could always achieve better MSE than the

system of less receiving antennas. However, the system of the same number of receiving antennas
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could achieve similar performance though different number of transmitting antennas are used, so

the number of transmitting antennas seems not to have great effect on the direction finding perfor-

mance. Observing the equation (22), we can see that
∑ |Mm=1λmsm|2 determines how the number of

transmitting antennas affects the direction finding performance. Since we introduce normalization

factor to make the target average RCS independent of the number of scatters in the model, the

value of
∑M

m=1 |λmsm|2 is as small as around 1 so that the number of transmitting antennas will

not affect the final result much. Therefore, according to the equation (22), if the the target average

RCS is large enough, the more transmitting antennas we have, the better performance could be

obtained for sure. Comparing the Fig. 4(a) and 4(b), the performance of our system for fluctuating

modeal is not severely degraded because of the Rayleigh fading. So we can see that the model using

our proposed codes could work well both under fluctuating and nonfluctuating conditions. As a

result, a general conclusion could be drawn that the more antennas MIMO radar system utilized

the better direction finding performance could achieved in both models.

6 Conclusions

In this paper, we introduced the orthogonal phase coded waveforms to the MIMO radar system to

improve the radar range resolution and direction finding performance. The MIMO radar ambiguity

function of the system within phase coded waveforms are investigated and used to study the range

resolution of our proposed codes. We presented and analyzed a generalized MIMO radar system

model for our provided framework, in which Beamforming and estimate MSE are also used to find

the direction of the target at receive part. We provided a set of new ternary pulse compression

codes, gave a specific example and analyzed the codes’ correlation properties and range resolution

by using the MIMO radar ambiguity function. Simulation results showed that significant diversity

gain could be obtained in MIMO radar system using orthogonal phase coded waveforms. The MIMO
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radar system using more receiving antennas outperforms the one having less receiving antennas.

The paper is only to introduce the basic concept of our newly provided MIMO radar system with

orthogonal pulse compression codes to find the direction of a single fixed target. In the subsequent

work, we may consider the Doppler shift effect for moving targets and some complicate radar

channel models for the new approach.
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Abstract

In this paper, we study the wireless channel modeling in foliage environment, a rich scattering

and time-varying environment, based on extensive data collected using UWB and narrowband

(200MHz and 400MHz) radars. We apply two approaches to the wireless channel modeling:

Saleh and Valenzuela (S-V) method for UWB channel modeling and CLEAN method for nar-

rowband and UWB channel modeling. We validated that UWB echo signals (within a burst)

don’t hold self-similarity, which means the future signals can’t be forecasted based on the re-

ceived signals and channel modeling is necessary from statistical point of view. Based on the

S-V method for UWB channel modeling, in foliage UWB channel, the multi-path contributions

arriving at the receiver are grouped into clusters. The time of arrival of clusters can be modeled

as a Poisson arrival process, while within each cluster, subsequent multipath contributions or

rays also arrive according to a Poisson process. At different distance (near distance, medium

distance, and far distance), we observe that the Poisson process parameters are quite different.

We also observe that the amplitude of channel coefficient at each path follows Rician distrib-

∗Partial material in this paper was presented at IEEE Military Communication Conference, November 2008, San

Diego, CA.
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ution for medium and far distance, and it’s non-stationary for paths from short distance (one

of two Rician distributions), and these observations are quite different with the IEEE indoor

UWB channel model and S-V indoor channel model. Based on the CLEAN method, the nar-

rowband (200MHz and 400MHz) and UWB channel impulse responses have many similarities:

both can be modeled as linear time-variant filter channel. We also studied the large-scale fading

using path-loss and log-normal shadowing model for foliage enviroment, and observed that the

path-loss exponent is very high because it has rich scattering.

Index Terms : Channel modeling, radar, UWB channel, narrowband channel, CLEAN method,

self-similarity, Rician distribution.

1 Introduction and Motivation

The true challenge for new communication technologies is to “make the thing work” in real-world

wireless channels. System designers classically focus on the impact of the radio channel on the

received signals and use propagation models for testing and evaluation of receiver designs and

transmission schemes. Yet, the needs for such models evolve as new applications emerge with

different bandwidths, terminal mobility, higher carrier frequencies, new antennas, and so forth.

Furthermore, channel characterization also yields the fundamental ties to classical electromagnetics

and physics, as well as the answers to some crucial questions in communication and information

theory. While many efforts have been spent on indoor channel modeling as well as outdoor open

space (or less scattering) environment, wireless channel modeling in foliage (forest) environment

has not been studied. In Vietnam, Bosnia, Kosovo, and in the jungles of Columbia, air to ground

communnications have been thwarded by the presence of foliage that protects and hides the enemy.

In this paper, we study UWB and narrowband channel modeling in foliage environment.

In July 2003, the Channel Modeling sub-committee of study group IEEE 802.15.SG3a pub-

2
404 of 816



lished the final report regarding the UWB indoor multipath channel model [11]. It is a modified

version of the indoor Saleh and Valenzuela (S-V) channel model [17]. The S-V model was devel-

opped for NLOS channel, and it has also been applied to LOS channels where it is perhaps less

valid, unless LOS components are specifically added [16]. In [12], the aircraft cabin UWB channel

modeling based on a measurement campaign conducted on board an Airbus A319 cabin in the

frequency range from 3 - 8 GHz was reported. Besides path loss and time dispersion parameters,

RMS delay spread, a modified S-V model was derived for this new environment in [12]. In [1], a

high-order finite-difference time-domain technique was applied to indoor microwave ultrawideband

channel modeling. In [7], an indoor UWB propagation model was studied, which includes the

time-ofarrival, angle-of-arrival, and level distributions of a collection of received signals. In [19],

an analysis of the joint antenna-channel problem in ultrawideband communications was carried

out in order to provide tools for the performance evaluation of antennas while taking into account

the system architecture and the radio link scenarios. In [14], a comprehensive statistical model is

described for UWB propagation channels that is valid for a frequency range from 310 GHz. It was

based on measurements and simulations in the following environments: residential indoor, office

indoor, builtup outdoor, industrial indoor, farm environments, and body area networks. The IEEE

suggested an initial set of values for the indoor UWB channel model which has a range of less than

10 meters. However, lots of applications of UWB are for outdoor activities such as sense-through-

foliage target detection. Forests favor asymmetric threats because the warfighter has a limited

sensing capability. Forests provide excellent concealment from observation, ambush, and escape, as

well as provide secure bases for enemy Command & Control (C2), weapons caches, and Improvised

Explosive Device (IED)/ Weapon of Mass Destruction (WMD) assembly. These have become “the

high ground” in fourth-generation warfare, providing a significant strategic advantage. However, no

work has been done on the comparison of UWB and narrowband channels in foliage environment.
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Very recently, some preliminary works on outdoor UWB channel modeling was reported in [13].

In this paper, we will model the UWB and narrowband channels using UWB and narrowband

radars in foliage environment which is a rich scattering and time-varying environment. UWB radar

emissions are at a relatively low frequency-typically between 100 MHz and 3 GHz. Additionally,

the fractional bandwidth of the signal is very large (greater than 0.2). Such radar sensor has

exceptional range resolution that also has an ability to penetrate many common materials (e.g.,

walls). Law enforcement personnel have used UWB ground penetrating radars (GPRs) for at least

a decade. Like the GPR, sense-through-foliage radar takes advantage of UWB’s very fine resolution

(time gating) and low frequency of operation.

The rest of this paper is organized as follows. In Section 2, we summarize the measurement and

collection of data we used in this paper. In Section 3, we demonstrate that the UWB reflected signal

in foliage environment does not hold self-similarity and validate that outdoor channel modeling is

necessary. In Section 4, we present our outdoor UWB channel model in rich scattering and time-

varying environment. In Section 5, we study the channel impulse response based on CLEAN

method for narrowband and UWB channels. In Section 6, large scale fading in foliage environment

is modeled. We conclude this paper in Section 7.

2 Experiment Setup and Data Collection

Our work is based on the data collected in UWB radar-based sense-through-foliage experiment in

late summer and fall, so it’s a rich scattering environment. Because of wind or different temperature

in dense forest, it’s also a time-varying environment. The foliage experiment was constructed on a

seven-ton man lift, which had a total lifting capacity of 450 kg. The limit of the lifting capacity

was reached during the experiment as essentially the entire measuring apparatus was placed on the

lift. The principle pieces of equipment secured on the lift are listed below:
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• Dual Antenna mounting stand

• Two antennas

• Rack system (2)

• Barth pulser

• Tektronix model 7704 B oscilloscope

• IBM laptop

• HP signal Generator

• Custom RF switch and power supply

• Weather shield (small hut)

Figure 1 shows the experiment under a weather shield that was constructed on the lift. The weather

shield was needed to protect the equipment hoisted up with the lift. A negative side effect of this

weather shield was to provide a significant sail area at the maximum lever arm relative to the lift

stabilizing jacks on the ground. Lift stabilization was achieved using cables and anchor points. A

system of 4 tethers was used under gusty conditions. The transmit and receive rotating platform

systems were built using heavy gauge Unistruts, thrust bearings, and roller bearings for the multiple

axes of freedom. The importance of the rigidity of the antenna mounts the and axis of rotation

was in the establishment and maintenance of the antenna alignment during the measurement. See

Figure 2, for a photographic side view of the equipment platform on the lift.

Throughout this work, a Barth pulse source (Barth Electronics, Inc. model 732 GL) was used.

The pulse generator uses a coaxial reed switch to discharge a charge line for a very fast rise time

pulse outputs. The model 732 pulse generator provides pulses of less than 50 picoseconds (ps) rise
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time, with amplitude from 150 V to greater than 2 KV into any load impedance through a 50 ohm

coaxial line. The generator is capable of producing pulses with a minimum width of 750 ps and

a maximum of 1 microsecond. This output pulse width is determined by charge line length for

rectangular pulses, or by capacitors for 1/e decay pulses. The data collections were extensive. 20

different positions were used, and 35 independent collections were performed at each position.

For the UWB data we used in this paper, each sample is spaced at 50 picosecond interval, and

16,000 samples were collected for each collection for a total time duration of 0.8 microseconds at a

rate of approximately 20 Hz. The Barth pulse source was operated at low amplitude (1 KW peak

power) and 35 pulses reflected signal were averaged for each collection. Significant pulse-to-pulse

variability was noted for these collections. We plot the transmitted pulse (one realization) in Fig.

3a) and the received echos in one collection in Fig. 3b (averaged over 35 pulses).

For comparison, we also studied narrowband (200MHz and 400MHz) radar signal propagation.

Henry Radio preamplifiers were model 50B-200 and 50B-400 for 200MHz and 400MHz respectively.

The Henry Radio power amplifiers were TEMPO-2002A and TEMPO-2400A for 1 KW pulsed at

200MHz and 400MHz respectively. The amplifier was speced at a minimum bandwidth of 2 MHz

around it center frequency. The source for 200MHz and 400MHz narrow band wave signal was an

Agilent 8648A signal generator. For the data we used in this paper, each sample is space at 50

picosecond interval, and 16,000 samples were collected for each collection for a total time duration

of 0.8 microseconds at a rate of approximately 20 Hz. Fig. 4a shows the transmitted signal and

Fig. 4b shows the received echos (averaged over 35 pulses) for 200MHz narrowband radar. Fig. 5a

shows the transmitted signal and Fig. 5b shows the received echos (averaged over 35 pulses) for

400MHz narrowband radar. The data collections were extensive. Twenty different positions were

used, and thirty-five collections were performed at each position for UWB, 200MHZ, and 400MHz

radars.
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3 Self-Similarity Properties of UWB Reflected Signals

It has been observed that ethernet video/voice/data traffic have self-similarity [21] [20]. But the self-

similarity of UWB signals has not been studied. Here we briefly present its definition [8]. Given

a zero-mean, stationary time-series X = (Xt; t = 1, 2, 3, · · · ), we define the m-aggregated series

X(m) = (X(m)
k ; k = 1, 2, 3, · · · ) by summing the original series X over nonoverlapping blocks of size

m. Then it’s said that X is H-self-similar, if, for all positive m, X(m) has the same distribution as

X rescaled by mH . That is,

Xt
�
= m−H

tm∑
i=(t−1)m+1

Xi ∀m ∈ N (1)

If X is H-self-similar, it has the same autocorrelation function r(k) = E[(Xt −μ)(Xt+k −μ)]/σ2 as

the series X(m) for all m, which means that the series is distributionally self-similar: the distribution

of the aggregated series is the same as that of the original.

Self-similar processes can show long-range dependence. A process with long-range dependence

has an autocorrelation function r(k) ∼ k−β as k → ∞, where 0 < β < 1. The degree of self-

similarity can be expressed using Hurst parameter H = 1 − β/2. For self-similar series with

long-range dependence, 1/2 < H < 1. As H → 1, the degree of both self-similarity and long-range

depence increases.

One method that has been widely used to verify self-similarity is the variance-time plot, which

relies on the slowly decaying variance of a self-similar series. The variance of X(m) is plotted against

m on a log-log plot, and a straight line with slope (−β) greater than −1 is indicative of self-similarity,

and the parameter H is given by H = 1 − β/2. We use this method in this paper. In Fig. 6, we

plot the variance of X(m) against m on a log-log plot for 10 different UWB data collections. From

this figure, it’s very clear that the UWB signal does not have self-similarity because its

trace has slope lower than −1. This conclusion means that we can’t use current received signals
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to forecast future reflected signals within one collection, so channel modeling is very important to

UWB outdoor channel because the charateristics of the future reflected signal could be known in

advance if its channel can be modelled.

4 UWB Channel Modeling Based on S-V Approaches

4.1 Introduction to Channel Modeling for Indoor UWB Channel

In the S-V model [17], the arrival of clusters is modelled as a Poisson arrival process with a rate

Λ, while within each cluster, subsequent multipath contributions or rays also arrive according to

a Poisson process with a rate λ (see Fig. 7). In the S-V model, the magnitude of the k-th path

within the l-th cluster follows a Rayleigh distribution, and the phase of each path is assumed to

be a statistically independent random variable over [0, 2π). Besides, the average Power Decay

Profile (PDP) is characterized by an exponential decay of the amplitude of the clusters, and a

different exponential decay for the amplitude of the received pulses within each cluster, as shown

in Fig. 8. In the IEEE UWB indoor channel model [11], the cluster approach was adopted (same

as S-V model), but a log-normal distribution was suggested for characterizing the multi-path gain

amplitude, and an additional log-normal variable was introbuced for representing the fluctuations

of the total multipath gain. Besides, the phase of each path is assumed to be either 0 or π with

equal probability.

4.2 Outdoor UWB Channel Modeling

4.2.1 Cluster Arrival and Power Decay Profile

We study the outdoor UWB signal propagation in three cases: short distance (less than 55m),

medium distance (55m–85m), and far distance (above 85m and up to 120m in this study). In the
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data collection, each sample is spaced at 50 picosecond interval, so these cases are corresponding to

samples 1–7333 for short distance, samples 7333–11333 for medium distance, and samples 11334–

16000 for far distance. In Fig. 9, we plot the power profile of the received echos (averaged over

30 collections to eliminate the effect of random noise and each collection was averaged based on

35 pulses) for the three different cases. Since the transmitted pulse (as plotted in Fig. 3a) is a

very narrow impulse pulse (like a delta function in time domain), we analyzed the channel property

based on the received echos power profile plotted in Fig. 9, and similar methodology was also used

in S-V model studies [17].

Observe Fig. 9, multi-path contributions arrive at the receiver grouped into clusters. The time

of arrival of clusters can be modeled as a Poisson arrival process with a rate Λ, while within each

cluster, subsequent multipath contributions or rays also arrive according to a Poisson process with

a rate λ (see Fig. 7). We define:

• Tl = the arrival time of the first path of the l-th cluster;

• τk,l = the delay of the k-th path within the l-th cluster relative to the first path arrival time

Tl;

• Λ = the cluster arrival rate;

• λ = the ray arrival rate, i.e., the arrival rate of the paths within each cluster.

By definition, we have τ0l = Tl. The distributions of the cluster arrival time and the ray arrival

time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0

p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (2)

The above observations are very similar as that for the indoor UWB channel. Specifically, we also
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observed the Λ and λ are quite different for three different cases.

• Observe Fig. 9a for short distance, Λ (1/ns) is around 0.02 (one cluster in every 50ns or 1000

samples), and λ (1/ns) is around 0.4 (one path in every 2.5ns or 50 samples). Perhaps it’s

because some major scatters in short distance (such as tree stems) reflected signals, so some

paths are quite dominant.

• Observe Fig. 9b for medium distance, clusters arrive quite often. Λ (1/ns) is around 0.05

(one cluster in every 20ns or 400 samples), and λ (1/ns) is around 1 (one path in every 1ns

or 20 samples).

• Observe Fig. 9c for far distance, clusters almost always arrive (because of rich scattering),

so Λ (1/ns) is around 0.5 (one cluster in every 2ns or 20 samples), and λ (1/ns) is around 4

(one path in every 250ps or 5 samples). Perhaps it’s because of rich scattering, every path

has very similar power level.

Besides, the average PDP can be represented by an exponential decay of the amplitude of the

clusters, and a different exponential decay for the amplitude of the received pulses within each

cluster, as shown in Fig. 8.

4.2.2 Statistical Distribution of Channel Coefficients

We also study the statistical distributions of each given path. We plot the histogram for some

sample values of the above three cases based on 30 collections and each collection is averaged over

35 pulses. Short distance samples are based on samples 5001–6000; medium distance samples are

based on samples 8001–9000; and far distance samples are based on samples 12001–13000. Since

the samples are very close (within 7.5m distance), so their path-loss effect can be ignored. For each

case, we have 30000 samples, and we plot their histogram in Fig. 10.
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First, observe Fig. 10c for far distance, the histogram can be almost perfectly modelled by a

non-zero-mean Gaussian distribution, which means the amplitude of the channel coefficient follows

a Rician distribution,

pα(x) =
x

σ2
exp{−x

2 + s2

2σ2
}I0(xs

σ2
) x ≥ 0 (3)

where s is the mean value of Gaussian and I0(·) is the zero order modified Bessel function. This

kind of channel is known as Rician fading channel. A Rician channel is characterized by two

parameters, Rician factor K which is the ratio of the direct path power to that of the multipath,

i.e., K = s2/2σ2, and the Doppler spread (or single-sided fading bandwidth) fd. Similarly, Fig. 10b

for medium distance, the histogram can be approximately modelled by a non-zero-mean Gaussian

distribution, which means the amplitude of the channel coefficient follows a Rician distribution.

Observe Fig. 10a for short distance, the histogram can be approximately modelled by two non-zero-

mean Gaussian distributions, which means it’s non-stationary, and the amplitude of the channel

coefficient follows one of two Rician distributions. We analyzed the collected data and observed

that K is in the range of -5dB to 5dB, which means the direct path energy and scattered paths

energy are very similar. Our observations are different with the observations made in [2] for forest

environment where K is in the range of 8dB-24dB. In [2], the transmitter and receiver in [2] are

not co-located, i.e., it’s an one-way communication, so direct LoS has much higher energy than the

scattered paths.

The above observations are quite different with the indoor UWB channel model

(log-normal distribution) and S-V model (Rayleigh distribution). The sign of channel

coefficient is either +1 or -1, i.e., its phase is either 0 or π, which matches the IEEE indoor

UWB channel model. The major reason why our observations are different from the S-V model

and IEEE indoor UWB channel model is because our foliage environment is time-varying and has

rich scattering. The S-V model and IEEE indoor UWB channel model were obtained in indoor
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enviroment, where the number of scatters is much less, and most scatters are time-invariant.

5 Wireless Channel Modeling Based on CLEAN Method

We apply the CLEAN algorithm to obtain the UWB channel model based on the transmitted

pulses and received echos. The CLEAN algorithm was first introduced in [10] and has been applied

to UWB measurements [6][18] and it assumes that the channel is a series of impulses which is

consistent with the tapped-delay line channel model. This algorithm searches the received echos

iteratively with the template to find the maximum correlation [3]. The steps are [16]:

1. Calculate the autocorrelation of the template rss(t) and the cross-correlation of the template

with the received waveform rsy(t).

2. Find the largest correlation peak in rsy(t), record the normalized amplitudes αk and relative

time delay τk of the correlation peak.

3. Subtract rss(t) scaled by αk from rsy(t) at the time delay τk.

4. If a stopping criterion (e.g., a minimum threshold on the peak correlation) is not met, go to

step 2. Otherwise stop.

Based on the CLEAN method, we successfully obtained the channel impulse responses for all

transmit waveforms and receive echoes. For illustration purposes, in Figs. 11, 12, and 13, we plot

the channel impulse responses for 200MHz, 400MHz, and UWB channels using CLEAN method in

two experiments. Observe that for all channels, channel impulse responses have many similarities:

all can be modeled as linear time-variant filter channel, which is a more general case of the S-V

model. The channel gains from UWB channel is much higher (e.g., 107 to 108 level) than that from

narrowband channels. In 400MHz narrowband channel, the channel gains are in a range of 104 to
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105 level, and in 200MHz narrowband channel, the channel gains are in a range of 106 to 107 level.

Such differences between UWB channel and narrowband channel are because UWB signals could

penetrate through the foliage, so more energy is kept during the propagation. Most paths of the

linear time-invariant channel have gains zero, which means the intersymbol interferences because

of the channel memory are very low.

6 Large Scale Fading Channel Modeling

It is well known that path-loss and log-normal shadowing model model can be represented as [15],

PL(d)[dB] = P̄L(d0) + 10n log(
d

d0
) +Xσ (4)

where n is the path-loss exponent which indicates the rate at which the path loss increases with

distance; d0 is the close-in reference distance which is determined from measurements close to the

transmitter, and d is the distance to the transmitter; Xsigma is a zero-mean Gaussian distributed

random variable (in dB) with standard deviation σ (also in dB). The log-normal distribution de-

scribe the random shadowing effects which occur over a large number of measurement locations

which have the same T-R separations, but have different levels of clutter on the propagation path.

Large-scale fading and time dispersion parameters of UWB channel in underground mines were

studied in [5][4], and it was reported that the path loss modeling can be simplified by assuming

that the frequency dependence and the distance dependence can be treated independently of each

other. In this paper, we focus on path-loss and log-normal shadowing in foliage environment where

high level of clutter exists.

Based on all the data, i.e., 20 different positions were used, and 35 independent collections were

performed at each position, we obtained that the path-loss exponent n = 5.1 for UWB, and n = 14.1

for narrowband (200MHz). The log-normal shadowing std σ = 8.7dB for UWB and σ = 3.3dB
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for narrowband (200MHz). The path-loss exponent in foliage is much higher than that in other

enviroments such as free space (n = 2) or obstructed in factories (n = 2to3) [15] because foliage is

a rich scattering enviroment. In Fig. 14, we plot the measured signal power versus the distance to

the transmitter. Observe Fig. 14, the signals fade much more quickly in narrowband than that in

UWB because UWB signals can panetrate through the foliage, so more echos are collected. But

UWB signal has more log-normal shadowing effects because of different foliage environment, and

the narrowband signals are less sensitive to the foliage environment change. Observe Fig. 14b, in

the closer distance to the narrowband radar, the signal power is even lower than that in a further

distance. For example, the signal power is about 70dB at distance d = 31m (i.e., log(d) = 1.5), and

the signal power is about 80dB at distance d = 63m (i.e., log(d) = 1.8), which is because there is

no much major scatters (e.g., trunck) in the closer area of the narrowband radar, but UWB radar

could get enough scattering from the foliage (see Fig. 1). In contrast, the path loss exponents

were found to range from 2.2-4.3 in [2]. It is because transmitters and receivers were separated by

distances ranging from 4 to 50 meters in [2], where the transmitter and receiver are co-located, so

two-way transmissions happened in our experiment.

7 Conclusions

In this paper, we studied the statistical modeling for outdoor wireless channels (200MHz, 400MHz,

and UWB) in rich scattering and time-varying environment based on extensive data collected using

narrowband and UWB radars. We validated that UWB echo signals (within a burst) don’t hold

self-similarity, which means the future signals can’t be forecasted based on the received signals and

channel modeling is necessary from statistical point of view. In outdoor UWB channel, the multi-

path contributions arrive at the receiver are grouped into clusters. The time of arrival of clusters

can be modeled as a Poisson arrival process, while within each cluster, subsequent multipath con-
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tributions or rays also arrive according to a Poisson process. At different distance (short distance,

medium distance, and far distance), we observed that the Poisson process parameters are quite

different. We also observed that the amplitude of channel coefficient at each path follows Rician

distribution for medium and far distance, and it’s non-stationary for paths from short distance

(one of two Rician distributions), and these observations are quite different with the IEEE indoor

UWB channel model and S-V model. Using CLEAN method, we observed that for all channels,

channel impulse responses have many similarities: all can be modeled as linear time-variant filter

channel, which is a more general case of the S-V model. We also studied the large-scale fading

using path-loss and log-normal shadowing model, and observed that the path-loss exponent is very

high in foliage environment because it has rich scattering. Narrowband signal fades more quickly

than UWB signal in foliage environment and UWB signal has higher path-loss shadowing effects

than narrowband signal in foliage environment.
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Figure 1: This figure shows the lift with the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present. The cables coming from the
lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.
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Figure 2: This figure shows the experiment on top of the lift under the hut built for weather
protection. The black box in the foreground is a weather resistant box that held the oscilloscope
and Barth pulser during the testing.
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Figure 3: UWB radar Transmitted pulse and received echos in one experiment. (a) Transmitted
pulse. (b) Received echos.
.
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Figure 4: Narrowband radar (200MHz) transmitted pulse and received echos in one experiment.
(a) Transmitted pulse. (b) Received echos.
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Figure 5: Narrowband radar (400MHz) transmitted pulse and received echos in one experiment.
(a) Transmitted pulse. (b) Received echos.
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Figure 6: The variance-time plot of 10 UWB data collections, which demonstrates that UWB
reflected signals are not self-similar within each collection.
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Figure 8: An illustration of the double exponential decay of the mean cluster power and the ray
power within clusters in S-V model.
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Figure 9: The power profile for three different cases: (a) short distance, (b) medium distance, and
(c) far distance.
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Figure 10: The histograms and their approximation using Gaussian distributions (dashed lines).
The histograms are based on 30 collections and each collection is averaged over 35 pulses. (a) short
distance samples, (b) medium distance samples, and (c) far distance samples.
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Figure 11: The channel impulse responses for 200MHz channel using CLEAN method in two
experiments.
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Figure 12: The channel impulse responses for 400MHz channels using CLEAN method in two
experiments.
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Figure 13: The channel impulse responses for UWB channels using CLEAN method in two exper-
iments.
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Figure 14: The measured signal power versus the distance to the transmitter. (a) UWB signal, and
(b) 200MHz narrowband signal.
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Abstract

In many military and civilian applications, estimating the number of targets in a region

of interest plays a primary role in performing important tasks such as target localization,

classification, recognition, tracking, etc. Such an estimation problem is however very chal-

lenging since the number of targets is time-varying, targets’ state is fluctuating, and various

kinds of targets might appear at the same time in the field of interest. In this paper, we

develop a framework for estimating the number of targets in a sensing area using Radar

Sensor Networks (RSNs). Specifically, the multi-target detection problem is first formu-

lated. Models of signals, interference (e.g., clutter, jamming, and interference between

radars), and noise at radar sensors are studied. A Maximum Likelihood Multi-Target De-

tection (ML-MTD) algorithm to combine received measurements and estimate the number

of targets present in the sensing area is then proposed. We evaluate multi-target detection

performance using RSNs in terms of the probability of miss detection PMD and the root

mean square error (RMSE). Simulation results show that multi-target detection perfor-

mance of the RSNs is much better than that of single radar systems.

Index Terms : waveform design, diversity, target detection, radar sensor networks.
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1 Introduction and Motivations

Radar sensor networks (RSNs) are networks of distributed radar sensors which collaboratively

operate and are deployed ubiquitously on airborne, surface, and unmanned vehicles in a large

geographical area. Radar sensors have capabilities for radar sensing, signal processing, and

wireless communications. In RSNs, radar sensors are networked together in an ad-hoc fashion,

i.e., they do not depend on any preexisting infrastructure. In fact, they are self-organizing

entities that are deployed on demand to perform various tasks such as surveillance, search

and rescue, disaster relief, etc. RSNs have advantages compared to single radar systems in

improving the system sensitivity, reducing obscuration effects and vulnerability, and increasing

the detection performance [Kadambe 2001], [Baker 2002].

An RSN is organized into clusters, which are independently controlled and dynamically re-

configured as sensors move, to observe targets such as tactical weapons, missiles, aircraft, ships,

etc. in the surveillance area. In a cluster, sensors receive the signals backscattered by targets

in the presence of interference (e.g., clutter, jamming, interference between radar sensors), and

noise. Then, the observed signals from all radar sensors are forwarded to a clusterhead where

received data set will be combined to perform important tasks such as detection, localization,

identification, classification, and tracking. For target detection problem, there are two primary

levels: single target detection and multi-target detection. In the single target scenario, we pro-

posed a diversity scheme in [Ly and Liang 2006] to improve detection performance of RSNs in

the presence of strong interference, especially clutters, and noise. We are now interested in

using RSNs to estimate the number of targets present in the surveillance area. In practice,

various moving targets might appear in the sensing area, the number of targets is time-varying,

and targets’ state is fluctuating. The multi-target detection is therefore more challenging and

difficult to solve than the single target detection.

Among the existing work on multi-target detection, Yung and Mourad [Huang 1989] used

frequency diversity signaling to estimate the number of moving targets. Kaveh et al. applied
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the information theoretic criteria to detect the number of targets [Kaveh et al 1987]. However,

both work only studied the performance of their proposals for the case of two closely spaced

targets. A performance analysis for a general case was provided in [Xu and Kaveh 1995] and

[Zhang 1989]. In [Gini 2003], multiple target detection and estimation by exploiting the am-

plitude modulation induced by antenna scanning was proposed and a sequential hypothesis

test was examined to determine the number of targets. However, all above work studied

multi-target detection problem using a single radar. For the sensor network scenario, Wang

et al. [Wang2003] applied Bayesian source number estimation to solve the distributed multi-

ple target detection in sensor networks. Based on their approach, each cluster computed the

posterior probability corresponding to each hypothesis on the number of sources and a cen-

tral processor fused posterior probabilities using Bayes’ theorem to select the best hypothesis.

Their proposal however did not consider Doppler shifts of the targets and was not suitable

for the multi-target detection in RSNs. In [Ly and Liang 2007], some preliminary works on

estimating the number of targets in RSN were reported. In [Liang 2008], waveform design and

diversity for single target recognition was proposed.

In this paper, we develop a framework for estimating the number of targets in the field of

interest using RSNs. At the ith sensor, we deploy a receiver with an K element-ULA (Uniform

Linear Array) whose spacing between elements is di. During the observation time, P pulses

are transmitted to track targets. The useful signals backscattered from targets include spatial-

temporal snapshots of targets and parameters representing radar cross section of targets. Then,

a RSN-clusterhead collects measurements from all radar sensors and combines them to perform

detection procedures. To fuse received measurements and estimate the unknown number of

targets in the area of interest, at the RSN-clusterhead, we propose a multi-target detection

algorithm which is Maximum Likelihood Multi-Target Detection (ML-MTD) algorithm. We

use the probability of miss detection PMD and the root mean square error (RMSE) as metrics to

evaluate multi-target detection performance using RSN. Simulation results show that detection

performance of the RSN is much better than that of a single radar system.
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The rest of this paper is organized as follows. In Section 2, we state our multi-target

detection problem. In Section 3, we model signals, interference, and noise at radar sensors.

In Section 4, we propose an ML-MTD algorithm to estimate the number of targets present in

the sensing field. Multi-target detection performance of RSN is discussed in Section 5 while

conclusions and open directions are given in Section 6.

2 Multi-Target Detection Problem Statement

In this paper, we address a realistic situation in which the number of targets in the region of

interest is generally unknown and has to be estimated. To handle our problem, an RSN con-

sisting of N radar sensors is deployed. Radar sensors receive signals embedded in interference

and forward them to a central processor, e.g., a clusterhead to perform detection tasks. At

the RSN-clusterhead, we propose a detection algorithm to estimate the number of targets. To

support the rest of the paper, we make some assumptions as follows:

• Targets evolve along independent trajectories and do not leave the surveillance area

during the entire observation time of P consecutive pulses.

• Targets are modeled as Swerling II target models whose magnitudes fluctuate indepen-

dently from pulse to pulse according to a chi-square probability density function.

• The locations of targets are unknown. Besides, Doppler frequencies when targets are

moving relatively to radar platforms are uncertain.

• The measurements from radar sensors either originate from true targets or clutters.

The estimated number of targets present in the surveillance area is determined as

[τ̂1, τ̂2, ..., τ̂N ] = arg min
τ1,τ2,...,τN

Λ(τ), (1)

where τ̂i is the estimated number of targets at sensor i, τ = [τ1, τ2, ..., τN ], and Λ(τ) is an

utility function derived in Section 4. Hence, the possible number of targets M̂ that RSN can
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detect is the average value of τ̂1, τ̂2, ..., and τ̂N , i.e.,

M̂ =

⌈
1
N

N∑
i=1

τ̂i

⌉
, (2)

where �x� returns the smallest integer not less than x.

3 Signal and Interference Models

3.1 Signal Models

At radar sensor i, we deploy a receiver with anK-element ULA whose spacing between elements

is di. If P pulses are processed in a coherent pulse interval, the snapshot of target m is a KP×1

spatial-temporal steering vector with the following form [Melvin 2004], [Guerci 2003]:

e(θim, fim) = bt(fim) ⊗ as(θim), (3)

where fim and θim are the normalized Doppler shift and normalized angle for the target m,

respectively. The notation ⊗ denotes the Kronecker product, bt(fim) ∈ C
P×1 is a Doppler

steering vector, and as(θim) ∈ C
K×1 is a spatial steering vector. bt(fim) and as(θim) are

defined as follows:

bt(fim) = [1 ej2πfim ... ej2π(P−1)fim ]T , (4)

as(θim) = [1 e−j2πθim ... e−j2π(K−1)θim ]T . (5)

where T denotes the transpose operation. Let φim be an angle that sensor i observes the mth

target, fm be the maximum Doppler frequency for target m, and Tp be the pulse duration.

The normalized angle θim for target m and the normalized Doppler shift fim when target m

is moving relatively to sensor platform i are computed as [Guerci 2003]

θim =
di sinφim

λi
, (6)

fim = 4fmTpθim. (7)
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We now assume that radar sensor i can detect Mi targets during the observation time. The

received signal vector zi(u, t) at sensor i is the superposition of signals reflected from Mi

targets, interference, and noise.

zi(u, t) =
Mi∑

m=1

e(θim, fim)αm(u)smi(t) + wi,

= A(θi, fi)si(u, t) + wi, i = 1, 2, ..., N (8)

where

• A(θi, fi) = [e(θi1, fi1), e(θi2, fi2), ..., e(θiMi , fiMi)] ∈ C
PK×Mi is the target response ma-

trix. e(θim, fim) is a spatial-temporal steering vector that models the mth target return

at angle θim and Doppler shift fim.

• si(u, t) = [α1(u)s1i(t), α2(u)s2i(t), ..., αMi(u)sMii(t)]
T ∈ C

Mi×1 is the target signal vector

with a random variable αm(u) that models the radar cross section (RCS) of the target

m and smi(t) is the waveform reflected from target m.

• wi = wci + wji + wsi + ni represents the overall interference and noise: a clutter vector

wci, a jamming vector wji, an interference vector between radar sensors wsi, and thermal

noise ni.

Received signals from radar sensors are forwarded to a central controller, e.g., clusterhead.

Then, these received signal vectors zi(u, t) are fused to make estimation operations. Since

zi(u, t) is a zero-mean Gaussian vector, the probability density function of zi(u, t) can be

presented as

f(zi(u, t)) =
exp

(
−1

2z
H
i

[
R(τi)

z,i

]−1
zi

)

(2π)
KP
2

∣∣∣R(τi)
z,i

∣∣∣ 12
, (9)

where R(τi)
z,i is the covariance matrix of zi(u, t), τi is the rank of Rz,i, and | · | denotes the

determinant of the matrix.
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3.2 Interference and Noise Models

As pointed out, at the ith radar sensor, the interference vector wi is the sum of clutter wci,

jamming wji, and interference between sensors wsi. We apply the waveform design algorithm

proposed in [Liang 2007] to have waveforms at sensors be orthogonal. By doing so, interference

between sensors can be canceled, i.e., wsi = 0. Following are characteristics and models of

clutter, jamming, and thermal noise at radar sensor i.

3.2.1 Clutter

Clutter generates undesired radar returns that may interfere with the desired signal. In RSNs,

the signal-to-clutter ratio (SCR) is often more important than the signal-to-noise ratio (SNR).

The integrated clutter can be generally approximated as the sum of Nci clutter patches. For

clutter patch k, the space-time data vector is modeled as [Guerci 2003]

pki = ξkibt(fki) ⊗ as(θki)

= ξkiuki, k = 1, 2, ..., Nci (10)

where ξki is a complex random variable that accounts for the amplitude and phase of clutter

patch k. uki = bt(fki) ⊗ as(θki) where bt(fki) and as(θki) are temporal vector and spatial

vector of clutter patch k, respectively. fki and θki are the normalized Doppler shift and angle

of arrival of the kth clutter patch, respectively. Total clutter vector, wci, equals to

wci =
Nci∑
k=1

ξkibt(fki) ⊗ as(θki),

=
Nci∑
k=1

ξkiuki. (11)

The covariance matrix of the clutter, Rci ∈ C
KP×KP , at the ith radar is given by

Rci = E{wciwH
ci},

=
Nci∑
k=1

Nci∑
j=1

E{ξiξH
j }ukiuH

ji ,

= σ2
ciMci, (12)

7

440 of 816



where H denotes the Hermitian operation, E{·} denotes the expectation, and Mci is the

normalized covariance matrix, i.e., all diagonal entries of Mci are ones.

3.2.2 Jamming

Jamming signals are generated by hostile interfering signal sources that seek to degrade the

performance of radar sensors by mechanisms such as degrading signal-to-interference-plus-noise

ratio (SINR) by increasing the noise level, or generating false detections to overwhelm RSNs

with false targets. A model for Nji jamming signals is commonly presented as [Melvin 2004]

wji =
Nji∑
l=1

βl ⊗ aji(θl), i = 1, 2, ..., N (13)

where βl contains voltage samples of the lth jamming waveform and aji(θl) is the jamming

signal waveform at an angle θl. The different jamming waveforms are uncorrelated with each

other.

3.2.3 Thermal Noise

Among noise existing in RSNs, thermal noise due to ohmic losses at the radar receiver is nor-

mally dominant. We model the thermal noise vector ni at radar sensor i as a complex white

Gaussian vector with zero-mean and covariance σ2
ni. The covariance matrix of noise Rni = σ2

niI

where I ∈ R
KP×KP is the identity matrix.

In RSNs, detection performance is largely affected by clutters. So we will consider the dis-

turbance at the ith radar as a sum of thermal noise and clutter. The disturbance covariance

matrix Rwi is given by

Rwi = E{wiwH
i },

= Rni + εci(h)Rci, (14)

where Rni and Rci are the covariance matrices of noise and clutter, respectively. εci(h) is a

random variable used to model the clutter power of the hth range cell. εci(h) often follows
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Weibull distribution for ground clutter or gamma distribution for sea and/or weather clut-

ter [Nitzberg 1990][Melvin 2000]. In homogeneous environments, the average clutter power

does not depend on h, i.e., εci(h) is constant. Therefore, the disturbance covariance matrix is

rewritten as

Rwi = σ2
wiMwi,

= σ2
niI + εcσ

2
ciMci, (15)

where σ2
wi is the total disturbance power and Mwi is the normalized disturbance covariance

matrix.

Mwi =
1

CNRi + 1
I +

CNRi

CNRi + 1
Mci (16)

with CNRi = εcσ2
ci

σ2
ni

is the clutter-to-noise power ratio. Then, total interference and noise can be

modeled as a complex zero-mean white Gaussian vector with the covariance matrix σ2
wiMwi,

i.e., wi ∼ CN (0, σ2
wiMwi).

4 Maximum Likelihood Multi-Target Detection (ML-MTD) Al-

gorithm

In this section, we develop an algorithm to detect the number of targets in the sensing region.

We assume that signals backscattered from targets and interference are uncorrelated. From

the signal model in (8), the covariance matrix of received signal zi(u, t) at radar sensor i is

given by

R(τi)
z,i = E{zi(u, t)zH

i (u, t)},

= A(θi, fi)Rs,iAH(θi, fi) + σ2
wiMwi,

= Φ(τi)
i + σ2

wiMwi, (17)

where Rs,i ∈ C
Mi×Mi is a positive definite matrix which represents the covariance matrix of the

signal si(u, t), σ2
wi is the disturbance power, and Mwi is the normalized disturbance covariance
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matrix at radar sensor i. Rs,i and Φ(τi)
i are defined:

Rs,i = E{si(u, t)sH
i (u, t)}, (18)

Φ(τi)
i = A(θi, fi)Rs,iAH(θi, fi). (19)

The random variables αm(u) (i = 1, 2, ...,Mi) in si(u, t) models the RCS of the mth target.

In [Swerling 1960], Swerling proposed five target models called Swerling models where Swerling

V model is for non-fluctuating targets and Swerling I-IV models are for fluctuating targets. In

this paper, we focus our studies on the Swerling II target models. We know that magnitude of

the RCS |α(u)| for Swerling II targets fluctuates independently from pulse to pulse according to

a chi-square probability density function with two degree of freedom, i.e., a Rayleigh probability

density function. Therefore, the RCS of target m can be modeled as a Gaussian random

variables. That is,

αm(u) = αIm(u) + jαQm(u), (20)

where αIm(u) and αQm(u) follow Gaussian distribution with zero mean and variance ρ2
m/2 for

each branch I, Q.

From (17), it follows that the rank of matrix R(τi)
z,i is τi, which is equal to the number of targets

Mi present in the surveillance region, and the smallest (KP − τi) of its eigenvalues are zero,

i.e., the received signal contains interference and noise only. Sorting the eigenvalues of R(τi)
z,i

in a decreasing order, we obtain

λ1 ≥ λ2 ≥ ... ≥ λτi ≥ λτi+1. (21)

λτi+1 = λτi+2 = ... = λKP = σ2
wi. (22)

Assume that measurements zi(u, t), at the clusterhead, are statistically independent complex

Gaussian random vectors with zero mean. The joint probability density function of these
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random vectors has the form:

f(z(u, t)) =
N∏

i=1

f(zi(u, t)),

=
N∏

i=1

exp{−1
2z

H
i [R(τi)

z,i ]−1zi}
(2π)

KP
2 |R(τi)

z,i |
1
2

. (23)

Basically, we have to estimate τ̂i such that the joint probability density function f(z(u, t)) is

maximized. We now define a log-likelihood function Γ(τ) where τ = [τ1, τ2, ..., τN ] in (24).

Hence, our mission is to find τ̂i such that Γ(τ) is minimized.

Γ(τ) = − ln f(z(u, t)),

=
N ×KP

2
ln(2π) +

1
2

N∑
i=1

log
∣∣∣R(τi)

z,i

∣∣∣+ 1
2

N∑
i=1

zH
i

[
R(τi)

z,i

]−1
zi. (24)

Omitting terms that are independent of τi, we find the log-likelihood function Γ(τ).

Γ(τ) =
N∑

i=1

log
∣∣∣R(τi)

z,i

∣∣∣+
N∑

i=1

zH
i

[
R(τi)

z,i

]−1
zi. (25)

From [Akaike 1974], [Rissanen 1983], and [Schwartz 1978], the utility function Λ(τ) takes the

form:

Λ(τ) = Γ(τ) + P (N), (26)

where P (N) = ℘(N)[τa(2KP − τa)] is a bias correction term or penalty function to make

estimate unbiased. τa is an average value of {τi|i = 1, 2, ..., N} and ℘(N) is a penalty coefficient

which is a constant function of N . For example, ℘(N) = 1 for the Akaike information criterion

(AIC) and ℘(N) = 1
2 lnN for the minimum description length (MDL). Λ(τ) then can be

rewritten as

Λ(τ) =
N∑

i=1

log
∣∣∣R(τi)

z,i

∣∣∣+
N∑

i=1

zH
i

[
R(τi)

z,i

]−1
zi + ℘(N)(τa(2KP − τa)). (27)

Our ML-MTD algorithm to detect the number of targets M̂ present in the sensing field now

can be expressed as

M̂ =

⌈
1
N

N∑
i=1

τ̂i

⌉
, (28)
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where τ̂ = {τ̂1, τ̂2, ..., τ̂N} is computed as

{τ̂1, τ̂2, ..., τ̂N} = arg min
τ1,τ2,...,τN

Λ(τ). (29)

In practice, sensors can observe the different numbers of targets may not be equal since targets

might not be exposed to all sensors. However, for the sake of simplicity, we assume that

all radar sensors can observe the same number of targets, i.e., τ1 = τ2 = ... = τN = τ and

energy backscattered from targets is similar at radar sensors. Furthermore, we assume that

the environment is homogeneous, that is, the average clutter power is a constant. These

assumptions imply that R(τ)
z,1 = R(τ)

z,2 = R(τ)
z,N = R(τ)

z . For those reasons, our ultimate purpose

is to evaluate detection performance improvement achievable by exploiting the networking of

multiple radar sensors. Under our assumptions, the utility function Λ(τ) can be simplified as

Λ(τ) = N log
∣∣∣R(τ)

z

∣∣∣+Ntr
([

R(τ)
z

]−1
Y
)

+ ℘(N)(τ(2KP − τ)), (30)

where tr(·) denotes the trace of a matrix and Y is the sample covariance matrix of z1, z2, ..., zN .

Y =
1
N

N∑
i=1

zizT
i . (31)

Based on (30) and (31), we can observe that the utility function Λ(τ) depends on the number

of radar sensors N . Our ML-MTD algorithm is used to determine any non-negative integer τ

to minimize the utility function Λ(τ) when the number of radars is changed. Achieved results

are analyzed to evaluate the multi-target detection performance in Section 5.

5 Multi-Target Detection Performance Analysis

We denote the true number of targets appearing in the observation area and the number of

targets we can estimate from received signals as M and M̂ , respectively. The probability of

miss detection PMD and the root mean square error (RMSE) are used as metrics to evaluate

detection performance of the RSN using our proposed algorithm. We define PMD and RMSE

as follows:
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• PMD is the probability that the estimated number of targets is smaller than the true

number of targets. Suppose that ωmd is the number of estimations in which the estimated

number of targets is smaller than the true number of targets and ωt is the total number

of estimations. PMD is given as

PMD = P (M̂ < M)

=
ωmd

ωt
. (32)

• RMSE is used to determine the vibration of the estimated number of targets M̂ around

the true number of targets M .

RMSE =

√√√√ 1
ωt

ωt∑
g=1

(M − M̂g)2. (33)

To study the MTD performance, we setup parameters for the RSN and targets as follows.

1. Spacing di between elements of the K-element ULA at radar sensor i is chosen to be a

half of the wavelength λi, i.e., di = λi
2 .

2. The pulse duration (Tp) is 1 ms.

3. The number of elements (K) in ULA is 5.

4. The number of pulses (P ) in a coherent pulse interval is 4.

5. To observe targets, we assume that θim is a random variable which follows a uniform

distribution in an interval [-0.5, 0.5].

6. The maximum Doppler frequencies for targets are similar, e.g., fmax = 5000Hz. The

normalized Doppler shift fim only depends on the random variable θim.

7. Average Signal-to-Interference-plus-Noise Ratio (SINR) refers to average SINR of all

radars in RSN. We examine detection performance of RSN with average SINR in an

interval [5dB, 15dB].
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8. The MDL criterion is used for the penalty function.

9. 105 estimations are performed, i.e., ωt = 105.

We first examine the case in which there are three targets in surveillance region, i.e., M = 3.

Single radar system, 4-radar RSN, and 8-radar RSN are employed to detect these targets. At

each average SINR, the estimated number of targets is compared to the true number of targets

to compute PMD and RMSE which are drawn in Fig. 1 for this case. After that, we increase

the number of targets into four, i.e., M = 4. Using the same RSNs as the previous case, we can

get PMD and RMSE as plotted in Fig. 2. Based on achieved results in Fig. 1a and Fig. 2a, we

can realize that miss detection probability of 4-radar RSN and 8-radar RSN is much smaller

than that of single radar system. This implies that detection performance of 4-radar RSN and

8-radar RSN is improved. For example, to achieve the same PMD = 10% which is good enough

according to Skolnik [Skolnik 2001], the average SINR required for 4-radar RSN to detect three

targets is about 9dB while the average SINR required for the single radar system is greater

than 15dB. This means that detection performance gain of the 4-radar RSN is greater than

6dB. In both cases, moreover, the probability of miss detection is vastly reduced when the

8-radar RSN is used.

Furthermore, we observe that the higher average SINR, the smaller probability of miss

detection. The reason is that, at high average SINR, radar sensors radiate signals at a high

power level, so the coverage area of radar sensors is large. However, radiating signals at high

power levels is costly. Thus tradeoff between cost and detection performance is necessary.

We also observe that when we increase the number of targets, the detection performance is

slightly reduced. For example, to achieve the same PMD = 10%, the 4-radar RSN to detect

four targets requires average SINR around 4dB higher than that to detect three targets. This

means that we need increase the transmit power for radar sensors. If the number of sensor

radars is however large, e.g. N = 8, the detection performance of the RSN does not change

much.
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Figure 1: PMD and RMSE vs. Average SINR, M=3

15

448 of 816



5 6 7 8 9 10 11 12 13 14 15
10

−2

10
−1

10
0

SINR(dB)

P
M

D

Single Radar
4 Radars
8 Radars

(a)

5 6 7 8 9 10 11 12 13 14 15
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

SINR(dB)

R
M

S
E

Single Radar
4 Radars
8 Radars

(b)

Figure 2: PMD and RMSE vs. Average SINR, M=4
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Besides the miss detection probability, RMSE is the other metric to examine the detection

performance of the RSN. RMSE helps us evaluate the variability of the estimated number

of targets around the true number of targets present in the sensing field. From Fig. 1b and

Fig. 2b, we note that, to estimate three or four targets, RMSE of a single radar system is very

high while RMSE of RSNs is reduced tremendously. For example, at SINR = 9dB, compared

to a single radar system, the 4-radar RSN can reduce RMSE by 31.52% for three target case

and 42.32% for four target case. Moreover, we can see that RMSE is reduced when we increase

the number of sensors and/or average SINR.

6 Conclusions

We investigate a multi-target detection problem in Radar Sensor Networks. Signal, interfer-

ence, and noise models at radar sensors are presented and analyzed. We also propose a Maxi-

mum Likelihood Multi-Target Detection algorithm to estimate the possible number of targets

in a surveillance area. RSN-clusterhead utilizes our algorithm to combine measurements from

radar sensors and make decision. Achieved results show that detection performance of our RSN

is much better than that of a single radar system in terms of the miss detection probability

and the root mean square error. Besides scenarios presented in our work, one can extend our

proposal in several directions as follows:

1. For the sake of simplicity, we assumed clutter environment which affects largely the

performance of RSNs is homogeneous. Multi-target detection therefore can be examined

when heterogeneous clutter environment is considered.

2. We only consider target models as small moving point-like targets. Thus dynamic and

state space-based models might be further studied.

3. We only examine the case in which Swerling II target models are present in the sensing

area. Naturally, multiple target model types can appear during the observation time, so
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multi-target detection problem when multiple target models coexist in the sensing region

is worth looking into.

4. Our proposal is a primary state for important tasks such as target recognition, classi-

fication, tracking, etc. A joint algorithm to combine multi-target detection and one of

above tasks can be investigated.
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Design and Analysis of Distributed Radar
Sensor Networks

Jing Liang and Qilian Liang, Senior Member, IEEE

Abstract—In this paper, we design a network of distributed radar sensors that work in an ad hoc fashion, but are grouped together
by an intelligent clusterhead. This system is named Radar Sensor Network (RSN). RSN not only provide spatial resilience for target
detection and tracking compared to traditional radar sensors, but also alleviate inherent radar sensor defects such as the blind speed
problem. This interdisciplinary area offers a new paradigm for parallel and distributed sensor research. We propose both coherent and
noncoherent RSN detection systems applying selection combination algorithm (SCA) performed by clusterhead to take the advantage
of spatial diversity. Monte Carlo simulations show that proposed RSN can provide much better detection performance than that of
single radar sensor for fluctuating targets, in terms of probability of false alarm and miss detection. The proposed system design and
combination algorithm can also be applied to an active RFID sensor networks and underwater acoustic sensor networks.

Index Terms—Distributed sensor, radar sensor networks, system design, selection combination algorithm, performance analysis

F

1 INTRODUCTION

ADVANCES in hardware design and computational
intelligence have led to recent evolution of sensor

networks. A distributed radar sensor, is a small inde-
pendent system that transmits a waveform of known
shape and receives the echoes returned by targets and
various obstacles [1]. Networks of multiple distributed
radar sensors, namely radar sensor networks (RSN), can
be utilized to combat the performance degradation of a
single radar sensor [2] - [5]. They are arranged to survey
a large area, while targets are observed from a number of
different aspect angles. These networks will be include
in the future tactical combat systems that are deployed
on airborne, surface, and sub-surface unmanned vehicles
in order to protect critical infrastructure from terrorist
activities. Realistic RSN are documented in the literature
[4].

The investigations on topologies of distributed wire-
less sensor networks is very extensive. [6] studied
cluster-based sensor network, sensor network with a
fusion center, and concatenated sensor network, to show
the impact of topology on the performance and en-
ergy efficiency. [7] showed that geographical cluster-
based routing performs best in sensing-covered net-
works. Therefore, cluster-based topologies will be ap-
plied in our design. Distributed radar sensor nodes can
be efficiently grouped into clusters by means of [8]-
[12] while cluster-heads [13] offer centralized control
over each member. Additionally, the joint scheduling
approach proposed in [14] can be adopted in RSN to

• Jing Liang is with the Department of Electrical Engineering, University
of Texas at Arlington, Arlington, TX, 76019.
E-mail: jliang@wcn.uta.edu

• Qilian Liang is with the Department of Electrical Engineering, University
of Texas at Arlington, Arlington, TX, 76019.
E-mail: liang@uta.edu

provide both sensing coverage and network connectivity
with efficient energy consumption.

There is also work pertaining to the radar systems
with more than one transmitting or receiving element.
These solutions can be divided into two groups. One
is the array radar system and another is the multiple-
input multiple-output (MIMO) radar system. Phased
array radars have been intensively studied since the mid-
1960s. Each radar array is composed of a number of
individual antenna elements that are electronically com-
bined to point the radar beam in a particular direction
[15]. Its advantage mainly lies in the rapid steering of the
beam from one direction to another without the necessity
for mechanically positioning a large and heavy antenna,
whereas its disadvantage is great cost and complexity
[16].

Recently, the concept of MIMO radar have been pro-
posed in [17]-[24], motivated by the development in
communication theory. Unlike the standard phased array
radar that transmits scaled version of a single waveform,
a MIMO radar can overcome target radar cross section
(RCS) scintillations by transmitting different signals due
to the large spacing between the transmitting or re-
ceiving elements. However, for clarity and mathematical
tractability, these studies are based on a simple model
that ignores Doppler effects and clutter, thus more real-
istic models are left to subsequent work. Further, the cost
and the complexity to fabricate a MIMO radar hinder the
system from its pragmatical application.

Unlike the phased-array or the MIMO radar, each
radar sensor in RSN is monostatic and contains only
one transmitting and receiving element. Although every
member work independently, they are managed by the
clusterhead that combines waveform diversity in order
to satisfy the common goals of the network. The cost
and complexity can be tremendously reduced using RSN
compared to using a phased-array or MIMO radar. In
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addition, RSN offers to alleviate the blind speed prob-
lem. The radar’s blind speed occurs when the Doppler
shift is equal to the same or a multiple of the pulse
repetition frequency (PRF). Under these circumstances,
target return is suppressed so that a zero signal is
obtained [25]. As for RSN, if PRF of each member are
properly designed, for instance, co-prime to each other,
the probability of blind speed occurrence for the entire
system will be tremendously reduced [26]. It is worth
mentioning that the price for improvements in radar
sensitivity and data fusion is wider bandwidth and the
increased resource consumption.

In [27], Liang has performed theoretical studies on
constant frequency (CF) pulse waveform design and
proposed maximum-likelihood (ML) automatic target
recognition (ATR) approach for both nonfluctuaing and
fluctuating targets. In [28], Shu and Liang have studied
the decision fusion rules of multiple fluctuating targets
in RSN. Nevertheless these studies also assumed no
Doppler shift.

In this paper, we propose an orthogonal CF pulse
waveform model for RSN, which eliminates interference
between radar sensors in the absence of Doppler shift.
Interference among network members is analyzed in de-
tail in the presence of Doppler effect. We design both co-
herent and noncoherent RSN detection systems applying
selection combination algorithm (SCA) [29] performed
by clusterhead to take the advantage of spatial diversity.
Assume the existence of clutter and noise, we analyze the
detection performance versus SNR, as well as the per-
formance versus Doppler shift. Moreover, multi-target
performance has also been investigated. Monte Carlo
simulation shows to what extent RSN outperforms single
radar sensor , in terms of probability of false alarm and
probability of miss detection. It also illustrates how the
performance become worse along with the increase of
Doppler shift.

The rest of this paper is organized as follows. Section 2
describes the distributed model of RSN. Section 3 and 4
focus on coherent and noncoherent system respectively.
Section 5 illustrates the simulation result. Finally, section
6 concludes this paper and proposes future work.

2 DISTRIBUTED MODEL AND PROBLEM FOR-
MULATION

A RSN incorporates N radar sensors working in a
self-organizing fashion. Each radar can detect targets
and provide the detected waveform to their clusterhead
radar, which combines these waveforms and makes final
decision of target detection. We assume there is no infor-
mation loss when transmitting signals to the clusterhead.
The propagation and target model of RSN is illustrated
in Fig.1. Complex target signals are constructed from dis-
tinct scatterers. The radar cross section (RCS) fluctuates
when the target changes relatively to the radar antenna
[30]. In this case, RCS is usually presented by Rayleigh
PDF [31]. As the amplitude of each pulse is statistically

independent, “Swerling II” model can be applied for a
pulse-to-pulse fluctuating target.

Fig. 1. Propagation and target model for RSN

To the best of our knowledge, this is the first time to
study detection performance of RSN in the presence of
Doppler shift. For clarity and simplicity, we apply CF
impulse with the same pulse duration to each radar.
Every impulse consists of a sinusoidal waveform that
typically expressed as

S̃i(t) = Ati ·
√

2
Tp

cos[2π(fc + ∆i)(t + ti)] (1)

where tilde on Si denotes that the signal has been
modulated. Ati is the constant amplitude of the radar
pulse. Tp is the time duration for radar pulses.

√
2

Tp
is a

normalization factor to ensure that
∫ Tp

0

{√
2
Tp
· cos[2π(fc + ∆i)t]

}2

dt = 1 (2)

Here each oscillator of radar sensor works at a different
frequency: fi = fc + ∆i, fc À ∆i, where fc is the system
carrier frequency.

If ∆i satisfies the following equation:

∆i+1 −∆i =
ni

Tp
(3)

where ni is a nonzero integer, then the cross-correlation
between any two nonidentical waveforms become

2
Tp

∫ Tp

0

{cos[2π(fc + ∆m)t] cos[2π(fc + ∆n)t]}dt

= sinc[2π(∆m −∆n)Tp]
= 0 (4)

(3) and (4) demonstrate the orthogonality between the
transmitted waveform of each radar sensor. This im-
plies that in case of stationary targets, the useful back-
scattered radar sensor signals are also orthogonal.

For mathematical tractability, in this section we as-
sume there is only one target moving at an instant
range. Multi-target situation will be discussed in section
5.3. Assume ti second after transmitting the pulse, the
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received combined back-scattered signal can be modeled
as

R̃i(t) = S̃ri(t) + Ĩi(t) + C̃i(t) + nri(t) (5)

where S̃ri(t) is the expected back-scattered radiation
from the target, which is corrupted with the scattered
interference signal Ĩi(t) introduced by other radar sen-
sors, as well as clutter C̃i(t) and noise nri(t).

S̃ri(t) = Ai ·
√

2
Tp

cos[2π(fc + ∆i + fdi)t] (6)

Ai represents the amplitude of the returned radar wave-
form and fdi denotes the Doppler shift in the returned
signal compared to the transmitted waveform.

As Swerling II model is applied, |Ai| is a random
variable that follows Rayleigh distribution, which can
be denoted as Ai = AI

i + jAQ
i and both I and Q sub-

channels of Ai follow zero-mean Gaussian distribution
with corresponding variance γ2

2 .
Assume the target is moving at a speed v, as each

radar provides a unique carrier frequency and location
to the same target, fdi can be given as

fdi = 2 · v(fc + ∆i)
c

· cos φ = fdimax · cosφ (7)

where c is the speed of light, and φ is the elevation angle
between each radar and the target. Normally, RSN can be
deployed on high mountains or lower ground, therefore
target can be above or below RSN. We may consider
RSN uniformly distributed around the target, and thus
φ is a random variable that follows uniform distribution
within [0, 2π], owning to the uncertainty of this angle.

When all of radar sensors are working, radar i not
only receives its own back-scattered waveform, but also
scattered signals generated by other radars. These inter-
ference waveforms received by radar i can be modeled
as

Ĩi(t) =
N∑

k=1,k 6=i

Bk ·
√

2
Tp

cos[2π(fc + ∆k + fdk)t] (8)

where Bk = BI
k + jBQ

k is the amplitude of interference
from radar k assumed to be independent. The estimation
uncertainty of BI

k and BQ
k can be effectively approx-

imated by a Gaussian distribution with correspond-
ing variance ρ2

2 , thus similar to |Ai|, |Bk| also follows
Rayleigh distribution. fdk is the Doppler shift based on
carrier frequency of radar k and geometric configuration
of radar i, k and the target.

As far as the clutter is concerned, C̃i(t) can be given
as

C̃i(t) = Mi ·
√

2
Tp

cos[2π(fc + ∆i)t] (9)

Similarly, Ci = CI
i + jCQ

i where I and Q subchannels
follow zero-mean Gaussian distribution with variance
η2

2 . Apart from clutter, the radar i also receives additive

white Gaussian noise (AWGN) nri(t) = nI
ri(t) + jnQ

ri(t),
where I and Q subchannels follow zero-mean Gaussian
distribution with variance σ2

2 . After introducing our
propagation and target model, further analysis on coher-
ent and noncoherent RSN are carried out respectively.

3 COHERENT DETECTION

In coherent RSN, radar members are smart enough to
obtain the knowledge of the exact Doppler shift intro-
duced by moving targets. For example, the police radar
sensor employs a focused high power beam to detect
vehicle speed. Hence based on the a-priori information,
the demodulator of each radar can be constructed as
shown in Fig. 2.

Fig. 2. Coherent RSN demodulation and waveform com-
bining

According to this structure, the combined received
waveform R̃i(t) is processed by its corresponding
matched filter. The output of the ith branch Yi(t) is

Yi =
∫ Tp

0

R̃i(t) ·
√

2
Tp

cos[2π(fc + ∆i + fdi)t]dt (10)

It can also be represented as

Yi = Si + Ii + Ci + ni (11)

where Si, Ii, Ci, ni denote the output of useful signal,
interference, clutter and noise respectively

Si =
∫ Tp

0

S̃ri(t) ·
√

2
Tp

cos[2π(fc + ∆i + fdi)t]dt (12)

S̃ri(t) has been given in (6). It can be easily derived that

Si = Ai (13)

Similarly, Ii is

Ii =
∫ Tp

0

Ĩi(t) ·
√

2
Tp

cos[2π(fc + ∆i + fdi)t]dt (14)
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where Ĩi(t) has been given by (8). Simplifies the above
equation, we can obtain that

Ii =
N∑

k=1,k 6=i

Bk sin[2π(fdk − fdi)Tp]
2π [(k − i) + (fdk − fdi)Tp]

(15)

Also Ci is

Ci =
∫ Tp

0

C̃i(t) ·
√

2
Tp

cos[2π(fc + ∆i + fdi)t]dt (16)

It can be easily derived that

Ci ≈ Mi (17)

As for noise, it can be easily proved that subchannels
of ni still follow Gaussian distribution with variance σ2

2 ,
therefore the output envelope of radar i is

|Yi| ≈ |Ai +
N∑

k=1,k 6=i

Bk sin[2π(fdk − fdi)Tp]
2π [(k − i) + (fdk − fdi)Tp]

+ Mi + ni|

(18)
To simplify the expression, we define

e = E{ sin[2π(fdk − fdi)Tp]
2π [(k − i) + (fdk − fdi)Tp]

} (19)

Here E{} denotes the expectation, therefore (18) becomes

|Yi| ≈ |Ai +
N∑

k=1,k 6=i

eBk + Mi + ni| (20)

N∑

k=1,k 6=i

eBk =
N∑

k=1,k 6=i

eBI
k + j

N∑

k=1,k 6=i

eBQ
k (21)

As gaussian random variable plus gaussian random
variable still results in random variable,

∑N
k=1,k 6=i eBI

k

and
∑N

k=1,k 6=i eBQ
k follow gaussian distribution with

variance β2

2 = (N − 1) e2ρ2

2 , therefore |∑N
k=1,k 6=i eBk|

follows Rayleigh distribution. Since |Ai|, Mi and |ni| are
also Rayleigh random variables, |Yi| follows Rayleigh
distribution with the parameter

α =
√

γ2 + β2 + η2 + σ2 (22)

To this end when there is a moving target, the pdf for
|Yi| is

fs(yi) =
yi

α2
exp(− y2

i

2α2
) (23)

The mean value of yi is α
√

π
2 , and the variance is (2 −

π
2 )α2. The variance of useful radar signal, clutter and
noise are (2− π

2 )γ2, (2− π
2 )η2 and (2− π

2 )σ2 respectively.
Therefore, signal-to-noise ratio (SNR) is γ2

σ2 and signal-
to-clutter ratio (SCR) is γ2

η2 .
Before making a final decision, the RSN clusterhead

applies SCA to take the advantage of spatial diversity.
The combiner selects the branch with the maximum
envelope. This is equivalent to choosing the radar with
the highest γ2

σ2 and γ2

η2 .

On account of independence of each |Yi|, the pdf of
output from diversity combiner is

fs(y) =
N∏

i=1

yi

α2
exp(− y2

2α2
) (24)

In case of no target, i.e., there exits only clutter and noise,
and hence the pdf of |Yi(t)| becomes

fcn(yi) =
yi

ς2
exp(− y2

i

2ς2
) (25)

where ς =
√

η2 + σ2.
Accordingly pdf of output from diversity combiner

becomes

fcn(y) =
N∏

i=1

yi

ς2
exp(− y2

i

2ς2
) (26)

In light of pdf for the above two cases, we may apply
Bayesian’s rule to decide the existence of targets based
on y

fs(y)
fcn(y)

target exists
>
<

no target

Pcn

Ps
(27)

where Pcn denotes the probability of no target but noise
and Ps represents the probability of target occurrence.

4 NONCOHERENT DETECTION

As far as noncoherent RSN is concerned, its difference
from the above system is that radar sensors have no
knowledge of exact Doppler shift in back-scattered sig-
nals, so each matched filter applies the same frequency
as that of transmitted waveforms, and finally lead to
more ambiguity in target detection. In spite of its com-
plexity, this system is more practical. Our construction
of RSN demodulators is shown in Fig.3.

Fig. 3. Noncoherent RSN demodulation and waveform
combining
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In terms of this structure, the received signal of the
radar i is first multiplied by cosine and sine wave-
forms generated by the local oscillator with the same
frequency. The receiver then sums of the sine and cosine
correlations, extracts its envelope, and then transmits
the result to RSN cluterhead, which would make final
decision based on the combined information collected
by each radar member. However, it is obvious that
because of not knowing the Doppler shift, this system
involves nonlinear operations, a major difference from
the coherent system.

Consider the radar i, the output of inphase branch is

Y I
i =

∫ Tp

0

R̃i(t) ·
√

2
Tp

cos[2π(fc + ∆i)t]dt (28)

where R̃i(t) is given in (5). Similar to (11), Y I
i can also

be represented as

Y I
i = SI

i + II
i + CI

i + nI
i (29)

Through some simple computation, one can easily de-
duce that

SI
i = Ai · sinc(2πfdiTp) (30)

II
i =

N∑

k=1,k 6=i

Bksinc [2π(∆k −∆i + fdk)Tp] (31)

CI
i = M I

i (32)

and nI
i is the noise in inphase branch.

In the same way, the output of quadrature branch is

Y Q
i =

∫ Tp

0

R̃i(t) ·
√

2
Tp

sin[2π(fc + ∆i)t]dt (33)

which can also be given as

Y Q
i = SQ

i + IQ
i + CQ

i + nQ
i (34)

where
SQ

i =
Ai [cos(2πfdiTp)− 1]

2πfdiTp
(35)

IQ
i =

N∑

k=1,k 6=i

Bk {cos[2π(∆k −∆i + fdk)Tp]− 1}
2π(∆k −∆i + fdk)Tp

(36)

CQ
i = MQ

i (37)

and nQ
i is the noise in quadrature branch.

To simplify the computation, we define

θi
∆= πfdiTp (38)

so (30)(31)(35)(36) become following expressions respec-
tively

SI
i =

Ai(t) sin θi cos θi

θi
(39)

II
i =

N∑

k=1,k 6=i

Bk sin θk cos θk

π(k − i) + θk
(40)

SQ
i = −Ai sin2 θi

θi
(41)

IQ
i =

N∑

k=1,k 6=i

− Bk sin2 θk

π(k − i) + θk
(42)

Based on the above equations and the construction in
Fig.3

|Yi| =
√

(SI
i + II

i + CI
i + nI

i )2 + (SQ
i + IQ

i + CQ
i + nQ

i )2
(43)

Apply (39)(40)(41) and (42) into (43), the final result
becomes

|Yi|
=

√
A2

i
(t) sin2 θi

θ2
i

+
∑N

k=1,k 6=i
2Ai(t)Bk(t) sin θi sin θk cos(θi−θk)

[π(k−i)+θk]θi

+
(∑N

k=1,k 6=i
Bk(t) sin θk cos θk

π(k−i)+θk

)2

+
(∑N

k=1,k 6=i
−Bk(t) sin2 θk

π(k−i)+θk

)2

+M2
i + n2

i
(44)

There are two special cases as follows:
1) If there is no Doppler shift, then fdi = fdk = θi =

θk = sin θi = sin θk = 0 and sin2 θi

θ2
i

=1, and thus (44)
is simplified to

|Yi(t)| =
√

A2
i + M2

i + n2
i (45)

This is easy to understand, because our RSN wave-
forms provide orthogonality under the circum-
stances of zero Doppler effect, so all interferences
between any radars are eliminated.

2) If there is only one radar, interferences no longer
exists, then (44) becomes

|Yi| =
√

A2
isinc

2(θi) + M2
i + n2

i (46)

From the definition of θi (see (38)), we know that if
fdiTp = k, where k = ±1,±2,±3 · · ·, then Yi is totally
clutter and noise. In this case the performance of single
noncoherent radar is severely terrible.

To simplify (44), we define

ξ = E{ sin θi

θi
} (47)

ψ = E{ sin θk cos θk

π(k − i) + θk
} (48)

ω = E{− sin2 θk

π(k − i) + θk
} (49)

Then (44) can be approximate to

|Yi| ∼= |Aiξ +
N∑

k=1,k 6=i

Bkψ +
N∑

k=1,k 6=i

Bkω + ni| (50)

|Yi| approximately follows Rayleigh distribution with the
parameter

α =
√

γ2ξ2 + (N − 1)ρ2(ψ2 + ω2) + η2 + σ2 (51)

Similarly, we apply the SCA diversity scheme and (23)-
(27) to analyze the detection performance in noncoherent
RSN.
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Fig. 4. Performance versus SNR and SCR for coherent
RSN fdimax=5KHz, (a) Probability of miss detection, and
(b) Probability of false alarm.

5 SIMULATIONS AND PERFORMANCE ANALY-
SIS

In this section, we analyze the detection performance
versus SNR and the detection performance versus
Doppler shift respectively of both coherent and non-
coherent RSN by means of Monte-Carlo simulations.
Notice that in (7), fc À ∆i, in order to simply the sim-
ulation, we assume each fdimax

is the same for different
i. Other parameters are:

1) Tp = 1ms
2) Pn = Ps

3) The mean value and variance of Bk are equal to
those of Ai

4) Clutter-to-noise ratio (CNR) is 6dB
5) 106 times Monte-Carlo simulations

5.1 Performance versus SNR and SCR

Fig. 4 and Fig. 5 compare the probability of false alarm
and the probability of miss detection between 1/3/6
radar sensors at each averaged SNR value when fdimax is
at 5KHz. Notice that CNR is 6dB, so average SCR ranges
from -1 dB to 8 dB, which corresponds to 5dB to 14dB
SNR. The averaged SNR value refers to the averaged
SNR of all radars in RSN.
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(b)

Fig. 5. Performance versus SNR and SCR for noncoher-
ent RSN fdimax=5KHz, (a) Probability of miss detection,
and (b) Probability of false alarm.

Fig. 4 demonstrates that our coherent RSN could
provide superior detection performance to that of single
radar. Observe Fig. 4(a), we can see that PM of single
radar is much larger than 0.1 even SNR reaches 14dB.
However, to meet the requirement of PM = 0.1, the per-
formance which is required according to [30], 6-member
RSN only demand 11dB SNR . Fig. 4(b) illustrates that in
order to achieve the same PFA = 0.1, 3-radar and 6-radar
requires at least 11dB SNR and 8.2dB SNR respectively
while single radar can not successfully carry out this task
even if SNR reaches 14dB. This pair of figures illustrate
that to fulfil the same detection performance, coherent
RSN demand tremendously less average SNR than a
single radar.

Compare Fig. 5 with Fig. 4, it clearly shows that both
the probability of false alarm and the probability of
miss detection of noncoherent 1/3/6 radar(s) are much
worse than that of the coherent system. In other words,
noncoherent RSN requires higher power in order to
achieve the same performance, owing to the ambigu-
ity of its Doppler shift. For the single radar, PM of
noncoherent radar at 14dB SNR is only slightly smaller
than that of 5dB SNR. As PM is much larger than 0.1,
noncoherent single radar can not work properly even at
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Fig. 6. Performance versus doppler shift for coherent
RSN when SNR=1dB, (a) Probability of detection, and (b)
Probability of false alarm.

14dB SNR. Apparently, PM of 3-radar noncoherent RSN
is still greater than 0.1 at 14dB SNR and it would not
provide enough performance improvement. Applying 6-
radar nocherent RSN, performance has been improved
a lot compared to 1 and 3 radar systems. In this case
PM = 0.1 can be achieved at around 12.2dB SNR with
PFA = 0.1 at about 9.9dB.

5.2 Performance versus Doppler shift

Fig. 6∼ Fig. 9 illustrate detection performances at dif-
ferent maximal Doppler shifts that range from 1KHz to
10kHz for both systems when SNR is fixed. Fig. 6 and
Fig. 7 are for coherent RSN at SNR = 1dB and 10dB
respectively while Fig.8 and Fig.9 are for noncoherent
system with SNR = 1dB and 10dB respectively.

These 4 pairs of figures reveal a general tendency, that
is in the same RSN, at the same SNR, the larger Doppler
shift, the worse detection performance, i.e, the smaller
probability of detection and the larger probability of false
alarm and vice versa. The single coherent radar is an
exception because the exact Doppler shift is known to
the demodulation system, and thus the performance is
exact the same in spite of different Doppler shift.

1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

Maximal doppler shift(KHz)

P
D

1 radar
3 radars
6 radars

(a)

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Maximal doppler shift(KHz)

P
F

A

1 radar
3 radars
6 radars

(b)

Fig. 7. Performance versus doppler shift for coherent
RSN when SNR=10dB, (a) Probability of detection, and
(b) Probability of false alarm.

Compare Fig. 6 with Fig. 7, we may see that at lower
SNR, Doppler uncertainty results in larger variance in
performance. When SNR increases to higher value, it
would better combat Doppler uncertainty.

As for noncoherent cases, although it is the same
tendency that the larger Doppler shift, the worse de-
tection performance, the variance of performances are
much larger than those of coherent system. Also, the
degradation of RSN performance is larger than single
radar as the Doppler shift increases. For example, in Fig.
8 at SNR =1 dB and the maximal Doppler shift at 1kHz,
PD of 3-radar and 6-radar are about 0.24 and 0.4 greater
than that of single radar respectively. However, when the
maximal Doppler shift reaches 10KHz, PD of 3-radar and
6-radar become 0.07 and 0.13 greater than that of single
radar respectively. Similar situations occur in PFA. This
implies that for nocoherent RSN, more radars are needed
to combat the Doppler shift ambiguity.

5.3 Multi-target Performance
Previous study in this paper has provided a method-
ology to obtain PN

D and PN
FA for both coherent and

noncoherent RSN systems that consist of N radars under
the assumption of one moving target. In this subsection,
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Fig. 8. Performance versus doppler shift for noncoherent
RSN when SNR=1dB, (a) Probability of detection, and (b)
Probability of false alarm.

we will discuss the multi-target performance in respect
of statistics.

In [33], we have investigated how to estimate the
number of targets in a region of interest. So we may
assume RSN know there are m targets within the range.
To make the problem tractable, we assume these m
targets are independent, then the probability that all
targets can be detected turns out to be (PN

D )m. Also, the
probability that at least one target has been false alarmed
is 1− (1−PN

D )m. The performance are illustrated in Fig.
10 and 11 respectively.

6 CONCLUSIONS AND FUTURE WORK

We have studied orthogonal waveforms and spatial di-
versity under the condition of the Doppler shift in both
coherent and noncoherent RSN. In case of no Doppler
shift, our orthogonal waveforms eliminate interference
between each radar member. However, when there is
Doppler shift, there exists interference that can not be
avoided. In a word, the analysis of the simulation shows
that

1) The larger number of radars in RSN, the better
detection performance at the same SNR and the
Doppler shift
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Fig. 9. Performance versus doppler shift for noncoherent
RSN when SNR=10dB, (a) Probability of detection, and
(b) Probability of false alarm.

2) The larger Doppler shift, the worse detection per-
formance at the same SNR within the same RSN

3) Coherent RSN provide better performance than
nocoherent RSN at the same SNR and the Doppler
shift.

This design not only satisfies higher demanding cri-
terion for detection accuracy in modern military and
security affairs, but also offers advantages to combat the
blind speed problem.

One can extend the above procedure in several direc-
tions:

1) In this paper we have only considered constant
frequency (CF) pulse design. Naturally, we would
like to extend our results to other waveforms, such
as linear LFM and binary phase-coded pulse, and
analyze their performances.

2) This paper is very much of a first foray into the
resilience of netted radars to the Doppler shift, so
only physical layer has been taken into account.
One may apply cross layer design to better improve
the RSN performances.
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Fig. 10. Probability that all targets can be detected versus
radar numbers, (a) Coherent system and (b) Noncoherent
system.
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Abstract

In this paper, we design a netcentric Small Unmanned Aerial System (SUAS) for passive

geolocation of RF emitters. Each small UAV is equipped with multiple Electronic Surveillance

(ES) sensors to provide local mean distance estimation based on received signal strength indica-

tor (RSSI). Fusion center will determine the location of the target through UAV triangulation.

Different with previous existing studies, our method is on a basis of an empirical path loss

and log-normal shadowing model, from a wireless communication and signal processing vision

to offer an effective solution. The performance degradation between UAVs and fusion center

has been taken into consideration other than assuming lossless communication. We analyze the

geolocation error and the error probability of distance based on the proposed system. The result

shows that this approach provides robust performance for high frequency RF emitters.

Index Terms : fading, geolocation, path-loss, log-normal shadowing, UAV

1 Introduction and Motivation

Determining the location of an emitting target is one of the fundamental functions of wireless

communication systems [1]. The precision geolocation will assist targeting military invaders and

rescuing airplanes or ships sunk at sea. Among the traditional work of target detection and location,

1
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care has been taken on a basis of bearing-only measurements from the aspect of geometry [2]-

[6] to determine the position, velocity and direction. There is no doubt that this bearing-based

methodology such as Angel of Arrival (AOA) can be adopted in RF emitter geolocation, since

RF emitter is in essence a target. On the other hand, RF emitters stand out from conventional

targets as they are capable of sending out electromagnetic signals, which suggests the wireless

communication and signal processing vision to offer the effective solution.

Conventionally, synthetic aperture radar (SAR), inverse synthetic aperture radar (ISAR) and

moving target indicator (MTI) radar have been employed to provide situational awareness picture,

such as localization of targets. Due to the principle that radars operate by radiating energy into

space and detecting the echo signal reflected from the target [7], the vulnerability of active radars

are obvious:

• Given transmitter and receiver, a radar systems is generally bulky, expensive and not easily

portable

• Transmitter is easily detectable while in operation, thus draws unwanted attention of adver-

sary

• Detection range is limited by the power of transmitter

• The transmission energy highly reduce the life of battery for MTI radars

Therefore, passive geolocation approaches are preferred.

Currently, there is a developing trend to use unmanned aerial vehicles (UAVs) for geolocation

of RF emitters owing to better grazing angles closer to the target than large dedicated manned

surveillance platforms [8]. In addition, UAVs are capable of continuous 24-hour surveillance cov-

erage. As a result, they had been developed for battlefield reconnaissance beginning in the 1950s.

During the 1980s, all the major military powers and many of the minor ones acquired a battlefield

UAV capability, and they are now an essential component of any modern army. Till now, UAV is

not only limited to an unpiloted aircraft, but unmanned aerial systems (UAS) including ground

stations and other elements as well.

2
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Small unmanned aerial systems (SUAS) are rapidly gaining popularity due to the miniaturiza-

tion of RF components and processors. In particular, given the cutting-edge technology in modern

remote sensing (RS), SUAS can be equipped with Electronic Surveillance (ES) sensors in place

of bulky active radars, which result in smaller, lighter and lower-cost counterparts. These types

of SUAS are generally classified as having a wing-span of less than 4 meters [9] and a gross ve-

hicle weight less than 15 pounds [10]. A number of UAV manufacturers have developed low-cost

TDMA data links that support the cooperative team work of multiple UAVs, which provides higher

mobility, survivability and closer proximity to the targeting emitters.

In the present work, [10] and [11] are based on a team of UAVs working cooperatively with

on-board camera systems. The location of an object is determined by the fusion of camera im-

ages. However, the visual feature can become vulnerable in the following cases: 1)when telemetry

and image streams are not synchronized, the target coordinates read by UAV can be particularly

misleading; 2)when weather is severe and visibility is low, the image based geolocation may not

provide day-or-night, all-weather surveillance; 3)target is well protected and hidden, such as deeply

beneath the foliage.

Besides visual feature, the time difference of arrival (TDOA) technique has been adopted in the

current work [12]-[16]. In these work, a network of at least three UAVs has been employed with

on-board ES sensors, a global positioning system (GPS) receiver and a precision clock. When the

target is detected by the sensor, the time of arrival would be transmitted to a fusion center, which

would finally estimate the emitter location based on their TDOA. Also, Kalman filters is used to

track the object. However, TDOA, like other methods including Angle of Arrival (AOA), Frequency

of Arrival (FOA), Frequency Difference of Arrival (FDOA) and Phase Difference of Arrival (PDOA)

etc., is well known for difficult synchronization issues, such as fine synchronization for geolocation

algorithms and coarse synchronization for the coordinating data collected within the area of interest

at a common time.

In this paper, we apply netcentric SUAS with on-board multiple ES sensors for RF emitter

geolocation. Different from previous work described above, our work describes about a complete

system design and analyze the performance in detail. Our method is on a basis of an empirical

3
466 of 816



pass loss and log-normal shadowing model, which has been adopted for reliable high-speed wireless

communications for moving users in dynamic environment, but has never been used in the SUAS

before, to the best of our knowledge. Also, the performance of multiple ES sensors will be considered

for the system as a whole. In addition, we will provide a confidence assessment through error

bounding, which has not been seen in the existing approaches.

The rest of paper is organized as follows. Section 2 describes about the system design including

the emitter detection, path loss and log-normal shadowing approach and netcentric decision. Section

3 presents simulation results and performance analysis. Finally, section 4 draws the conclusion.

2 System Design Based on Path loss and Log-normal shadowing

2.1 Target Detection

Before UAVs cooperatively locating the RF emitter, it is necessary for them to understand whether

targets are present in the range or not. Due to the randomness of dynamic environment, statistical

model can be used to characterize the signal fluctuation. Herein threshold detection based on

Bayesian’s rule is adopted.

The Rayleigh distribution has been generally applied to describe the fluctuations of the ampli-

tude over a short period of time or travel distance [17]. when there is no any RF emitter, moving

UAVs will obtain scattered noise that reach the receiver by multipath, which can be denoted as

g(u) = gI(u) + jgQ(u) (1)

where the envelope of received signal r =
√

g2
I (u) + g2

Q(u) obeys a Rayleigh distribution. gI(u) and

gQ(u) are two independent quadrature Gaussian random variables with zero mean and variance φ2.

The probability density function (PDF) of the amplitude is

f(r) =
r

φ2
e
− r2

2φ2 , φ > 0 (2)

When a RF emitter is present, its dominant signal component will contribute to a line-of-sight

(LOS) propagation path, consequently the envelope in this case follows Rician distribution with
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PDF

f(r) =
r

φ2
e
− r2+s2

2φ2 I0(
rs

φ2
), φ > 0 (3)

where I0(·) is the zero-order modified Bessel function and it is monotonically increasing for positive

argument; s is the averaged RF signal amplitude.

Assume the presence of RF emitter is with probability 0 < p < 1, then Bayesian’s decision rule

can be designed as
r
φ2 e

− r2+s2

2φ2 I0( rs
φ2 )

r
φ2 e

− r2

2φ2

emitter exists
>

<
no emitter

1− p

p
(4)

Based on 4, the detection threshold turns out to be

T =
φ

s
I−1
0 (

1− p

p
)e

s2

2φ (5)

Therefore the probability of detection, i.e., the probability that the RF emitter be detected at its

real presence can be expressed as

Pd = p{r ≥ T} =
∫ ∞

T

r

φ2
e
− r2+s2

2φ2 I0(
rs

φ2
)dr (6)

The probability of false alarm can be denoted by

Pfa = p{r ≥ T} =
∫ ∞

T

r

φ2
e
− r2

2φ dr = e
− T2

2φ2 (7)

2.2 Path Loss and Log-normal shadowing Approach

In our work, we assume the SUAS is composed of R(R ≥ 3) small UAVs. Each UAV is equipped

with N(N ≥ 1) ES sensors, whose task is to provide Received Signal Strength Indicator (RSSI) of

RF emitters. A processor is also on-board to compute the current distance from the RF emitter to

the sensors based on RSSI. Notice that even though the computation can be achieved in a very fast

time on a basis of detected RSSI, estimated distance poses drifts from the real distance due to the

relative motion between the UAV and the RF emitter as well as wind gusts during the moment of

computation. Thus multiple sensors are employed to provide the receiver diversity. Later we will

show that multiple sensors help reduce the distance error and improve the geolocation performance.

The processor also applies Equal Gain Combining (EGC) to average out local spatial variations
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within a UAV. EGC is adopted due to its simplicity and fast computation. Additionally, each UAV

works independently and knows its own position either by a GPS receiver or pre-planned paths.

Also, it is capable of communicating with a fusion center, which makes a final geolocation decision

based on the information given by multiple UAVs.

Assume an emitter is sending out RF signal and a UAV d distance away from it detected the

signal at this moment. The signal propagating between these two points with no attenuation or

reflection follows the free-space propagation law [18]. This commonly adopted path loss model as

a function of distance is expressed as

P (d)
P (d0)

= γ(
d

d0
)−β (8)

where d0 is a close-in distance used as a known received power reference point; β is the path-loss

exponent depending on the propagation environment. γ is a unitless constant that depends on the

antenna characteristics and the average channel attenuation, which can be defined as

γdB = 20 lg
C

4πfd0
(lg = log10) (9)

where C is the speed of light and f denotes the frequency. This definition is supported by empirical

data for free-space path loss at a transmission distance of 100m [19]. Based on this free-space model,

the power in dB form is linearly decreasing with the increase of log(d), as illustrated by the straight

dash line in Fig. 1.

However, in practice, the reflecting surfaces and scattering objects will typically contribute

to the random variation of RF signal transmission. The most common model for this additional

attenuation is log-normal shadowing, which has been empirically confirmed to model accurately

the variation in received power in both outdoor [20] and indoor [21] environments. In this case, the

difference between the value predicted by the path loss model and the actual power is a log-normal

random variable, i.e., normally distributed in dB, which is denoted by

[
P (d)
P (d0)

]dB = [
P̂ (d)
P (d0)

]dB + X (10)

where X is a Gaussian random variable, with mean m and variance σ2.
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We will use the combined path loss and log-normal shadowing model to estimate the distance

between RF emitter and a UAV through RSSI. This model is illustrated in Fig. 1 with a dotted

curve. The power in dB is given by

[
Pri

P (d0)
]dB = 10lgγ − 10βlg(

d̂i

d0
) + X (11)

where Pri is the RSSI of ES sensor i. Based on (11), when Pri is detected, the processor can easily

compute d̂i in a dB form, which is

d̂idB =
1
β
{γdB + βd0dB − [

Pri

P (d0)
]dB}+

X

β
(12)

Notice that didB = 1
β{γdB + βd0dB − [ Pri

P (d0) ]dB}, therefore

d̂idB − didB =
X

β
(13)

Then it is obvious that the expectation of distance mean square error based on sensor i is

E{(d̂idB − didB)2} =
m2 + σ2

β2
(14)

N sensors equipped on a UAV are applied to compute the local mean distance that average the

local spatial variations. The estimated local mean distance is

D̂ =
1
N

N∑

i=1

d̂idB (15)

This value is obtained based on dB measurement due to the smaller estimation error compared to

the linear form [22].

Notice that D = ddB. At the detection moment, UAV is d distance away from the RF target,

i.e., didB = ddB. Also, each sensor independently obtains the d̂idB, i.e., d̂idB−didB can be considered

independent for different i, thus the expectation of distance mean square error for each UAV can

be expressed as

E{(D̂ −D)2} =
m2 + σ2

N2β2
(16)

This shows that based on path loss and log-normal model, the larger number of sensor N , the

smaller distance mean square error will be achieved for each UAV.
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As each UAV geolocates RF emitter only based on RSSI and there is no any information about

phase, in this situation the current detected area at the moment can be denoted by a = πd2. If a

is denoted by dB form, then A = 10lgπ + 2D, therefore the expectation of area mean square error

for each UAV is

PA = E{(A− Â)2} = 4E{(D − D̂)2} =
4(m2 + σ2)

N2β2
(17)

Finally the upper bound of geolocation area mean square error of a UAV network can be denoted

by

Pe = P (
R⋃

i=1

Ai) ≤
R∑

i=1

PAi =
4R(m2 + σ2)

N2β2
(18)

We show this upper bound in Fig. 2, where R = 3,m = 0, β = 2 are used for illustration.

Apart from geolocation performance, we also define distance range probability as the probability

that the estimated local mean distance D̂ falls within D1 ≤ D̂ ≤ D2, where D1 < D2 and D1, D2

are also in dB form. The corresponding linear form of D̂, D1 and D2 are d̂, d1 and d2 respectively.

In order to simplify the expression, we would like to denote

Si =
1
σ
{γdB + [

P (d0)
Pr

]dB − βDi + βd0dB}, i = 1, 2 (19)

It’s obvious that S2 < S1. Therefore the distance range probability turns out to be

P (D1 ≤ D̂ ≤ D2) =





Q(S2)−Q(−S1) = Q(S2) + Q(S1)− 1 if (a)S1 ≤ 0 or (b)0 < S1 < −S2

Q(−S1)−Q(S2) = 1−Q(S1)−Q(S2) if (c)0 ≤ −S2 < S1 or (d) S2 > 0
(20)

where the Q-function is defined as the probability that a Gaussian random Z is greater than x:

Q(x) = p(Z > x) =
∫ ∞

x

1√
2π

e−
y2

2 dy (21)

The (a)-(d) situations are illustrated in the Fig. 3. It’s worth mentioning that P (D1 ≤ D̂ ≤ D2) =

P (d1 ≤ d̂ ≤ d2). When D1 and D2 are set to be values pretty close to D, (20) turns out to be the

probability of correct distance range.

Based on our previous analysis, it’s obvious that

D̂ = D +
X

Nβ
(22)
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When the relative motion between UAV and the emitter is very slow, the mean of X
Nβ , i.e.,

l = m
Nβ can be considered zero because the mean may be considered to describe the average

discrepancies in real and estimated distance between the RF emitter and the UAV during the

moment of computation. Also, for simplicity and clarity, we use η to denote the variance of X
Nβ ,

which is σ2

N2β2 . Therefore, the probability of estimation that RF emitter locate in the range [D1, D2]

by a single UAV becomes

Pcs(D1, D2) =
∫ D2

D1

P (D1 ≤ D̂ ≤ D2)fN (u)du (23)

=
∫ D2

D1

P (D1 ≤ D̂ ≤ D2)
1√
2πη

e
−(u−D)2

2η2 dD̂

= P (D1 ≤ D̂ ≤ D2)[Q(
D1 −D

η
)−Q(

D2 −D

η
)]

When the relative motion between the UAV and the RF emitter is obvious, due to the random

variation, even the mean can be considered as a variable which follows uniform distribution in the

range [L1, L2](in dB form), where L1 < D1 −D and L2 > D2 −D. In this case, the probability of

RF emitter locating in the range [D1, D2] by a single UAV becomes

Pcm(D1, D2) =
∫ D2

D1

P (D1 ≤ D̂ ≤ D2)
∫ L2

L1

1√
2πη

e
−(u−D−v)2

2η2 · 1
L2 − L1

dvdu (24)

=
P (D1 ≤ D̂ ≤ D2)

L2 − L1
[
∫ L2

L1

Q(
D1 −D − v

η
)−

∫ L2

L1

Q(
D2 −D − v

η
)]dv

2.3 Netcentric Decision

As soon as each UAV obtains its distance from the RF emitter, this data will immediately be sent

to a fusion center through TDMA data links. The fusion center can be a ground station or even

mounted on one of the UAVs. Due to the shadowing and multiparth, the signal sent by a UAV

will encounter fading before arriving at the fusion center. Assume the instantaneous signal-to-noise

ratio (SNR) is y, the statistical averaging probability of error over the fading distribution [23] is

Pe m f =
∫ ∞

0
Pm(y)pf (y)dy (25)

where Pm(y) is the probability of symbol error in AWGN based on a certain modulation scheme

and pf (y) denotes the PDF of the fading amplitude.
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Apply the moment generating function (MGF) Mf (s) =
∫∞
0 pf (y)esydy and alternate Q-

function Q(x) = 1
π

∫ π/2
0 e

−x2

2 sin2 ϕ dϕ, we derive the probability of symbol error for the UAV network

using 4 most common modulation schemes: phase-shift keying (MPSK), pulse amplitude modula-

tion (MPAM), quadrature amplitude modulation (MQAM) and noncoherent frequent-shit keying

(MFSK) respectively as follows:

Pe MPSK f =
1
π

∫ (M−1)π
M

0
Mf (−sin2(π/M)

sin2 ϕ
)dϕ (26)

Pe MPAM f =
2(M − 1)

πM

∫ π
2

0
Mf (

−3
sin2 ϕ(M2 − 1)

)dϕ (27)

Pe MQAM f =
4
π

(
√

M − 1√
M

)
∫ π

2

0
Mf (− 3

2(M − 1) sin2 ϕ
)dϕ (28)

− 4
π

(
√

M − 1√
M

)2
∫ π

4

0
Mf (− 3

2(M − 1) sin2 ϕ
)dϕ

Pe MFSK f =
M−1∑

n=1

(
M−1
n )

1
n + 1

Mf (− n

n + 1
) (29)

When the channel is Rician fading with factor K, after derivation the detailed expression of

(26)-(29) are as follows respectively:

Pe MPSK Rician =
1 + K

π

∫ (M−1)π
M

0

sin2 ϕ · exp[− yK sin2(π/M)

y sin2(π/M)+(1+K) sin2 ϕ
]

y sin2(π/M) + (1 + K) sin2 ϕ
dϕ (30)

Pe MPAM Rician =
2(1 + K)(M − 1)

πM

∫ π/2

0

sin2 ϕ · exp{− 3Ky

(M2−1)[ 3y

M2−1
+(1+K) sin2 ϕ]

}
3y

M2−1
+ (1 + K) sin2 ϕ

dϕ (31)

Pe MQAM Rician =
4(
√

M − 1)(1 + K)
π
√

M

∫ π
2

0

sin2 ϕ · exp{− 3Ky

2(M−1)[ 3y

M2−1)
+(1+K) sin2 ϕ]

}
3y

2(M−1) + (1 + K) sin2 ϕ
dϕ (32)

−4(1 + K)
π

(
√

M − 1√
M

)2
∫ π

4

0

sin2 ϕ · exp{− 3Ky

2(M−1)[ 3y

M2−1)
+(1+K) sin2 ϕ]

}
3y

2(M−1) + (1 + K) sin2 ϕ
dϕ
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Pe MFSK Rician =
M∑

n=1

(−1)n+1(
M−1
n )

1
n + 1

· 1 + K

1 + K + ny
n+1

exp{ −K ny
n+1

1 + K + ny
n+1

} (33)

To simplify the (30)-(33), two extreme cases are taken into account. When the Rician fading

factor K → 0, it becomes Rayleigh distribution, therefore (30)-(33) can be denoted using following

expressions in this case:

Pe MPSK Ray = 1−
√

y sin2( π
M )

1 + y sin2( π
M )

(34)

Pe MPAM Ray =
M − 1

M
· (1−

√√√√
3y

M2−1

1 + 3y
M2−1

) (35)

Pe MQAM Ray =
2(
√

M − 1)√
M

(1−
√√√√

3y
2(M−1)

1 + 3y
2(M−1)

)− 4(
√

M − 1√
M

)2 (36)

·[1
4
− 1

π

√√√√
3y

2(M−1)

1 + 3y
2(M−1)

arctg

√√√√1 + 3y
2(M−1)

3y
2(M−1)

]

Pe MFSK Ray =
M−1∑

n=1

(−1)n+1(
M−1
n )

1
n + 1

(1 +
n

n + 1
y)−1 (37)

When K → ∞, the Rician fading channel becomes AWGN channel. In this situation, the

probability of symbol error based on above modulation schemes have been well studied and the

result is provided in [18], Table 6.1.

According to these performance, the best modulation scheme can be chosen to reduce the

probability of error. This will be further illustrated in Section 3 by simulations.

For simplicity and clarity, we assume the RF emitter is on the ground surface. In the case that

the relative motion between the RF emitter and UAVs are quite slow, the UAV a is able to be

aware that the RF emitter is somewhere on a circle, of which the center is itself and the radius is

da, as illustrated in Fig. 4(a). Another UAV b can also identify that there is a RF emitter on a

circumference with radius db. After combining the information from both a and b, the fusion center

will be aware that the target either locates at the position A or B. With the help of a third UAV
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c, the fusion center will have the knowledge that the RF emitter is at the position A. Therefore

with the triangulation, 3 UAVs are able to locate the RF emitter on the ground. In the case that

the target is above the ground, 4 UAVs are necessary with one more member providing altitude

geolocation information.

When the relative movement between the target and UAVs are obvious, a and b will aware that

the RF emitter is moving within a ring area, and the fusion system will understand that the the

target is within the intersection of 2 rings. Suppose the intersection area is âbc (the intersection

can also be 2 independent areas, here we use one case for illustration without loss of generality),

shown in Fig. 4(b). When the data from c is obtained, its detected range ring will intersect with

âbc in a line DE. Therefore, the trace of the RF emitter DE will be successfully obtained. After a

few numbers of measurement, the motion speed, acceleration of the target can be calculated based

on range and time difference.

Due to the independence of the distance estimation by each UAV and the transmission of data to

the fusion center, the probability that a single UAV accurately provides the geolocation information

to the fusion center is Pcs(D1, D2) · (1− Pe MPSK f ) or Pcm(d1, d2) · (1− Pe MPSK f ) for different

relative motion situations, where D1, D2 and d1, d2 are close to D and d respectively. Therefore,

the probability of error for the netcentric SUAS made up of 3 UAVs can be denoted as

Pes ≤ 1− [Pcs(D1, D2) · (1− Pe MPSK f )]3 (38)

Pem ≤ 1− [Pcm(d1, d2) · (1− Pe MPSK f )]3 (39)

The above expressions are error upper bound, this is because the netcentric decision provides

much more resilience than a single UAV. For example, in Fig. 4(a) assume UAV a and b accurately

geolocate the target while c has a large location error and believes the target is far away from the

pint A and B, the whole system may still provide accurate estimation if c determines that the

target is closer to A compared with B. Demanding every UAV to provide accurate information to

fusion center is a stringent rule, therefore (38) and (39) are upper bounds.
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3 Simulation Results and Performance Analysis

Simulations on a basis of mathematical expressions in Section 2 are presented in this Section for

better analysis and illustration about SUAS performance. In the simulation, we assume d = 100m,

d0 = 0.1d and β = 2.

Fig. 5 describes about error probability of distance range vs. frequency for a single UAV, where

d1 = 0.99d and d2 = 1.01d have been used. The curves show that given the same σ (see (10)), the

error probability of distance range will be reduced as the frequency increases. However, when the

frequency is higher than a certain threshold value, such as 108 for σ = 10, the error probability

becomes a constant. This phenomenon is the result of nonlinearity of the Q function. Therefore,

this UAV system is more appropriate for geolocate an emitter with higher frequency.

Fig. 6 shows the contribution of another important factor power-rate-to-noise ratio (PRNR) to

the correct probability of distance range for a single UAV. We define PRNR as P (d0)
σPr

. It is easy to

observe that similar to Fig. 5, there is also a threshold value in correct probability of distance range.

The larger the η (see (22)), the smaller the threshold value as well as the probability correctness.

Fig. 7-10 illustrate upper bound error probability for netcentric UAVs based on (38) and (39).

Fig. 7 and 8 are in the environment of AWGN while Fig. 9 and 10 are for Rayleigh fading. In the

case that relative motion between the RF emitter and UAVs are slow, d1 = 0.99d, d2 = 1.01d and

η = 1; when the relative motion is obvious we apply l1 = −0.1d, l2 = 0.1d and η = 1, therefore

Pcs(D1, D2) = 0.9876 and Pcm(D1, D2) = 0.94. In Figs. 7 and 9, modulation schemes MFSK,

MPAM, MPSK and MQAM with M = 4 are applied for illustration. This does not mean M = 2

can not be used. Actually, the smaller M , the smaller probability of symbol error rate for the

same modulation scheme. That partially contributes to the smaller probability of error in Fig. 8.

Moreover, the resilience of netcentric design makes the probability of error using BFSK and BPSK

much smaller compared to that of 4-FSK and QPSK. This is the same situation while comparing

Fig. 10 with 9.

These figures show that no matter the wireless radio channel between UAVS and fusion center

is AWGN or Rayleigh, MQAM will provide the smallest probability of error at low SNR while

MPSK will provide the smallest probability of error at moderate to high SNR. Therefore MQAM

13
476 of 816



and MPSK can be applied for adaptive modulation for data fusion depending on how large is the

SNR at the receiver of fusion center.

4 Conclusions

In this work, we propose a passive geolocation approach to geolocate RF emitter using a netcentric

small UAV systems (SUAS) equipped with ES sensors. This approach is based on log-normal shad-

owing model, which has been empirically confirmed to model accurately the variation in received

power in propagation environments. We show that the geolocation error is essentially a log-normal

random variable. The larger number of ES sensors, the smaller geolocation area upper bound error.

We also analyze the error probability of distance range for the system. We demonstrate that when

the emitter frequency is higher than a certain threshold value, the error probability becomes a con-

stant. The situation is similar for power-rate-to-noise ratio (PRNR). Regardless what the wireless

radio channel between UAVS and fusion center is, for example AWGN, Rayleigh or Rician, at low

SNR MQAM modulation is applied while MPSK will be chosen at moderate to high SNR due to

the smallest performance error of the whole system.
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Figure 1: Path loss, shadowing vs. distance.
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Figure 2: Upper bound of geolocation area mean square error for a UAV network.
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Figure 3: Distance range probability illustration based on Q function: (a)S1 ≤ 0 (b)0 < S1 < −S2

(c)0 ≤ −S2 < S1 (d) S2 > 0.

(a) (b)

Figure 4: RF emitter Geolocation by SUAS (a) Relative movement between RF emitter and UAVs

are slow (b) Relative movement between RF emitter and mini UAVs are obvious.
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Figure 5: Error probability of distance range vs. frequency for a single UAV.
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Figure 6: Correct probability of distance range vs. power-rate-to-noise ratio (PRNR) for a single

UAV.
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Figure 7: Upper error bound of the netcentric UAVs in AWGN when relative movement between

the RF emitter and UAVs are slow.
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Figure 8: Upper error bound of the netcentric UAVs in AWGN when relative movement between

the RF emitter and UAVs are obvious.
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Figure 9: Upper error bound of the netcentric UAVs in Rayleigh fading when relative movement

between the RF emitter and UAVs are slow.
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Figure 10: Upper error bound of the netcentric UAVs in Rayleigh fading when relative movement

between the RF emitter and UAVs are obvious.
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Abstract

Humans use multiple sources of sensory information to estimate environmental proper-

ties and has innate ability to integrate information from heterogeneous data sources. How

the multi-sensory and multimodal information are integrated in human brain? There is

consensus that it depends on the prefrontal cortex (PFC). The PFC has top-down control

(favor weak) and rule-based mechanisms, and we propose to incorporate the favor weak

mechanism into rule-based fuzzy logic systems (FLS) via using upper and lower membership

functions. The inference engine of favor weak fuzzzy logic system is proposed under three

different categories based on fuzzifiers. We observe that the favor weak FLS is a special

type-1 FLS which is embeded in an interval type-2 FLS, so it’s much simpler in computing

than an interval type-2 FLS. We apply the favor weak FLS to situation understanding

based on heterogeneous sensor network, and it shows that our favor weak fuzzy logic sys-

tem has clear advantage comparing to the type-1 FLS. The favor weak FLS can increase

the probability of threat detection, and provides timely indication & warning (I&W).

Index Terms : Fuzzy logic systems, prefrontal cortex (PFC), favor weak, upper and lower

membership functions, situation understanding, heterogeneous sensor networks.
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1 Introduction and Motivation

Humans use multiple sources of sensory information to estimate environmental properties. For

example, the eyes and hands both provide relevant information about an objects shape. The

eyes estimate shape using binocular disparity, perspective projection, etc. The hands supply

haptic shape information by means of tactile and proprioceptive cues. Combining informa-

tion across cues can improve estimation of object properties but may come at a cost:

loss of single-cue information. Recent studies [14] showed that single-cue information is indeed

lost when cues from within the same sensory modality (e.g., disparity and texture gradients

in vision) are combined, but not when different modalities (vision and haptics) are

combined. In another study on human [8], gaze shifts are coordinated movements of the eyes

(eyes-re-head) and head (head-re-space) that rapidly reorient the visual axis (eyes-re-space) to

a target of interest. Reaction latencies for gaze shifts to combined auditory and visual stimuli

presented in close spatial and temporal register are less than those to either stimulus

presented alone, suggesting that the integration of multisensory information may play an

important role in forming appropriate motor behaviors. These studies demonstrate that human

has innate ability to integrate information from heterogeneous data sources and multi-sensory

and multimodal information integration has clear advantage.

In this paper, as a product of multidisciplinary collaborative research, we incorporate hu-

man brain mechanisms to a new fuzzy logic system design and apply it to situation under-

standing based on heterogeneous sensor network. A heterogeneous sensor network consists of

multiple networked sensors with different modality (video, audio, acoustic, radar, etc), and

such networks are necessary in different applications. For example, in an emergency natural

disaster scenario, information integration for first responders is critical for search and rescue.

Besides, the first responders need to be situation-aware. Danger may appear anywhere at

any time, therefore, first responders must monitor a large area continuously in order to iden-
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tify potential danger and take actions. Due to the dynamic and complex nature of natural

disaster, some victims may not be found with a single type of sensor modality, for example,

image/video sensors can’t be used to find a buried/foleage victim, UWB radar sensors need to

be used for penetrating the ground or sense-through-wall, and acoustic sensors are needed to

collect the voice from victims. Similarly, some potential dangers may not be identified using

a single modality sensor. More modalities are required to search victims and identify poten-

tial dangers and that means large-scale Heterogeneous Sensor Networks (HSN) are needed for

search, rescue, and situation awareness. However, information integration algorithms (espe-

cially for situation awareness) for heterogeneous sensor networks don’t exist. Motivated by the

above challenges, we study human-inspired information integration for heterogeneous sensor

networks.

The remaining of the paper is organized as follows. In Section 2, we present the heteroge-

neous information integration in Human brain and challenges to fuzzy logic system design. In

Section 3, we give an overview on upper and lower membership design and describe how it can

be used to the new fuzzy logic system design. In Section 4, we present the inference engine

for favor weak fuzzy logic system, and its relations with the interval type-2 fuzzy logic systems

are described in Section 5. The application to situation understanding based on heterogeneous

sensor network is presented in Section 6. Section 7 concludes this paper.

2 Heterogeneous Information Integration in Human Brain and

Challenges to Fuzzy Logic System Design

One of the great mysteries of the brain is cognitive control. How can the interactions between

millions of neurons result in behavior that is coordinated and appears willful and voluntary?

There is consensus that it depends on the prefrontal cortex (PFC) [35][39]. A schematic dia-

gram of some of the extrinsic and intrinsic connections of the PFC is depicted in Fig. 1 [35].
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Many PFC areas receive converging inputs from at least two sensory modalities [5][18]. For

example, the dorsolateral (DL) (areas 8, 9, and 46) and ventrolateral (12 and 45) PFC both

receive projections from visual, auditory, and somatosensory cortex. Furthermore, the PFC

is connected with other cortical regions that are themselves sites of multimodal convergence.

Many PFC areas (9, 12, 46, and 45) receive inputs from the rostral superior temporal sul-

cus, which has neurons with bimodal or trimodal (visual, auditory, and somatosensory) re-

sponses [1][40]. The arcuate sulcus region (areas 8 and 45) and area 12 seem to be particularly

multimodal. They contain zones that receive overlapping inputs from three sensory modalities

[40]. Observe, for example, that mid-dorsal area 9 directly processes and integrates visual,

auditory, and multimodal information.

2.1 PFC Top-Down Control (Favor Weak) and Rule-Based Mechanisms

According to [35][39], the PFC is modulatory rather than transmissive. That is, the pathway

from input to output does not “run through” the PFC. Instead, the PFC guides activity

flow along task-relevant pathways in more posterior and/or subcortical areas. The PFC is

important when “top-down” processing is needed; that is, when behavior must be guided by

internal states or intentions. The PFC is critical in situations when the mappings between

sensory inputs, thoughts, and actions either are weakly established relative to other existing

ones or are rapidly changing. This is when we need to use the “rules of the game,” internal

representations of goals and the means to achieve them [35]. Several investigators have argued

that this is a cardinal function of the PFC [7][41][12][46][34]. The top-down control and favor

weak mechanism can be illustrated using the Stroop task Wisconsin card sort task (WCST).

In the Stroop task [44][31], subjects either read words or name the color in which they

are written. To perform this task, subjects must selectively attend to one attribute. This is

especially so when naming the color of a conflict stimulus (e.g. the word GREEN displayed in

red), because there is a strong prepotent tendency to read the word (“green”), which competes
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with the response to the color (“red”). This illustrates one of the most fundamental aspects

of cognitive control and goal-directed behavior: the ability to select a weaker, task-relevant

response (or source of information) in the face of competition from an otherwise stronger, but

task-irrelevant one. Patients with frontal impairment have difficulty with this task, especially

when the instructions vary frequently, which suggests that they have difficulty adhering to the

goal of the task or its rules in the face of a competing stronger (i.e. more salient or habitual)

response [35]. Similar findings are evident in the WCST [36]. Subjects are instructed to sort

cards according to the shape, color, or number of symbols appearing on them and the sorting

rule varies periodically. Thus, any given card can be associated with several possible actions,

no single stimulus-response mapping will work, and the correct one changes and is dictated by

whichever rule is currently in effect. Humans with PFC damage show stereotyped deficits in

the WCST. They are able to acquire the initial mapping without much difficulty but are unable

to adapt their behavior when the rule varies [36]. Monkeys with PFC lesions are impaired in

an analog of this task and in others when they must switch between different rules [35].

The Stroop task, naming the color of a conflict stimulus, and WCST [36] are variously

described as tapping the cognitive functions of either selective attention, behavioral inhi-

bition, top-down control, working memory, or rule-based or goal-directed behavior

[35]. As suggested by Desimone and Duncan [10], selective attention and behavioral inhibi-

tion are two sides of the same coin: attention is the effect of biasing competition in favor of

task-relevant information, and inhibition is the consequence that this has for the irrelevant

information. In this project, we will study human brain top-down control and rule-based

mechanisms inspired information integration. In current HSN design, the clusterhead only

serves a “transmissive” (data collection and relay to gateway) function. In this project, the

HSN clusterhead will also provide a “modulatory” function, i.e., multimodal information inte-

gration. In natural disaster or terrorist attack recovery, the most dangerous potential threat

factors (stimuli) are weak or hidden but are highly correlated with the situation understanding
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task, and of course, they are time sensitive (rapidly changing), which indicates that the PFC

“top-down” control mechanism can be applied to HSN-based situation understanding.

The PFC top-down control signals favor weak (but task-relevant) stimulus-response map-

pings when they are in competition with more habitual, stronger ones (as in the Stroop task,

where the word GREEN is stronger and the color red is weak), especially when flexibility is

needed (such as in the WCST) [35]. Moreover, all of the PFC neural mechanisms depend on the

representation of goals and rules in the form of patterns of activity in the PFC, which configure

processing in other parts of the brain in accordance with current task demands [35][39]. Such

mechanisms motivate us to heavily revisit a rule-based approach: fuzzy logic systems (FLS),

mimicking the rule-based PFC neural mechanism, and subsequently applying it to HSN-based

situation awareness.

2.2 Overview of Fuzzy Logic Systems and Its Shortfall

The current type-1 FLS designs doesn’t have “favor strong or favor weak control”. In a type-1

FLS with a rule base of M rules, in which each rule has p antecedents, let the lth rule be

denoted by Rl, where Rl: IF x1 is Fl
1, and x2 is Fl

2, and, . . ., and xp is Fl
p THEN y is Gl.

The membership function, μBl(y), of a fired rule can be expressed by the following sup-star

composition [33]:

μBl(y) = supx∈A∗ [μA∗(x) � μAl→Bl(x, y)] (1)

where A∗ is a p-dimensional Cartesian product space, A∗ = A∗1×· · ·×A∗p, A∗k is the measurement

domain of input xk, (k = 1, · · · , p); and, A∗ is given by

μA∗(x) = μA∗
1×···×A∗

p
(x) = μX1(x1) � · · · � μXp(xp) (2)

In the current type-1 FLS design,

μ
Al→B̃

l(x, y) = μFl
1
(x1) � μFl

2
(x2) � · · · � μFl

p
(xp) � μGl(y) (3)
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For the Stroop task, to name the color of a conflict stimulus (e.g. the word GREEN

displayed in red), needs the favor weak mechanism because there is a strong prepotent tendency

to read the word (“green”), which competes with the response to the color (“red”). In Fig. 2,

we illustrate the schematic of the Stroop model using the example to name the color when the

word GREEN displayed in red [35].

So in the FLS design, the firing degree for “red” should be boosted to reflect the “favor

weak” mechanism if a conflict stimulus presents, but no control should be taken if no con-

flict stimulus presents (e.g., name the word when the word GREEN displayed in red). This

motivates us to use different membership degrees under different scenarios. We propose to

use interval type-2 fuzzy membership function for this favor weak (using upper membership

function) or no control (using lower membership function) mechanism.

3 Upper and Lower Membership Functions

An upper MF and a lower MF are two type-1 MFs which are bounds for the footprint of

uncertainty of an interval type-2 MF. The upper MF is a subset which has the maximum

membership grade of the footprint of uncertainty; and, the lower MF is a subset which has the

minimum membership grade of the footprint of uncertainty [21].

Same as that in [21], we use an overbar (underbar) to denote the upper (lower) MF. For

example, the upper and lower MFs of μ
Ã

l
k
(xk) are μ

Ã
l
k
(xk) and μ

Ã
l
k
(xk), respectively, so that

μ
Ã

l
k
(xk) =

∫
ql∈[µ

Ã
l
k

(xk),µ
Ã

l
k

(xk)]
1/ql (4)

Example 1: Gaussian Primary MF with Uncertain Standard Deviation

Consider the case of a Gaussian primary MF having a fixed mean, ml
k, and an uncertain

standard deviation that takes on values in [σl
k1, σ

l
k2], i.e.,

μl
k(xk) = exp

[
−1

2
(
xk −ml

k

σl
k

)2
]
, σl

k ∈ [σl
k1, σ

l
k2] (5)
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where: k = 1, . . . , p; p is the number of antecedents; l = 1, . . . ,M ; and, M is the number of

rules. The upper MF, μl
k(xk), is (see Fig. 3b)

μl
k(xk) = N (ml

k, σ
l
k2;xk), (6)

and the lower MF, μl
k
(xk), is (see Fig. 3)

μl
k
(xk) = N (ml

k, σ
l
k1;xk) (7)

�

This example illustrates how to define μ and μ, so that it is clear how to define these

membership functions for other situations (e.g., triangular, trapezoidal, bell MFs). In [50],

different membership functions and approximation accuracy were studied.

4 The Inference Engine for Favor Weak FLSs

In a favor weak FLS with a rule base of M rules, in which each rule has p antecedents, let

the lth rule be denoted by Rl, where Rl: IF x1 is F̃
l
1, and x2 is F̃

l
2, and, . . ., and xp is F̃

l
p

THEN y is Gl. Although the rule may look the same as that of the interval type-2 FLS, but

the inference engine is different.

In a favor weak FLS with p antecedents, without loss of generality, assume the first w (w <

p) antecedents are weak and should be favored, and all other antecedents (w+ 1, iw+2, · · · , ip)

should be in no control. If the antecedents are not in this order, they can be re-orderred. Then

we can obtain the following Theorem. Our major result for favor weak FLSs is given in:

Theorem 1 In a favor weak nonsingleton FLS (the first w antecedents are weak and should be

favored) with type-2 fuzzification and meet under minimum or product t-norm: (a) the firing

degree for rule l, i.e., the result of the input and antecedent operations, is

f l = sup
x∈X

∫
X1

· · ·
∫

Xp

[μX̃1
(x1) � μF̃

l
1
(x1)] � · · · � [μX̃w

(xw) � μ
F̃

l
w
(xw)] (8)

�[μ
X̃w+1

(xw+1) � μF̃
l
w+1

(xw+1)] � · · · � [μ
X̃p

(xp) � μF̃
l
p
(xp)]/x ; (9)
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the supremum is attained when each term in brackets attains its supremum;

(b) the rule Rl fired output consequent set, μBl(y), is

μBl(y) = f l � μGl(y) (10)

where μ
G̃

l(y) and μ
G̃

l(y) are the lower and upper membership grades of μ
G̃

l(y); and,

(c) the output fuzzy set, μB(y), is

μB̃(y) =
M⋃
l=1

μBl(y) (11)

When the input is fuzzified to a type-1 fuzzy set, so that μX̃k
→ μXk

(k = 1, . . . , p), the

upper and lower MFs of μX̃k
merge into one MF, μXk

(xk), in which case Theorem 1 simplifies

to:

Corollary 1 In a favor weak FLS (the first w antecedents are weak and should be favored)

with nonsingleton type-1 fuzzification and meet under minimum or product t-norm, f l in (9)

simplifies to: the firing degree for rule l is

f l = sup
x∈X

∫
X1

· · ·
∫

Xp

[μX1(x1) � μF̃
l
1
(x1)] � · · · � [μXw(xw) � μ

F̃
l
w
(xw)] (12)

�[μXw+1(xw+1) � μF̃
l
w+1

(xw+1)] � · · · � [μXp(xp) � μF̃
l
p
(xp)]/x ; (13)

the supremum is attained when each term in brackets attains its supremum.

When a singleton fuzzifier is used, the upper and lower MFs of μX̃k
(xk) merge into one

crisp value, namely 1, in which case Theorem 1 simplifies further to:

Corollary 2 In a favor weak FLS (the first w antecedents are weak and should be favored)

with singleton fuzzification and meet under minimum or product t-norm, f l in (9) simplifies

to: the firing degree for rule l, i.e., the result of the input and antecedent operations,

f l = μ
F̃

l
1
(x1) � · · · � μF̃

l
w
(xw) � μ

F̃
l
w+1

(xw+1) � · · · � μF̃
l
p
(xp) (14)

where xi (i = 1, . . . , p) denotes the location of the singleton.
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5 Relations between Favor Weak FLS and Interval Type-2 FLS

In decision theory, ambiguity about probabilities should not affect choices. However, recent

experiments [15] showed that many people are more willing to bet on risky outcomes (e.g.,

gambling on a roulette wheel) than on an ambiguous one (e.g., chance of a terrorist attack

based on meager or conflicting evidence), holding the judged probability of outcomes constant.

So, the confidence in judged probability can vary widely for “risky” and “ambiguous”. Using

functional brain imaging, Hsu et al [15] showed that the level of ambiguity in choices correlates

positively with activation in the amygdala and orbitofrontal cortex, and negatively with a

striatal system. This suggests that degree of uncertainty should be considered in decision

making, contrary to traditional decision theory. In [13], a new model was proposed for group

decision making in which experts preferences can be expressed as incomplete fuzzy preference

relations. Type-2 fuzzy sets and FLSs are successful in handling the uncertainties [21]. Type-2

fuzzy sets have grades of membership that are themselves fuzzy. A type-2 membership grade

can be any subset in [0, 1] – the primary membership; and, corresponding to each primary

membership, there is a secondary membership (which can also be in [0, 1]) that defines the

possibilities for the primary membership. Figure 4 shows an example of a type-2 set. The

domain of the membership grade corresponding to x = 4 is also shown.

In [21][24][26][27][28], Liang and Mendel proposed the theory and design of interval type-2

FLS. With their pioneering works, people are able to efficiently handle uncertainties. They

applied interval type-2 FLS to a number of very important applications where uncertainties

abound, such as fading channel equalization [22] and co-channel interference elimination [23],

network video traffic modeling and classification [25], connection admission control for ATM

network [20]. Recently, Liang and his students applied interval type-2 FLSs to sensor network

lifetime estimation[43][42], event forecasting in wireless sensor networks[29][30], and cross-layer

optimization in ad hoc networks[48][47].
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Recently, Juang and Tsao [17] proposed a type-2 self-organizing neural fuzzy system (T2SONFS),

of which the antecedent parts in fuzzy rule are interval type-2 fuzzy sets, and the consequent

part is of Mamdani type. Using interval type-2 fuzzy sets in T2SONFS enables it to be more

robust than type-1 fuzzy systems. A type-2 fuzzy logic system (FLS) cascaded with neural

network, type-2 fuzzy neural network (T2FNN), was presented in [45] to handle uncertainty

with dynamical optimal learning In [19], the interval type-2 fuzzy-model stability was analyzed.

In [3], a type-2 fuzzy function system for uncertainty modeling using evolutionary algorithms

(ET2FF) was proposed.

In this paper, PFC’s “top-down control (favor weak)”, “rule-based”, and “brain handling

ambiguity” mechanisms are incorporated into the favor weak FLS design to mimic human

brain learning and decision making for associating, integrating and understanding/inferencing

discovered knowledge from disparate sources. The favor weak FLS we proposed in this paper

is a type-1 FLS which is embeded in the interval type-2 FLS.

6 Application to Situation Understanding Based on Heteroge-

neous Sensor Network

Some valuable work has been reported on situation understanding (situation awareness and

threat assessment). In [11], an intelligent threat assessment processor using genetic algorithms

and fuzzy logic was proposed. In [37], threat assessment was studied in tactical airborne

environments. In [16], a neural network was applied to threat assessment for automated visual

surveillance. In [9], an intelligent assistant was proposed to provide automatic situation and

threat advice in the Air Defence Ground Environment. In [2], a situation and threat assessment

model based on group analysis was proposed. A situation/threat assessment fusion system

was proposed in [6]. Other approaches that have appeared include multiple attribute decision

making [4], bayesian networks [38], etc. Unfortunately, none of these approaches is appropriate
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for the multimodal sensor network scenario and none of them have used models derived from

human or biological system mechanisms, although some computational intelligence models

(such as neural networks and fuzzy logic) were used.

In situation awareness, the “weak” can be interprated as, for example, 1) a target (or

entity) rarely appears in the sensor field; or 2) the behavior pattern of this target (or entity)

has low match with the existing ones in database; or 3) space/time correlation of data/entities

to events is low, etc. All the above information can be obtained based on the assumption that

high quality information about objects and events is available as a contributor to situation

awareness. In general, however, such information is insufficient to provide adequate situation

awareness. Actually, some lessons gained from terrorist attacks have already demonstrated

that the above “weaks” should be favored in situation awareness. Situation awareness needs

the “favor weak” and rule-based mechanisms from PFC.

The new favor weak FLS can be used for level 2/3 fusion (situation awareness and threat

assessment) for inferring activities, relationships, and intentions of objects and people in the

battlespace based on retrieved knowledge consisting of behavioral patterns, new activities,

and anticipated behavior, and also taking into account contextual information (terrain, roads,

weather, etc). The level 1 data fusion results (traditional automatic target recognition and

pattern recognition) from multimodal sensors will be used as antecedents. For example, con-

sidering a heterogeneous sensor network with radar, image/video sensors, and GPS sensor, we

can choose the following three antecedents:

1. The number of switches from non-maneuvering set (constant behavior in speed, accelera-

tion, and direction, etc) to the maneuvering set (varying behavior in speed, acceleration,

and direction, etc). When a target is beginning a maneuver from a non-maneuvering

class, the tracking system can switch the algorithms applied to the problem from a non-

maneuvering set to the maneuvering set. The errors in distance from where the tracker
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estimates the position of a target between the actual position can be very large when

the incorrect motion models are applied to the problem. Additionally, when the tracker

does finally catch up to the target after the maneuver, the track will “jump” across the

operator’s scope giving a very unrealistic and unreliable picture of what that target is

actually doing. So a threat target will quite often switch from a non-maneuvering set to

the maneuvering set, and vice versa, to avoid being tracked all the time. This knowledge

can be used as an antecedent for situation awareness.

2. The frequency of appearance of such type of target based on some a priori knowledge

such as archival radar data. Generally threat targets are new comparing to archival radar

data.

3. The importance of geolocation of this target based on the geographical information sys-

tems (GISs). Examples of important geolocations include large metroplex, landmarks,

military bases, airport, etc. Threats happen quite often in such areas.

Of the above three antecedents, the frequency of appearance of such type of target is weak

stimulus and should be favored. A typical rule using the above three antecedents can be

IF the number of switches from non-maneuvering set to the maneuvering set is High, and the

frequency of appearance of such target is Low, and the importance of geolocation of such

type of target is High, THEN the possibility that an I&W needs to be issued is Very Strong.

The linguistic variables used to represent each antecedent are divided into three levels:

Low, Moderate, and High. The consequent – the possibility that an indication and warning

(I&W) needs to be issued – is divided into 5 levels, Very Strong, Strong, Medium, Weak, Very

Weak. So we need to set up 33 = 27 (because every antecedent has 3 fuzzy sub-sets, and there

are 3 antecedents) rules for this FLS. Table 1 summarizes the fuzzy rules we use in this paper.

We show these MFs in Fig. 5.
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For input (x1, x2, x3), the output is computed using

y(x1, x2, x3) =

∑27
l=1 μF̃

1
l
(x1)μF̃

2
l
(x2)μF̃

3
l
(x3)clavg∑27

l=1 μF̃
1
l
(x1)μF̃

2
l
(x2)μF̃

3
l
(x3)

(15)

By repeating these calculations for ∀xi ∈ [0, 10], we obtain a hypersurface y(x1, x2, x3). This

equation represents the nonlinear mapping between three inputs and one output of the FLS.

Since it’s a 4-D surface (x1, x2, x3, y), it’s impossible to be plotted visually.

If we have x3 = 8, and two other antecedents, x1 and x2 are variables, we obtain a hyper-

surface y(x1, x2, 8) based on the favor weak FLS, as plotted in Fig. 6(a). In contrast, we use

a type-1 FLS where the antecedent membership functions are the lower membership functions

in Fig. 5a since favor weak mechanism is not used, and its output hypersurface y(x1, x2, 8) is

plotted in Fig. 6(b). Observe that from Fig. 6, the favor weak FLS provides a higher possibility

that this target is a threat, which makes sense because the weak factor, frequency of appear-

ance of such type of target, has been favored. So our proposed favor weak FLS can increase

the probability of threat detection, and provides timely I&W.

7 Conclusions

Humans use multiple sources of sensory information to estimate environmental properties and

has innate ability to integrate information from heterogeneous data sources. There is consensus

that it depends on the brain PFC. The PFC has top-down control (favor weak) and rule-based

mechanisms, which can be illustrated using the Stroop model. In this paper, we proposed

to incorporate the favor weak mechanism into rule-based fuzzy logic systems (FLS) via using

upper and lower membership functions. The inference engine of favor weak fuzzzy logic system

was proposed under three different categories based on fuzzifiers. We analyzed that the favor

weak FLS is a special type-1 FLS which is embeded in an interval type-2 FLS, so it’s much

simpler in computing than an interval type-2 FLS. We apply the favor weak FLS to situation

understanding based on heterogeneous sensor network, and it shows that our favor weak fuzzy
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logic system has clear advantage comparing to the type-1 FLS. The favor weak FLS can increase

the probability of threat detection, and provides timely indication & warning (I&W).
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Table 1: Fuzzy rules used in the application. Ante 1 is the number of switches from non-
maneuvering set to the maneuvering set or vice versa; Ante 2 the frequency of appearance of
such type of target; Ante 3 is the importance of geolocation of this target; and Consequent is
the possibility that this target is a threat.

Rule # Ante 1 Ante 2 Ante 3 Consequent
1 low low low Weak
2 low low moderate Medium
3 low low high Strong
4 low moderate low Very Weak
5 low moderate moderate Weak
6 low moderate high Medium
7 low high low Very Weak
8 low high moderate Weak
9 low high high Medium
10 moderate low low Medium
11 moderate low moderate Strong
12 moderate low high Very Strong
13 moderate moderate low Weak
14 moderate moderate moderate Medium
15 moderate moderate high Strong
16 moderate high low Very Weak
17 moderate high moderate Weak
18 moderate high high Medium
19 high low low Medium
20 high low moderate Strong
21 high low high Very Strong
22 high moderate low Weak
23 high moderate moderate Medium
24 high moderate high Strong
25 high high low Very Weak
26 high high moderate Weak
27 high high high Moderate
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Figure 2: Schematic of the Stroop model. (a) No control. Activation of conflicting inputs in the
two pathways produces a response associated with the word, due to the stronger connections in
the word reading pathway. (b) Presentation of a conflict stimulus. The color unit is activated
(indicated by the orange fill), representing the current intent to name the color. This passes
activation to the intermediate units in the color naming pathway (indicated by arrows), which
primes those units (indicated by larger size), and biases processing in favor of activity flowing
along this pathway. This biasing effect favors activation of the response unit corresponding to
the color input, even though the connection weights in this pathway are weaker than in the
word pathway.
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Figure 4: (a) Pictorial representation of a type-2 fuzzy set. The secondary memberships are
shown in (b) to represent the confidence of the primary memberships.
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and (b) Traditional type-1 FLS.
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Abstract

We investigate the problem of jointly classifying and identifying multiple targets in radar sensor networks where

the maximum number of categories and the maximum number of targets in each category are obtained a priori based

on statistical data. However, the actual number of targets in each category and the actual number of target categories

being present at any given time are assumed unknown. It is assumed that a given target only belongs to one category

and one identification number. The target signals are moreover modeled as zero-mean complex Gaussian processes.

In this paper, we propose a joint multi-target identification and classification (JMIC) algorithm for radar surveillance

using the cognitive radar network. The existing target categories are first classified and then the targets in each

category are accordingly identified. Simulation results are presented to evaluate the feasibility and effectiveness of

the proposed JMIC algorithm in a query surveillance region.

Index Terms : Radar sensor networks, multiple target identification and classification, Gaussian process.

I. INTRODUCTION

The importance of providing multiple target identification and classification (MTIC) capability for military

applications is widely recognized nowadays. When the total number of targets being present in tactical battlefields

is increased, classifying as well as identifying these targets will become a very challenging task. Measurements

received from multiple radar sensors should be collected and processed in an efficient and robust manner to obtain

the most meaningful information for identification and classification. Therefore, collaborative processing algorithms

at the fusion center are in urgent need to successfully achieve this ultimate goal. For example, in [6], Liang proposed

a collaborative waveform design and diversity approach for single target detection in radar sensor networks.

Many algorithms have been suggested in literature to handle the task of multiple target identification and

classification. A Gaussian Mixture Model (GMM) classifier was proposed in [9] to distinct target categories in
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a semi-structured outdoor environment. For radar target identification, a multi-feature decision space approach

was discussed in [10]. Other approaches to the problem of target identification were presented in [5] applying two

statistical-based techniques, namely Bayesian and Dempster-Shafer, to develop radar target identification algorithms.

Distributed multi-class classification with fault-tolerance capability was studied in [11]. Collaborative classification

algorithms [7] were applied to single target scenarios and then extended to more complex scenarios of multiple

targets.

Multiple target identification and classification have become major concerns in radar surveillance applications.

This task is usually implemented based on wideband radars or imaging radars [8]. In this paper, we address the

problem of MTIC for radar surveillance using a network of R cognitive radar sensors. Cognitive radars, as presented

in [2] and [3], continuously interact with the environment, intelligently collect data and thereby efficiently adapt

to statistical variations in the environment in real-time so as to achieve reliable surveillance where the likelihood

of the presence of targets is high. Particularly, in [3], Haykin stated that “Cognitive Radar is an intelligent system

that is aware of its surrounding environment (i.e., outside world), uses prior knowledge as well as learning through

continuing interactions with the environment, and thereby adapts both its receiver and transmitter in response to

statistical variations in the environment in real-time so as to meet specific remote-sensing objectives in an efficient,

reliable, and robust manner.” Here, we emphasize that radars in our radar sensor network can observe activities of

radars in other radar networks which are called primary networks (i.e., radar sensors are aware of its surrounding

environment and can learn through continuing interactions with the environment). They then determine whether

frequency bands assigned to those primary networks are available or not. If these frequency bands are available, they

can utilize these frequencies without generating any interference to the primary networks by sending this information

to the controller center to activate the waveform design algorithms proposed in [Liang2008] (i.e., radars adapt both

their receivers and transmitters in response to statistical variations in the environment). Since the price of frequency

license to employ any sensor network is very expensive, taking advantage of available frequencies is an important

step to make radar sensor networks feasible in terms of installation cost and efficient spectrum usage. Cognitive

radars therefore show promise in home health care, rescue and homeland security applications [3], [1].

In this paper, we consider the scenario in which the total number of targets K is unknown in a region of interest

and a query regarding to the classification of these targets and the identification of the targets in each category is

inquired. This generalizes the surveillance scenario considered in [4] wherein each target belonging to one distinct

category was considered. In this work, some targets now share the same target category but possess different

identification numbers. In order to perform this higher complexity version of surveillance scenario, we assume that

each given target only belongs to one distinct pair of one target category and one identification number. Based on

statistical data, we then reasonably assume that the maximum number of target categories M and the maximum
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Query region

CRS 1

CRS 2

CRS R

FUSION CENTER

1: System architecture for JMIC algorithm

number of targets N in each category are a priori known parameters. However, the actual number of existing target

categories and the actual number of targets being present in each category at any given time will be estimated.

To achieve this goal, we propose a joint multi-target identification and classification (JMIC) algorithm for radar

surveillance. The existing target categories are first classified based on 2M hypotheses which correspond to all

possibilities we may have regarding to the presence or absence of each category. Based on the result obtained from

classification specifying which target categories exist, we then identify targets belonging to each detected category.

Targets in a category are identified based on their identification numbers or identification indices. Therefore, 2N −1

hypotheses are set up corresponding to all scenarios of presence or absence of each target identification index.

Numerical results based on simulated data are finally presented to demonstrate the feasibility and effectiveness of

the proposed JMIC algorithm in a query surveillance region.

The rest of the paper is organized as follows. In Section II, we provide a framework and formulate the multi-target

classification and identification problem in a cognitive radar network. In Section III, we propose the joint multi-

target identification and classification algorithm. Simulation results are presented in Section IV. Finally, Section V

concludes the paper.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

The general system architecture for MTIC problem, shown in Fig. 1, accommodates the deployment of R cognitive

radar sensors (CRSs) which will collect and then send all the target signals to the fusion center. It is assumed that

there are K targets in the region of interest. Each target is moreover considered as a point source and target signals

can be modeled as zero-mean complex Gaussian processes [4]. The Gaussian assumption is reasonable since the
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signals reflected from the target may experience many different paths to the receiver due to the reflection and

diffraction of wave transmission environment. At the receiver, the received signal is the combination of all signals

bearing the information about target. Therefore, following the Central Limit Theorem, the received signal tends to

be Gaussian. The assumption of zero-mean just helps our analysis tractable. In addition, all measurements from

sensors are combined at the fusion center to reduce the impact of target signal variability. At any given time, the

measurements in distinct cognitive radar sensors are approximately independent.

We assume that at most M distinct target categories and N targets in each category are present in the surveillance

region in the observation duration. However, the actual existing number of target categories is unknown. Therefore,

we set up 2M hypotheses corresponding to all possible scenarios of presence or absence of each target category.

We denote these hypotheses by Hk (k = 0, 1, ..., 2M − 1). Target categories are denoted by i (i = 1, 2, ..., M ) and

in each ith category, targets are identified by the identification indices j (j = 1, 2, ..., N ). We use the parameter

bij ∈ {0, 1} to denote the event in which target of category i and index j is absent or present. Specifically,

bij =

⎧⎨
⎩

0 if target of category i and index j is absent

1 if target of category i and index j is present

Classification and identification parameters are given in Table I in which each row represents one target category and

each column represents one target index. The probability of target of category i and index j being absent P (b ij = 0)

is denoted by pij , i.e., P (bij = 0) = pij . Hence, the probability of presence of this target P (bij = 1) = 1 − pij .

We employ hypothesis H0 for scenario of no category being present, hypothesis H1 for scenario of category 1

being present,..., and hypothesis H2M−1 for scenario of all M categories being present. We assume that the total

number of targets K in the region of interest is unknown. If K = 0, there is no target in the surveillance region

and hypothesis H0 is chosen. The prior probability of hypothesis H0 can be computed as

P (H0) = P {no category present}

= P (∀b1j = 0;∀b2j = 0; ...;∀bMj = 0), j = 1, 2, ..., N (1)

Since the possibilities for presence or absence of targets are independent, we have

P (H0) = P (∀b1j = 0).P (∀b2j = 0)...P (∀bMj = 0)

= (p11.p12...p1N )(p21.p22...p2N )...(pM1...pMN )

=
M∏
i=1

N∏
j=1

pij (2)
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I: Classification and Identification Parameters

Index 1 Index 2 Index 3 . . . Index N

Category 1 b11 b12 b13 . . . b1N

Category 2 b21 b22 b23 . . . b2N

Category 3 b31 b32 b33 . . . b3N
...

...
...

...
...

...
Category M bM1 bM2 bM3 . . . bMN

Similarly, the prior probability of H1 is given by:

P (H1) = P {category 1 present}

= P (at least one b1j = 1;∀b2j = 0; ...;∀bMj = 0)

= P (∃ one b1j = 1).P (∀b2j = 0)...P (∀bMj = 0)

=

⎛
⎝1 −

N∏
j=1

p1j

⎞
⎠ M∏

i=2

N∏
j=1

pij (3)

Generally, we obtain the prior probability of hypothesis Hk in the form as follows:

P (Hk) =
M∏
i=1

⎡
⎣b(k)

i

⎛
⎝1 −

N∏
j=1

pij

⎞
⎠+

(
1 − b

(k)
i

) N∏
j=1

pij

⎤
⎦ (4)

where b(k)
i takes the value of 0 when category i is absent, otherwise b (k)

i takes the value of 1 when category i is

present under hypothesis Hk.

III. JOINT MULTI-TARGET IDENTIFICATION AND CLASSIFICATION ALGORITHM

Joint multi-target identification and classification algorithm consists of two steps. In the first step, multiple target

classification is implemented to investigate which target categories are present within the entire surveillance region.

Then, in the second step, based on classification results, targets in each detected category are identified using

identification indices. Our JMIC algorithm relies on the framework previously presented in Section II.

A. Multiple Target Classification

The 2M -ary hypothesis testing problem is formulated as

Hk : zl = sl + nl, k = 0, 1, ..., 2M − 1 (5)

where zl is a D-dimensional vector of measurements collected by the lth (l = 1,2,...,R) radar sensor and target signals

are modeled as zero-mean complex Gaussian vectors with the same covariance matrices Σ m. Thus, sl ∼ CN (0,Σslk
)
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and Σslk
is given by

Σslk
= E

⎡
⎣ M∑

i=1(i∈Hk)

N∑
j=1

bijΣm

⎤
⎦

=
M∑

i=1(i∈Hk)

N∑
j=1

E [bij]Σm (6)

where E[x] denotes the expectation of a random variable x and (6) follows from the independence of b ij . Moreover,

signals are corrupted by zero-mean complex white Gaussian noise n l, that is

nl ∼ CN (0, σ2
nI). (7)

Under hypothesis Hk, the probability density function of the feature vector zl is

P (zl|Hk) = pk(zl)

=
1

πD|Σzlk
| exp

(−zH
l Σ−1

zlk
zl

)
(8)

where Σzlk
= Σslk

+ σ2
nI. Let δk denote P (Hk). The decision rule for the multiple target classifier therefore

becomes

k̂ = arg max
k=0,1,...,2M−1

pk(z1, z2, ..., zR)δk (9)

Due to the conditional independence of zl, (9) can be expressed as

k̂ = arg max
k=0,1,...,2M−1

R∏
l=1

pk(zl)δk (10)

In term of log-likelihood, we have

Δk(z1, z2, ..., zR) = log
R∏

l=1

pk(zl)δk

=
R∑

l=1

log pk(zl) + log δk (11)

By substituting pk(zl) from (8) to (11) and omitting constants that do not depend on categories, we obtain Δk in

the following form

Δk(z1, z2, ..., zR) = −R log |Σzlk
| −

R∑
l=1

zH
l Σ−1

zlk
zl + log δk (12)
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The information about zl is then sent from the lth (l = 1, 2,..., R) cognitive radar sensor to the fusion center. The

classifier at the fusion center then makes the final classification decision in the following manner:

k̂ = arg max
k=0,1,...,2M−1

Δk(z1, z2, ..., zR)

= arg min
k=0,1,...,2M−1

(
R log |Σzlk

| +
R∑

l=1

zH
l Σ−1

zlk
zl − log δk

)
(13)

From (13), we map the integer value of k̂ to binary value to obtain a category vector c = [c1, c2, ...., cM ] where

ci (i = 1, 2, ..., M ) takes value of 1 corresponding to category i being present or takes value of 0 corresponding to

category i being absent in the area of interest. The total number of target categories being present in the surveillance

region is computed by

NC =
M∑
i=1

ci (14)

For example, if k̂ = 5, then we get c = [1, 0, 1, 0, ...,0], i.e., only categories 1 and 3 are present within the

surveillance region. Therefore, the total number of target categories being present NC is 2.

B. Multiple Target Identification

Based on the estimated value k̂, we realize which target categories have shown up in the surveillance region.

However, we still have no information about the number of targets belonging to each category. Therefore, the second

step of the JMIC algorithm is repeatedly applied to each detected category to identify targets in the surveillance

region. We aim at searching all the targets using their jth indices. For each category i, we denote H i
h,k̂

to represent

the hypothesis h (h = 0, 1, ..., 2N - 1), given category i ∈ S being present under hypothesis H k̂. Note that S is a

set of all categories i being present in hypothesis H k̂, i.e., S = {i present in Hk̂}.

Since category i is estimated to be present, i.e, at least one target index j shows up in this category, the scenario

of no target index of category i being present is eliminated, i.e., P(H i
0,k̂

) = 0. As a sequence, we only have N � =

2N - 1 hypotheses corresponding to h = 1, 2, ..., N �. We now choose H i
1,k̂

to represent the hypothesis of target

index �1 of category i ∈ S being present, H i
2,k̂

to represent the hypothesis of target index �2 of category i ∈ S

being present, ..., H i
N�,k̂

to represent the hypothesis of all targets index �1, �2, ..., �N of category i ∈ S being

present. P (H i
h,k̂

) is calculated as

P (H i
h,k̂

) = P (H i
h,Hk̂)

= P (H i
h|Hk̂)P (Hk̂) (15)
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The conditional probability of hypothesis H i
1,k̂

is given by

P (H i
1|Hk̂) = P {target index �1 category i present}

= P (bi1 = 1; bi2 = 0; ...; biN = 0) (16)

Because the possibilities for presence or absence of targets are independent, we have

P (H i
1|Hk̂) = P (bi1 = 1).P (bi2 = 0)...P (biN = 0)

= (1 − pi1).pi2...piN (17)

Similarly, the conditional probability of hypothesis H i
2,k̂

is

P (H i
2|Hk̂) = P {target index �2 category i present}

= P (bi1 = 0; bi2 = 1; ...; biN = 0)

= P (bi1 = 0).P (bi2 = 1)...P (biN = 0)

= pi1.(1 − pi2)...piN (18)

In general, we obtain the conditional probability of hypothesis H i
h,k̂

as follows:

P (H i
h|Hk̂) =

N∏
j=1

[
b
(h)
ij (1 − pij) +

(
1 − b

(h)
ij

)
pij

]
(19)

where b(h)
ij takes the value of 0 when target index j of category i is absent, otherwise b (h)

ij takes the value of 1

when target index j of category i is present under hypothesis H i
h given hypothesis Hk̂.

We now set up N � hypotheses:

H i
h,k̂

: zi
l = si

l + ni
l, h = 1, 2, ..., N� (20)

where zi
l is collected by lth (l = 1, 2, ..., R) cognitive radar sensor regarding to ith category. Target signals of ith

category are modeled as si
l ∼ CN (0,Σsi

l,h
) in which Σsi

l,h
is given by

Σsi
l,h

= E

⎡
⎢⎣

N∑
j=1(j∈Hi

h,k̂
)

bijΣm

⎤
⎥⎦

=
N∑

j=1(j∈Hi

h,k̂
)

E[bij ]Σm (21)

where E[x] denotes the expectation of a random variable x and (21) follows from the independence of b ij . Signals
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are moreover corrupted by zero-mean complex white Gaussian noise n i
l , that is

ni
l ∼ CN (0, σ2

nI) (22)

Under hypothesis H i
h,k̂

, the probability density function of the feature vector zi
l of category i can be written as

P (zi
l |H i

h,k̂
) = ph,k̂(z

i
l)

=
1

πD|Σzi
l,h
| exp {−(zi

l)
HΣ−1

zi
l,h

zi
l} (23)

where Σzi
l,h

= Σsi
l,h

+ σ2
nI. Let αi

h denote P (H i
h|Hk̂). From (15) and due to the conditional independence of zi

l ,

the identification decision rule hence can be expressed as

ĥ = arg max
h=1,2,...,N�

R∏
l=1

ph,k̂(z
i
l)α

i
hδk̂ (24)

In term of log-likelihood, we have

Δi
k = log

R∏
l=1

ph,k̂(z
i
l)α

i
hδk̂

=
R∑

l=1

log ph,k̂(z
i
l) + log αi

h + log δk̂ (25)

By substituting ph,k̂(z
i
l) from (23) to (25) and omitting constants that do not depend on target indices in each

category, we have Δi
k in the following form:

Δi
k = −R log |Σzi

l,h
| −

R∑
l=1

(zi
l)

HΣ−1
zi

l,h

zi
l + log αi

h + log δk̂ (26)

The information about zi
l is sent from the lth cognitive radar sensor to the fusion center. The identifier at the fusion

center then makes the final identification decision:

ĥ = arg max
h=1,2,...,N�

Δi
k

= arg min
h=1,2,...,N�

(
R log |Σzi

l,h
| +

R∑
l=1

(zi
l)

HΣ−1
zi

l,h

zi
l − log αi

h − log δk̂

)
(27)

From (27), we map the integer value of ĥ to binary value to obtain a index vector bi = [bi1, bi2, ..., biN ] where

every component of bi takes the value of 1 or 0. Component �j takes value of 1 corresponding to the scenario of

target index �j of category i being present. The total number of targets Ni in each category i is calculated by

Ni =
N∑

j=1

bij (28)
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II: Classification and Identification Example

Index 1 Index 2 Index 3 Index 4

Category 1 0 1 0 1
Category 2 1 1 0 1
Category 3 1 1 0 0

Following the example previously described in classification step, for i = 1, if ĥ = 7, then we get b1 = [1, 1, 1, 0,

...,0]. Therefore, only targets with indices 1, 2 and 3 of category 1 are present within the surveillance region. The

total number of targets of category 1 being present N1 is 3. Repeatedly implementing this step, for i = 3, if ĥ =

3, we obtain b3 = [1, 1, 0, 0, ..., 0]. So, targets with indices 1 and 2 of category 3 are present. The total number

of targets of category 3 being present N3 is 2.

The total number of targets K in the surveillance region finally can be written as

K =
M∑
i=1

Ni =
M∑
i=1

N∑
j=1

bij (29)

In the example, the total number of targets within the surveillance region K is 5.

IV. SIMULATION RESULTS

We perform simulations to illustrate the performance of the proposed JMIC algorithm using a network of R

cognitive radar sensors which may detect more than one target at any given time. Therefore, a more accurate

estimation about target categories and the total number of targets being present in each category can be obtained by

fusion of several radar sensors. The maximum number of categories M = 3 and the maximum number of targets

in each category N = 4 were assumed in this region of interest. An example using JMIC for K = 7 targets in the

interest area is given in Table II. We use JMIC algorithm to obtain k̂ = 7 which specifies that categories 1, 2, 3

are present and thus Nc = 3. The number of targets of category 1 is 2 (target index �2 and �4) corresponding to

ĥ = 10. The number of targets of category 2 is 3 (target index �1, �2, and �4) corresponding to ĥ = 11. The total

number of targets of category 3 is 2 ( target index �1 and �2) corresponding to ĥ = 3.

To evaluate the performance of the proposed JMIC algorithm, we conduct a Monte-Carlo simulation of 105

runs. We assume that R = 3, 5 and 10 cognitive radar sensors were employed in simulations. The probabilities of

joint classification and identification error of the proposed JMIC algorithm for K = 3, 6, 8, which are expressed as

functions of signal-to-noise power ratios, are depicted in Fig. 2a, Fig. 3a, and Fig. 4a, respectively. From Fig. 2a, we

realize that a sufficiently low probability of error can be obtained with a small number of cognitive radar sensors,

e.g. R = 5, in the surveillance scenario of K = 3 targets as shown in Fig. 2b. Comparison of probabilities of error

for the different number of cognitive radar sensors in the scenario of K = 3 targets was shown in Fig. 2a. The
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2: Probability of error using JMIC algorithm and surveillance scenario for K = 3: (a) Probability of error (b)
Surveillance scenario.

simulation results demonstrate our algorithm in the surveillance scenarios of K = 6 as described in Fig. 3b and

K = 8 as in Fig. 4b are, correspondingly, given in Fig. 3a and Fig. 4a. We also observe that for a given number of

targets K in the surveillance region, the performance of JMIC using R = 5 or R = 10 radar sensors is better than

that using R = 3 radar sensors. Besides, for a given number of R radar sensors, the identification and classification

performance is reduced when we notice an increasing number of targets in the surveillance region. The probability

of JMIC error is inversely proportional to signal-to-noise power ratio. At high SNR, the probability of error is

rather small. The simulation results validate the robustness and effectiveness of our proposed JMIC algorithm.

V. CONCLUSION

We have demonstrated that K targets in a query region can be classified and identified efficiently by a network

of R cognitive radar sensors using our JMIC algorithm. A computer simulation with simulated radar data was used

to investigate the accuracy of a joint classification and identification algorithm in the variations of the target signals

in the network. Using JMIC algorithm, we show that a sufficiently low probability of error can be achieved with a

fairly small number of radar sensors for a given common number of targets. The unprecedented desire of knowing
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3: Probability of error using JMIC algorithm and surveillance scenario for K = 6: (a) Probability of error (b)
Surveillance scenario.

not only the number of target categories, but also the total number of targets in each category in a surveillance

region is making JMIC algorithm an attractive choice in practice for military applications.
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Abstract

In this paper, we propose two signal processing approaches to detect the target obscured

by foliage based on real data collected by an Ultra-wide band (UWB) radar sensor. One

is a differential-based four-step signal processing approach that estimates and offsets the

impulsive clutter; the other approach employs short-time Fourier transform (STFT) to dis-

tinguish the target from foliage clutter. Both of these approaches provide better detection

performance compared to the common 2-D image algorithm used for UWB radar. From

time to time, due to the significant pulse-to-pulse variability of the foliage clutter, neither

differential-based nor STFT approach can detect the target. In this case, we propose radar

sensor network (RSN) and a RAKE structure in addition to the previous signal processing

approaches for data fusion. The result shows that accurate detection can be achieved. Nu-

merical performances have been analyzed for both cases in terms of probability of detection

and probability of false alarm.

Index Terms : Target detection, radar sensor networks, foliage, short-time Fourier

transform (STFT), differential-based approach

1 Introduction

Detection and identification of objects that are embedded in a strong clutter (e.g., foliage,

soil cover and buildings) is of interest to both military and civilian research. The efficient

1
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and accurate detection provides a broad range of applications, such as locating weapon caches

during military operations and rescuing people from natural diasters. Currently the detection

of targets, such as human, vehicles and weapons that are hidden in foliage is still a challenging

issue due to the low detection and high false alarm rate. This is mainly due to the following

facts:

1. Given multipath propagation effects of rough surfaces, scattering from trees and ground

tend to overwhelm the weak backscattering of targets.

2. Target is an object, so are trees. When both of them appear to have similar dielectric

and frequency properties, it’s hard to make a clear distinction between foliage clutter

and desired targets.

3. Due to the changes in atmosphere and ground conditions, foliage is more likely to be a

time-variant channel environment. For example, wind results in moving branches and

leaves, therefore the foliage clutter is quite impulsive in nature.

There have been many efforts undertaken to investigate foliage penetration (FOPEN). They

can be categorized into two groups. One direction is to pursue the foliage clutter modeling

and analysis in order to gain better understanding of the clutter and improve the detection

performance. [1] measured one-way transmission properties of foliage using a bistatic and

coherent wide-band system over the band from 300 to 1300 MHz. [2] made measurements

of two-way foliage attenuation by synthetic aperture radar (SAR) and discussed probability

dependency for frequency, polarization and depression angle. Other than SAR, Millimeter-

Wave (MMW) radars also have been applied in measurements of foliage attenuation and ground

reflectivity [3]-[5]. These studies have showed the strong spatial and angular fluctuations of

foliage. The clutter contains many spikes and is very “impulsive”, therefore it’s difficult to

achieve effective and accurate target detection. Although K-distribution has been favored for

statistic model of radar clutter [6], [7] demonstrated that in very spiky and impulsive foliage

clutter, K-distribution is inaccurate. Based on a Ultra-wide band (UWB) radar, [8] proposed

an alpha-stable model while [9]presented a log-logistic model for foliage clutter. However, to

what extent can the detection performance be improved has not been further analyzed in these

studies.
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The second group centers on advanced signal processing approaches to support better image

formation for target detection. [10] described the on-going development of a test bed system

including real-time UHF FOPEN SAR image formation and Automatic Target Detection and

Cueing (ATD/C) processing that was based on Bayesian neural network (BNN) algorithm.

However, the BNN discriminator requires an elaborate and extensive training process. Al-

ternative approaches, based on the application of a set of filters, have been proposed. As

nonlinear filters have demonstrated good noise suppression characteristics in many environ-

ments with “spiky” noise characteristics, [11] presented a number of simple rank-order filters

(Alpha-Trimmed, Modified Nearest Neighbor, Inner-Sigma Filter etc.) for UWB SAR im-

age processing. This work has analyzed that the inner-sigma filter can generate good target

detection performance with respect to many of the other filters. Nevertheless, this is very

preliminary investigation and further performance estimation is needed. Other interesting fil-

ter schemes include adaptive Windrow Least Mean Squares (LMS) filter design [12] and a

sequence of directional filters using a hidden Markov model (HMM) [13]. Notice that all these

approaches are employed for SAR image. Other than SAR, a whitening/dewhitening (WD)

transform has been proposed in [14] to help correct target spectral signatures under varying

conditions for general multispectral image, but this transform can not be directly applied to

colored noise, which also occurs in foliage detection.

Three types of waveforms are commonly seen in the literature dealing with the practical

FOPEN measurements. The first type is multiwavelengths. [15] used multiwavelength Light

Detection and Ranging (lidar) to detect a vehicle hidden inside a vegetated area. Due to the

fact that a laser beam is generally considered not being able to penetrating vegetation foliage,

when the vegetation is dense and the target is completely covered, it is not possible to detect

the hidden targets using a lidar sensor. The second type is Millimeter-Wave (MMW) [16],

that falls in the class of microwave. Compared to the lidar, the wavelength of microwave is

much longer. Microwave and millimeter-wave (MMW) frequencies penetrate through foliage

with higher attenuations, and thus this type of radar requires numbers of openings through

most foliage covers. Relatively low frequency UWB signals between 100 MHZ and 3 GHz are

frequently employed in recent years owning to the following characteristics: 1) high resolutions

2) very good ability of penetration, such as penetrating walls and ground [17]-[19] 3) low power
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cost. Despite comparatively short detection range, UWB signal would have advantages over a

narrowband signal with limited frequency content.

In this paper, we propose two approaches to detect the target obscured by foliage based

on the “good” data (the detail will be provided in Section 2) collected by a UWB radar. One

is a differential-based four-step signal processing approach: estimate the clutter decay profile,

offset the impulsive clutter, compute the derivative power and finally make a detection decision

according to the threshold. The other approach employs short-time Fourier transform (STFT)

to distinguish the target from foliage clutter. Both of these approaches provide better detection

performance compared to the 2-D image algorithm employed in [19]. As far as “poor” data

is concerned, neither differential-based nor STFT approach can detect the target due to the

significant pulse-to-pulse variability. In this case, we propose radar sensor network (RSN) and

a RAKE structure in addition to the previous signal schemes for data fusion. The numerical

performance have been analyzed for both “good” and “poor” data in terms of probability of

detection (Pd) and probability of false alarm (Pfa).

The remainder of this paper is organized as follows. Section 2 summarizes the measurement

of data used in this work. Section 3 proposes differential-based approach and STFT for target

detection when the signal quality is “good”. Section 4 proposes RSN and RAKE structure

when the signal quality is “poor”. Section 5 concludes our work and discusses future research.

2 Sense-Through-Foliage Data Measurement and Collection

The sense-through-foliage measurement effort began in August 2005 and continued through

December 2005. The data used in this paper were measured in November, involved largely

defoliated but dense forest.

The principle pieces of equipment are:

• dual antenna mounting stand

• two antennas

• a trihedral reflector target mounted on an artist easel stand

• Barth pulse source (Barth Electronics, Inc. model 732 GL) for UWB
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• Tektronix model 7704 B oscilloscope

• rack system

• HP signal Generator

• IBM laptop

• Custom RF switch and power supply

• weather shield (small hut)

A bistatic system (individual transmit and receive antennas) have been used as it was believed

that circulators did not exist for wideband signals in 2005. An 18 foot distance between

antennas was chosen to reduce the signal coupling between transmitter and the receiver [20].

The triangular-shaped target, which was shown in Fig. 1, was a round trip distance of 600

feet from the bistatic antennas (300 feet one way). The UWB pulse generator uses a coaxial

reed switch to discharge a charge line for a very fast rise time pulse outputs. The model 732

pulse generator provides pulses of less than 50 picoseconds (ps) rise time, with amplitude from

150 V to greater than 2 KV into any load impedance through a 50 ohm coaxial line. The

generator is capable of producing pulses with a minimum width of 750 ps and a maximum of

1 microsecond. This output pulse width is determined by charge line length for rectangular

pulses, or by capacitors for 1/e decay pulses.

The radar experiment was constructed on a seven-ton man lift, which had a total lifting

capacity of 450 kg. The limit of the lifting capacity was reached during the experiment as

essentially the entire measuring apparatus was placed on the lift. It was a 4-wheel drive diesel

platform that was driven up and down a graded track 25 meters long. The measurement

system was moved to different positions on the track. The illustration of the lift was shown in

Fig. 2. This picture was taken in September with the foliage largely still present.

For the data we used in this paper, each sample is spaced at 50 picosecond interval, and

16,000 samples were collected for each collection for a total time duration of 0.8 microseconds

at a rate of approximately 20 Hz. There are two sets of data. Initially, the Barth pulse source

was operated at lower amplitude and 35 pulses of signals were obtained. The unit of amplitude

is “V”. This collection is referred to as “poor” data, which means signal quality is poor. Later,

5

532 of 816



additional improvements were made in the measurement procedure, including the improved

isolation of transmit and receive antennas, the addition of a log-periodic antenna (Antenna

Research Associates LPC-2010-C) as a transmit antenna, and the EMCO ridged waveguide

horn (Microwave horn, EMCO 3106). 100 pulses at different sites were collected using the new

transmitted signal with higher amplitude. The integration of these 100 pulses is referred to as

“good” data.

3 Target Detection for Good Data: A Differential-Based Ap-

proach and Short-Time Fourier Transform

3.1 Target Detection Problem

In Fig. 3, we plot two received collections for “good” data. Fig. 3a shows the situation that

there is not a target on range and Fig. 3b shows the opposite case. The target appears around

samples from 13,900 to 14,000. In order to further analyze the discrepancy between these two

collections, we provide expanded views of traces from sample 13,001 to 15,000 in Figs. 4a and

4b. Since there is no target in Fig. 4a, it can be considered that this collection represents the

backscattering of foliage clutter. Therefore, it’s quite straightforward that the target response

will be the difference between Fig. 4b and Fig. 4a, which is plotted in Fig. 4c. Nevertheless, in

practice we either obtain Fig. 4a (clutter echoes without target) or Fig. 4b (combined echoes

of both target and clutter) without the priori knowledge about the presence of a target. The

challenge is how can we make target detection simply based on Fig. 4a (with target) or Fig.

4b (no target)?

To solve this problem, we applied the algorithm proposed in [19], where 2-D image (range

and azimuth) was created via adding voltages with the appropriate time offset. In Figs. 5(a)

and 5(b), we plot the 2-D image created based on the above two data sets (from samples 13,800

to 14,200). Since the measurement was made with one radar, the bright spot should represent

reflections from an object or objects. Unfortunately, from these two figures, we may declare

there are several targets in each image. Therefore, the simple 2-D image algorithm provided

very high false alarm rate for current radar data.
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3.2 A Differential-Based Approach

In order to improve the detection performance, we consider removing the clutter signal first

[21]. Of course, since the foliage is very impulsive and time-variant in nature, it is very

challenging to generate real-time clutter data. Also, notice that in Fig. 4b, for samples where

target appears (around sample from 13900 to 14,000), the waveform changes much abruptly

than that in Fig. 4a. As derivative represents the changing rate of a function, it is quite

intuitively that the derivatives of amplitude value at around samples 13900 to 14,000 should

be larger than those without target. Therefore, we decide to combine the clutter offset with

the differentiation computation to test the detection performance. The block diagram of this

approach is illustrated in Fig.6.

1. Step1. According to UWB indoor multi-path channel model (IEEE 802.15.SG3a, 2003),

the average power decay profile (PDP) is characterized by an exponential decay of the

amplitude of the clusters [22]. Therefore, we may roughly consider the foliage decay

profile as

ŷ =





Ae−Bx y > 0

−Ae−Bx otherwise
(1)

where ŷ is the amplitude of estimated clutter echo, x is sample index and y is the

amplitude of original measured data. A and B are constants. These two parameters

should be carefully chosen so that ŷ is as close to y as possible.

We apply trust-region algorithm [23] [24] and robust least-squares fitting by minimizing

the least absolute residuals (LAR). We use LAR criteria instead of the commonly used

least squares fitting because the LAR is more robust than least squares in cases where

the statistical properties and distribution of the noise are unknown [25]. Fig. 7 illustrates

the goodness-of-fit for foliage clutter decay profile for “good” data. Although the figure

for “poor” data is not provided due to the similarity and conciseness, Table 1 shows the

estimated parameters A and B for both “good” and “poor” data.

2. Step2. By offsetting the clutter signal, we get

S1 = y − ŷ (2)
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3. Step3. Apply derivation and compute power

S2 =
dS1

dx
(3)

S3 = S2
2 (4)

4. Step4. Finally apply threshold detection to conclude whether there is a target or not.

We plot the power of clutter-accounted and differentiated echoes in Fig. 8. It is quite

straightforward to see there is no target in Fig. 8a and there is target in Fig. 8b at samples

from 13,900 to 14,000.

3.3 Short-Time Fourier Transform Approach

Another way to understand the abrupt change where target appears is that the signal contains

more AC values when there is target. Therefore we also consider employing the short-time

Fourier transform (STFT) approach, which uses a slide window to determine the sinusoidal

frequency and phase content of a signal as it changes over time [26]. This form of the Fourier

transform, also known as time-dependent fourier transform, has numbers of applications in

sonar and radar processing.

For the continuous-time signal, the function to be transformed is multiplied by a nonzero

window sliding along the time axis, therefore a two-dimensional expression can be defined as:

F (m,w) =
∫ ∞

−∞
x(t)w(t−m)e−jwtdt (5)

where x(t) is the function to be transformed and w(t) is the window function. F (m,w)

represents sinusoidal values at the center of the window. m is the starting time position of

window w(t).

The discrete STFT can be expressed as

F (m,w) =
N−1∑

n=0

r(n)w(n−m)e−jwn (6)

where r(n) is UWB radar measurement and w(n) is the window function.

We apply a rectangular window, with its length L = 30 and step size M = 16.

w(n) =





1 if 0 ≤ n ≤ 29

0 otherwise
(7)
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Then the cumulated power of AC values (m ≥ 4) can be obtained by

P (m) =
L−1∑

w=4

| F (m,w) |2 (8)

We plot the power of AC values P (m) versus time domain sample index in Fig. 9a and

9b for the data collection in Figs. 3a and 3b respectively. We can see that at the samples

where there is a target, the curve of the power signal looks like a Gaussian probability density

function (PDF) other than chaotic impulses. And thus it is quite straightforward to see that

there is no target on range in Fig. 9a.

It’s worth mentioning that for better visual inspection, window length and step size may

change for radar data collected in a different environment.

3.4 Performance Analysis

We analyzed the detection performance in terms of probability of detection (Pd) and probability

of false alarm (Pfa) for both differential-based approach and STFT approach. Fig. 10 shows

the relationship between the performance and the threshold for differential-based approach.

The unit of the threshold illustrated by X axis is “105 W”. The decision of the threshold has

been intensively studied [27] therefore it’s out of the scope of this paper. It can be clearly seen

that the higher the threshold, the higher the Pfa, but the lower the Pd. In order to achieve

accurate target detection (100% Pd and 0% Pfa), the threshold should be set in the range of

[1.346× 105, 1.716× 105].

As for STFT approach, since the Gaussian curves are not as numerically intuitive as the

threshold detection, we first analyze all the segments of curves that are similar to Gaussian

PDF, then design the decision criteria. The general Gaussian model for these curves is defined

as

f(x) =
n∑

i=1

a× e−(x−b
c

)2 (9)

where a is the amplitude, b is the centroid (location), c is related to the peak width and n is the

number of peaks to fit. For simplicity we choose n = 1, therefore c is the standard deviation

(STD). Notice that the detection decision is determined by the shape of the Gaussian curve,

i.e., related with factors a and c, not decided by b. The larger a and c, the higher probability
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that the target exists. Since the detection depends on both a and c, we normalize them

respectively and set the product of these normalized factors as a decision criteria. These

parameters are shown in Table 2. Fig. 11 illustrates the performance for STFT. When the

product of normalized factor is in the range [0.3439, 0.8876] the accurate target detection

(100% Pd and 0% Pfa) can be achieved.

Compare STFT approach with differential-based approach, both of them are able to detect

target effectively. Meanwhile, each of them has inherited defects. For differential-based ap-

proach, the major disadvantage is that it requires clutter estimation. If the clutter signal is not

removed, the performance of detection is not acceptable. Therefore when the Target-to-Clutter

ratio (TCR) is weak, this approach may not work well, which is exactly the case for “poor”

data. The drawback of STFT approach is that the detection is not numerically intuitive,

therefore it requires extra training and computing for setting up the decision boundary.

4 Target Detection for Poor Data: Radar Sensor Networks and

RAKE Structure

As mentioned in Section 2, when the Barth pulse source was operated at low amplitude,

significant pulse-to-pulse variability was noted and the return signal quality is poor. Fig. 12

illustrate the received echoes in this situation. Even with the application of our proposed

differential-based scheme or STFT approach, it is difficult to detect the target. Since pulse-

to-pulse variability exists in the echoes at different time or different site, the spatial and time

diversity can be explored by using Radar Sensor Networks (RSN).

In nature, a network of multiple radar sensors can be utilized to combat performance

degradation of single radar [28]. These radar sensors are managed by an intelligent clusterhead

that combines waveform diversity in order to satisfy the common goals of the network other

than each radar operate substantively. As radar sensors are environment dependent [29], it

may provide better signal quality if uncorrelated radars work collaboratively to perform data

fusion. For example, consider a system of two radars. If they are spaced sufficiently far apart,

it is not likely that both of them experience deep fading at the same time. By selecting better

waveform from the two candidates, the more accurate detection will be achieved compared to
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using single radar.

In our work, we assume the radar sensors are synchronized and RAKE structure is employed

to combine the diversity of received signals. The detailed processing diagrams are illustrated

in Fig. 13 and Fig. 14 for differential-based approach and STFT approach respectively. The

echo, i.e., the backscattering received by each radar sensor, is combined by the clusterhead

using a weighted average, and the weight wi is determined by the power of each echo xi(m)

(m is the sample index),

wi =
Ei∑n
i=1 Ei

(10)

and

Ei = var(xi(m)) + [mean(xi(m))]2 (11)

As for STFT, we apply window length L = 25 and step size M = 15. We ran simulations for

n = 35. Fig. 15 and Fig. 16 show the results. For RSN with differential-based approach, it is

obvious that there is a target around sample 13,950 in Fig. 15b and no target appears in Fig.

15a. Also, for RSN with STFT approach, around samples 13,900 to 14,000, Gaussian curve

appears. The related parameters for “poor” data are shown in Table 1 and Table 3 respectively.

Fig. 17 and Fig. 18 illustrate the analyzed detection performance. For differential-based

approach, accurate detection is obtained when the threshold lies in [0.843, 1.173]. For STFT,

the decision boundary should be within [0.3155, 0.7120].

5 Conclusion and Future Works

In this paper, we propose two signal processing approaches to improve sense-through-foliage

target detection. Additionally, we employ Radar Sensor Networks (RSN) and RAKE structure

to improve the robustness of the detection performance. However, as each approach has its own

advantage and drawback, it’s hard to conclude which is superior. Detecting targets obscured

by foliage will be an on-going research that may include future works listed as follows:

1. Investigate the time-variant properties of foliage clutter. The foliage is not a static

environment due to the changes in temperature and ground conditions. Although many

previous studies have assume the clutter to be time-invariant, the future analysis on the
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noncoherent and variant properties will help better understand the impulsiveness nature

of the foliage.

2. As more sensing-through-foliage data will be collected, we may optimize the proposed

approaches and improve their robustness.

3. Apply proposed approaches and structures to targets obscured by other clutters, such as

walls, soil cover, etc.
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Table 1: Estimated Clutter Decay Parameters

Data Set A (with 95% confidence bounds) B (with 95% confidence bounds)
Good Data 1.317×104 (1.301×104, 1.332×104) 0.0002628 (0.0002664, 0.0002592)
Poor Data 6881 (6779, 6983) 0.0002506 (0.0002549, 0.0002463)

Table 2: Gaussian Parameters and Normalized Product for Good Data using STFT

Data Gaussian Parameter a Gaussian Parameter c Product of the normalized factors
Target 6.02×108 2.82 0.8876

False Alarm 1 4.071×108 1.615 0.3438
False Alarm 2 1.353×108 0.9674 0.0684
False Alarm 3 3.563×108 1.52 0.2832
False Alarm 4 2.904×108 1.091 0.1657

Table 3: Gaussian Parameters and Normalized Product for Poor Data using STFT

Data Gaussian Parameter a Gaussian Parameter c Product of the normalized factors
Target 6.068×107 3.177 0.7120

False Alarm 1 3.795×107 1.649 0.2311
False Alarm 2 3.267×107 1.567 0.1891
False Alarm 3 8.523×107 1.002 0.3154
False Alarm 4 2.511×107 1.509 0.1399
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Figure 1: The target (a trihedral reflector) is shown on the stand at 300 feet from the lift.
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Figure 2: This figure shows the lift with the experiment. The antennas are at the far end
of the lift from the viewer under the roof that was built to shield the equipment from the
elements. This picture was taken in September with the foliage largely still present. The
cables coming from the lift are a ground cable to an earth ground and one of 4 tethers used in
windy conditions.
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Figure 3: Measurement with very good signal quality and 100 pulses integration. (a) no target
on range (b) with target on range (target appears at around sample 13900 to 14000)
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Figure 4: Measurement with good signal quality and 100 pulses integration (a) Expanded view
of traces (no target) from samples 13001 to 15000 (b) Expanded view of traces (with target)
from samples 13001 to 15000 (c) Expanded view of traces difference between with and without
target
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Figure 5: 2-D image created via adding voltages with the appropriate time offset (a) no target
(b) with target in the field

Figure 6: Block diagram of differential-based approach for single radar
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Figure 7: Curve fit for foliage clutter decay profile
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Figure 8: The power of processed waveforms with differential-based approach for good data
(a) no target (b) with target in the field
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Figure 9: The power of AC values versus sample index using STFT for good data. (a) no
target (b) with target in the field
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Figure 10: Performance of differential-based approach based on good data. (a) Probability of
detection (b) Probability of false alarm
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Figure 11: Performance of STFT approach based on good data. (a) Probability of detection
(b) Probability of false alarm
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Figure 12: Measurement with poor signal quality (a) Expanded view of traces (no target) from
samples 13001 to 15000 (b) Expanded view of traces (with target) from samples 13001 to 15000
(c) Expanded view of traces difference between with and without target
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Figure 13: Block diagram of differential based approach and diversity combination in RSN

Figure 14: Block diagram of STFT based approach and diversity combination in RSN
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Figure 15: The power of processed waveforms with differential-based approach and RSN for
poor data (a) no target (b) with target in the field
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Figure 16: The power of AC values versus sample index using STFT and RSN for poor data.
(a) no target (b) with target in the field
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Figure 17: Performance of differential-based approach based on poor data. (a) Probability of
detection (b) Probability of false alarm
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Figure 18: Performance of STFT approach based on poor data. (a) Probability of detection
(b) Probability of false alarm
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Abstract

Determining the location of an emitting target is one of the fundamental functions of com-

munication Electronic Warfare systems. In this paper, we propose a Time Difference of Arrival

(TDoA) algorithm for passive geolocation based on delay estimation of two correlated wireless

channels. It’s assumed that the passive receiver is carried by a small flying UAV in the sky,

and the transmitter is located on the ground (static or mobile), so Rician flat fading model

should be used. To estimate the delay of two correlated channels, Block Phase Estimation

(BPE) is used for each wireless channel estimation, and then the two estimated channels are

compared to get the best time delay. We also compare it against a cross-correlation-based TDoA

algorithm. Simulation results show that our TDoA algorithm performs much better than the

cross-correlation-based TDoA algorithm with a lower level of magnitude in terms of average

TDoA error and Root-Mean-Square-Error (RMSE). Four different Rician fading channel groups

are evaluated, and conclusions are drawn for our TDoA algorithm and the cross-correlation-

based TDoA algorithm.

Index Terms : Electronic warfare, passive geolocation, time difference of arrival, block phase

estimation, Rician fading.
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1 Introduction

Determining the location of an emitting target is one of the fundamental functions of communication

Electronic Warfare (EW) systems [9]. The U.S. military has a urgent need to pinpoint an enemy

based purely on the reception of radio signals, without the need for using radar. In contrast,

locating an enemy actively with radar is to be avoided, since it draws unwanted attention to the

platform operating the radar. The measurement of an emitter’s position using electronic support

(ES) sensors is termed passive geolocation, and plays an important part both in electronic

support and electronic attack. Existing systems and technology for the precision geolocation of

non-cooperative RF emitters are costly and time consuming to develop and deploy, and lack the

flexibility to make cost-effective enhancements once deployed. Additionally, existing systems also

rely on Global Positioning System (GPS), which is susceptible to jamming. Because a variety of

operational scenarios are required, RF emitters will experience impairments that hamper reception.

These impairments include obscuration, multi-path, foliage attenuation, RF interference from a

dense RF signal environment having multiple RF emitters sharing common RF spectrum. Thus,

the ability of large standoff intelligence gathering systems is severely hampered, and the use of

passive sensors on appropriate airborne platforms provides the most effective solution.

Several techniques of passive geolocation were presented in [9], which includes triangulation,

Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), etc. In this

paper, we are interested in studying passive geolocation from wireless communication point of view

and propose a TDoA algorithm for passive geolocation based on wireless channels delay estima-

tion. Some related works in this direction have already been reported. In [7], a TDoA location

scheme for the orthogonal frequency division multiplexing (OFDM) based wireless metropolitan

area networks (WMANs) was presented. The TDoA algorithm enhances the location performance

by utilizing the information in the time and frequency domains obtained from the received location

2
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OFDM signals. In [1], a TDoA estimation is carried out for narrowband multipath system using a

correlation technique and a super-resolution method - root multiple signal classification (MUSIC).

In [2], ultra-wideband (UWB) radio for positioning techniques were overviewed, which include the

angle of arrival (AOA), the signal strength (SS), or time delay information, etc. In order to achieve

timing error reduction in TDoA, a high-resolution first arriving path detector from propagation

channel estimates is derived based on the minimum variance (MV) estimates and normalized mini-

mum variance (NMV) of the power delay profile in [13]. In [8], a received signal phase-based TDoA

approach was proposed in [8]. The least squares range difference location problem has been investi-

gated by Schmidt [11] and others. Schmidt showed that the TDoA averaging process produced the

geolocation that was the closest feasible one in a lest squared sense based on the measured ranging

differences.

Besides RF-based signal geolocation, some other signals such as acoustic-based geolocation

were also studied. In [10], a TDoA for multiple acoustic sources in reverberant environments was

proposed, and the ambiguities in TDoA estimation caused by multipath propagation and multiple

sources were resolved by exploiting two TDoA constraints, the raster condition and the zero cyclic

sum condition. In [15], a near-optimal procedure to localize a single stationary source in a two-

path underwater acoustic environment was proposed, where the range and depth estimators were

developed using a linear least-squares technique when a set of auto- and cross-correlators is used

for TDoA estimates.

In this paper, we propose a TDoA algorithm via wireless channel estimation. The rest of this

paper is organized as follows. In Section 2, propagation channel modeling in passsive geolocation

scenario is overviewed. In Section 3, we propose a blind channel phase estimation approach named

Block Phase Estimation (BPE) without knowing the unique words. In Section 4, we propose our

TDoA algorithm based on the estimated phase differences of the two wireless channels. In Section

3
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5, we present our simulation results on our TDoA algorithm and compare it against an existing

TDoA approach. Section 6 concludes this paper.

2 Propagation Channel Modeling

In passive geolocation applications, the passive receiver is carried by a small flying UAV in the

sky, and the transmitter is located on the ground (static or mobile). Two parallel antennas with

distance d are equipped under the UAV. When d < 0.38λ [3], where λ is the wavelength of the RF

signal, the two wireless channels are correlated, and one is the delayed version of the other.

In this paper, vertical polarization of the transmitter is assumed. The n-th plane wave arrives

at the UAV antenna 1 (closer to the transmitter) with an elevation angle θn. The UAV movement

introduces a Doppler shift, which is given by

fD,n = fm cos θn Hz (1)

where fm = υ/λc and λc is the wavelength of the arriving plane wave, and fm is the maximum

Doppler frequency occurring when θn = 0. Plane waves arriving from the direction of motion

will experience a positive Doppler shift, while those arriving opposite the direction of motion will

experience a negative Doppler shift.

Consider the transmission of the band-pass signal from the RF emitter

s(t) = Re[s̃(t)ej2πfct] (2)

where s̃(t) is the complex envelope of the transmitted signal, fc is the carrier frequency, and Re[z]

denotes the real part of z. If the channel is comprised of N propagation paths, then the noiseless

received band-pass waveform is [12]

r(t) = Re

[
N∑

n=1

Cne
j2π[(fc+fD ,n)(t−τn)]s̃(t− τn)

]
(3)
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where Cn and τn are the amplitude and time delay, respectively, associated with the nth propagation

path. The magnitude Cn depends on the cross sectional area of the nth reflecting surface or the

length of the nth diffracting edge.

Similar to (2), the received band-pass signal r(t) has the form [12]

r(t) = Re[r̃(t)ej2πfct] (4)

where the received complex envelope is

r̃(t) =
N∑

n=1

Cne
−jφn(t)s̃(t− τn) (5)

and

φn(t) = 2π{(fc + fD,n)τn − fD,nt} (6)

is the phase associated with the nth path. From (5), the channel can be modeled by a linear

time-variant filter having the complex low-pass impulse response [12]

g(t, τ) =
N∑

n=1

Cne
−jφn(t)δ(t− τn) (7)

where g(τ, t) is the channel response at time t due to an impulse applied at time t− τ , and δ(·) is

the dirac delta function.

For frequency non-selective channel (flat fading channel), the arrival time of each scatter n

(n = 1, 2, · · · , N), τn, can be approximated as the same, τ , so (7) can be represented as [12]

g(t, τ) =
N∑

n=1

Cne
−jφn(t)δ(t− τ̂) = g(t)δ(t − τ̂) (8)

So

g(t) =
N∑

n=1

Cne
−jφn(t) (9)

For the second antenna under the UAV, since it’s further to the transmitter, each scatter will have

time delay ζ, so the channel impulse response from the RF emitter to the second antenna is g(t−ζ).

In this paper, we estimate TDoA, ζ, based on the time delay of the two Rician fading channels.
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There exists a Line of Sight (LoS) between transmitter and receiver, and Rician flat fading

model should be used. Rician fading occurs when there is a strong specular (direct path or line of

sight component) signal in addition to the scatter (multipath) components. The channel gain,

g(t) = gI(t) + jgQ(t) (10)

can be treated as a wide-sense stationary complex Gaussian random process, and gI(t) and gQ(t)

are Gaussian random processes with non-zero means mI(t) and mQ(t), respectively; and they have

same variance σ2
g , then the magnitude of the received complex envelop has a Rician distribution,

pα(x) =
x

σ2
exp{−x

2 + s2

2σ2
}I0(xs

σ2
) x ≥ 0 (11)

where

s2 = m2
I(t) +m2

Q(t) (12)

and I0(·) is the zero order modified Bessel function. This kind of channel is known as Rician fading

channel. A Rician channel is characterized by two parameters, Rician factor K which is the ratio

of the direct path power to that of the multipath, i.e., K = s2/2σ2, and the Doppler spread (or

single-sided fading bandwidth) fd. We simulate the Rician fading using a direct path added by

a Rayleigh fading generator. The Rayleigh fade generator is based on Jakes’ model [4] in which

an ensemble of sinusoidal waveforms are added together to simulate the coherent sum of scattered

rays with Doppler spread fd arriving from different directions to the receiver. The amplitude of the

Rayleigh fade generator is controlled by the Rician factor K. The number of oscillators to simulate

the Rayleigh fading is 60.

In military applications, modulation classification is already a very mature technology, so we

assume that the modulation used by the transmitter could be classified by the passive receiver

successfully. In this paper, we assume QPSK modulation (a very popular modulation used by

various communication systems) is used.
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3 Block Phase Estimation for Wireless Channel

The general structure of the phase estimator is illustrated in Fig. 1. We are supposed to estimate

the phase at the midpoint of the estimation period which is denoted as TE , it encompass NE

m-ary symbols, and we let NE = 2N + 1, where N is the number of samples before and after

the sample whose phase is to be estimated. In this context and in the presence of additive white

Gaussian noise(AWGN) and zero frequency uncertainty, Fig. 1 with the dotted box eliminated (so

that x
′
n = xn, y

′
n = yn)represents the optimal (maximum likelihood) estimator for m = 1, Δf = 0

which corresponds to an unmodulated carrier. For m-PSK modulated waveform, the phase of each

successive symbol should take a different value. Obviously, the above estimator is useless. To solve

it, a two-dimentional (complex) nonlinear function is inserted in the dotted box

x′n + iy′n = F (ρn)eimφn (13)

where ρn =
√
x2

n + y2
n and φn = tan−1(yn/xn). This is a rectangular-to-polar transformation.

Multiply phase φn by m and perform an arbitrary nonlinear transformation on ρn; and finally

perform a polar-to-rectangular transformation on the result. Obviously by using the preceding and

succeeding N symbols to estimate each symbol phase, all but the first and last N symbol estimates

can be made unbiased by overlapping estimation periods. For F (ρ) = ρk, k even,

E(
ρ2k

σ2k
cos2ε′) = γk

m+k∑
n=0

n!(
m+k
n )(

m−k+n+1
n )(

−2
γ

)n

+(−1)m+k+12ke−γ/2(
2
γ

)k+1

·
m−k−1∑

n=0

(
m+k+n
n )

(m+ k)!
(m− k − n− 1)!

(
2
γ

)n,

k ≤ m− 2, (14)

E

(
ρ2k

σ2k

)
=

k∑
n=0

(
k
n

)2

γk−n2nn!, k = m, (15)
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where σ2 is the variance of the real and the imaginary part of each sample. From the above equation,

it is shown in [14], for QPSK (m = 4), by choosing F (ρ) = 0, ρ2, and ρ4, the estimator can performs

nearly as well as the linear estimator for unmudulated carries with moderate degradation.

To implement the nonlinear transformation, we need to first multiply the phase bym, along with

the final operation of dividing the tan−1 function by m, thus gives rise to an m-fold ambiguity in the

phase estimate. Liang and Wang applied Unique Words (UW) to remove the ambiguity in wireless

channel estimation [5], however the receive antennas don’t know any UW in the passive geolocation

application. Fortunately, we only need the phase differences of the two correlated wireless channels,

so ambiguity is not a problem in our applicaation, and it’s automatically canceled by each other of

the two wireless channels. After the nonlinear transformation, for each block, we got

θ̂(m) =
1
m
tan−1(

y

x
), (16)

without considering the phase ambiguity, where x = 1
2N+1

∑N
n=−N x

′
n and y = 1

2N+1

∑N
n=−N y

′
n.

Using the preceding and succeeding N symbols to estimate each symbol phase individually, so that

make the estimation unbiased. That is, approximately (2N + 1) as many operations as performing

a single estimate are required for all the (2N + 1) symbols in the interval [14]. In our scheme, we

set up a parameter s denoted as step. For each s symbols, we only do the estimation once, and get

the phase of the other s− 1 symbols by interpolation. Thus, we only need (2N + 1)/s operations.

It is shown in the simulation result that there is hardly any degradation in terms of the BER.

4 TDoA Finding Algorithm and Comparison with Existing Ap-

proach

Based on the BPE algorithm in Section 3, we could be able to obtain two channels g1(t) and g2(t).

Since the two channels are highly correlated, and ideally one is the delay of the other. We construct
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a cost function,

J(ζ) =
1
T

∫ T

0
[g1(t− ζ) − g2(t)]2dt (17)

where T is the burst length, and the ζ value that can minimize the cost function is the TDoA value,

i.e.,

ζ̂ = inf
ζ∈[0,T ]

J(ζ) (18)

= arg inf
ζ∈[0,T ]

1
T

∫ T

0
[g1(t− ζ) − g2(t)]2dt (19)

For discrete case, our TDoA finding algorithm can be represented as

ζ̂ = arg min
ζ∈{1,2,··· ,L}

1
L

L∑
n=0

[g1(n− ζ) − g2(n)]2 (20)

where L is the total number of symbols of a burst.

Our approach is a channel estimation-based TDoA approach based on the received signals.

In the existing approach, a cross-correlation of the received signals based TDoA approach was

proposed in [9]. We summarize this approach and will compare with our TDoA algorithm. The

received signals from two parallell antennas j and k are

rj(t) = s(t) + nj(t) (21)

rk(t) = As(t− τjk) + nk(t) (22)

where A is an attentuation factor and τjk is the relative time delay between the antennas. The

cross correlation of these two received signals is given by

Cjk(τ) = E{rj(k)rk(t− τ)} (23)

= AE [s(t)s(t− τ − τjk)] (24)

= ACss(τ − τjk) (25)

where Css(τ) is the autocorrelation function of s(t). |Cjk(τ)| ≤ 1 and its maximum value is 1 when

tau = τjk, so the delay τjk could be estimated based on the cross-correlation of the received signals.
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5 Simulations

We evaluated our TDoA algorithm for different time delays betwen the two wireless channels, and

compared it against the cross-correlation-based approach. The burst length is 936 symbols and

transmitting 1 burst needs 10ms, so the symbol rate is 93,600 symbols/s. We totally ran two sets

of simulations with time delay 10 symbols (i.e., 0.107ms), and 100 symbols (i.e., 1.07ms) for the

two algorithms. We studied four groups of Rician fading channels and each group has two channels

(one is the delayed version of the other): the first group with Rician factor K = 12dB, doppler shift

fd = 200Hz; the second group of channels K = 12dB, dd = 500Hz; the third group of channels

K = 9dB, fd = 200Hz; and the fourth group of channels K = 9dB, fd = 500Hz.

For channel simulation, we chose N = 60 (number of scatters), and ran our simulations for

different SNR values. At each SNR values, we ran the Monte-Carlo simulations for MC = 50, 000

bursts, and obtained the average TDoA estimation errors for the two TDoA algorithms which are

plotted in Fig. 2(a)(b) for the 100-symbol delay, and Fig. 3(a)(b) for the 10-symbol delay. Observe

these figures, the average TDoA errors are not zero, which means both TDoA algorithms are not

unbiased, so Cramer-Rao bound can’t be used for the TDoA error variance analysis.

We evaluated the estimation variance via the Monte-Carlo simulations based on MC = 50, 000

bursts. We used the root-mean-square-error (RMSE) of the TDoA estimation, which is defined as

RMSE =

√√√√ 1
MC

MC∑
i=1

(ζ̂i − ζi)2 (26)

where i is the index of bursts in Monte-Carlo simulations. The RMSE for the two TDoA algorithms

were plotted in Fig. 4(a)(b) for the 100-symbol delay, and Fig. 5(a)(b) for the 10-symbol delay.

Observe these figures for average TDoA error and RMSE (Figs. 2 to 5),

1. Our TDoA algorithm performs much better than the cross-correlation-based TDoA algo-

rithm with different magnitude level. In terms of average TDoA error as well as RMSE, our
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TDoA algorithm performs more than 10 times lower than the cross-correlation-based TDoA

algorithm. Why the cross-correlation-based TDoA algorithm couldn’t perform well? It’s be-

cause it ignores the channel fading phase distortion, but channel fading happens in all mobile

communications.

2. Our TDoA algorithm performs very well with very low average TDoA error, for example,

the average TDoA error is 0.57 symbol time, and RMSE is 16.7 symbol time for channel

K = 12dB, fd = 200Hz, at SNR = 10dB when the delay is 100-symbol time.

3. The TDoA algorithm performance is related to channel fading condition. According to our

simulations, our TDoA algorithm performs in the following order (from the best to the worst):

• K = 12dB, fd = 200Hz;

• K = 9dB, fd = 200Hz;

• K = 12dB, dd = 500Hz;

• K = 9dB, fd = 500Hz.

It’s very clear that larger Doppler shift fd and lower fading factor K cause TDoA performance

degradation. But surprisingly, the cross-correlation-based TDoA algorithm doesn’t perform

in a consistent order for the four channels because channel fading was not considered in this

algorithm.

4. The TDoA performance is sensitive to the time delay. The performance is better for larger

time delay case than for smaller time delay. It’s because for larger time delay, the time delay

finding algorithm will easily locate the delay with less error.
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6 Conclusions

We have proposed a Time Difference of Arrival (TDoA) algorithm for passive geolocation based

on delay estimation of two correlated wireless channels. It’s assumed that the passive receiver is

carried by a small flying UAV in the sky, and the transmitter is located on the ground (static

or mobile), so Rician flat fading model should be used. To estimate the delay of two correlated

channels, Block Phase Estimation (BPE) was used for each wireless channel estimation, and then

the two estimated channels are compared to get the best time delay. We also compared our TDoA

algorithm against a cross-correlation-based TDoA algorithm. Simulation results showed that our

TDoA algorithm performs much better than the cross-correlation-based TDoA algorithm with a

lower level of maganitude in terms of average TDoA error and Root-Mean-Square-Error (RMSE).
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Figure 2: The average TDoA error versus SNR for four different Rician fading channels with
1.07ms (100-symbol) time delay. (a) Our TDoA Algorithm, (b) Cross-correlation-based TDoA
algorithm [9].
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Figure 3: The average TDoA error versus SNR for four different Rician fading channels with
0.107ms (10-symbol) time delay. (a) Our TDoA Algorithm, (b) Cross-correlation-based TDoA
algorithm [9].
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Figure 4: The TDoA RMSE versus SNR for four different Rician fading channels with 1.07ms (100-
symbol) time delay. (a) Our TDoA Algorithm, (b) Cross-correlation-based TDoA algorithm [9].
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Figure 5: The TDoA RMSE versus SNR for four different Rician fading channels with 0.107ms
(10-symbol) time delay. (a) Our TDoA Algorithm, (b) Cross-correlation-based TDoA algorithm [9].
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Abstract

In this paper, we study sense-through-foliage target detection using ultra-wideband (UWB)

radars. We propose a Discrete-Cosine-Transform (DCT)-based approach for sense-through-

foliage target detection using a single UWB radar when the echo signal quality is good, and a

Radar Sensor Network (RSN) and DCT-based approach when the echo signal quality is poor.

A RAKE structure which can combine the echos from different cluster-members is proposed for

clusterhead in the RSN. We compared our approach with the ideal case when both echos are

available, i.e., echos with target and without target. We also compared our approach against the

scheme in which 2-D image was created via adding voltages with the appropriate time offset as

well as the matched filter-based approach. We observed that the matched filter-based couldn’t

work well because the UWB channel has memory. Simulation results show that our DCT-based

scheme works much better than the existing approaches, and our RSN and DCT-based approach

can be used for target detection successfully while even the ideal case fails to do it.

Key Words : UWB radars, sense-through-foliage, target detection, Discrete-Cosine-Transform

(DCT), matched filter, radar sensor networks.
∗Partial material in this paper was presented at the IEEE International Conference on Communications, Beijing,

China, 2008.
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1 Introduction and Motivation

UWB radars are used nowadays for different applications such as subsurface sensing, classification

of aircrafts, collision avoidance, etc. In all of these applications the ultra-high resolution of UWB

radars is essentially used [35]. UWB radar emissions are at a relatively low frequency-typically

between 100 MHz and 3 GHz. Additionally, the fractional bandwidth of the signal is very large

(greater than 0.25). In this definition, bandwidth means the difference between the highest and

lowest frequencies of interest and contains about 95% of the signal power [29][30]. Such radar sensor

has exceptional range resolution that also has an ability to penetrate many common materials (e.g.,

walls). Law enforcement personnel have used UWB ground penetrating radars (GPRs) for at least a

decade. In 1995, James D. Taylor’s [30] Introduction to Ultra-Wideband Radar Systems introduced

engineers to the theory behind a promising new concept for remote sensing. Since then, the field

has undergone enormous growth with new applications realized and more applications conceptual-

ized at a remarkable pace [29]. In [14], Immoreev gave an overview on new practical applications

of UWB radars. In [4], through-wall UWB radar operating within FCC’s mask was studied for

heart beat and breathing rate. In [35][36][37], UWB radar for detection and positioning of human

beings in a complex environment was studied. In the existing works on UWB radar/sensor based

target detection, Some algorithms for sense-through-wall target detection were overviewed in [33],

which are mainly based on target response signal strength (1-D) and different copies of signals

to construct 2-D features. In [18], UWB radar for human being detection behind the wall was

studied based on the spectrum of breathing human. The Adaptive Polarization-Difference Imaging

(APDI) algorithm and PDI technique [26][31] were originally developed for optical imaging and in

many situations can provide significant enhancements in target detection and feature extraction

over conventional methods. In [38], these two techniques were applied to transient time-domain

microwave signals with particular applications in through-wall microwave imaging (TWMI). In
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[32], a chaos-based high-resolution imaging technique was applied to through-the-wall imaging, but

no detection algorithm was presented. In [17], the problem of locating two straight and parallel

road edges in radar images that are acquired from a stationary millimeter-wave radar platform posi-

tioned near ground-level was addressed. In [22], two new online clustering algorithms are developed

for radar emitter classification: one is model-based using the minimum description length (MDL)

criterion and the other is based on competitive learning. A maximum a posteriori (MAP) prob-

ability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR)

images was developped in [3]. In [8], Fuzzy reasoning was used to improve the accuracy of the

automatic detection of aircraft in Synthetic Aperture Radar (SAR) images. A unified theory of

pixel processing based on a Bayesian framework was presented in [11] for the Lidar radar signals

with multiple returns. In [39], an image segmentation method named iterative region growing using

semantics (IRGS) was proposed, and the algorithm has been successfully tested on several artifi-

cial images and synthetic aperture radar (SAR) images. A matched-filter-bank-based 3-D imaging

algorithm for rapidly spinning targets using ISAR radar was proposed in [34]. An adaptive and

fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR

images was proposed in [10]. In [6], alternate transmission and receiver switching was applied to

improve space-based moving target indication. An appropriate data fusion rule was derived to to

generate a composite SAR image containing enhanced target shape characteristics for improved

target recognition [19]. Four-dimensional SAR imaging for height estimation and monitoring of

single and double scatterers was proposed in [9]. All the above target detection approaches were

based on 2-D or more dimensional radar images. Recently, we presented some preliminary results

on UWB radar target detection using discrete cosine transform in [20], which was based on 1-D

radar signals.

In this paper, we will perform studies sense-through-foliage target detection using UWB radar
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and UWB radar sensor networks in more details, and will compare against some other existing

approaches. Like the GPR, sense-through-foliage radar takes advantage of UWB’s very fine resolu-

tion (time gating) and low frequency of operation. Sheen, et al. [28] have measured ultrawideband

(UWB) backscatter from foliage, as has a team of researchers from MIT [7] and from the U.S.

Army Research Laboratory (ARL) [23], for different polarizations and frequency ranges. In [16],

Kapoor et al studied the detection of targets obscured by a forest canopy using a UWB radar.

They observed that the forest clutter observed in the radar imagery is a highly impulsive ran-

dom process that is more accurately modeled with the alpha-stable processes as compared with

Gaussian, Weibull, and K-distribution models. With this more accurate model, segmentation was

performed on the imagery into forest and clear regions. Further, a region-adaptive symmetric al-

pha stable (SαS) constant false-alarm rate (CFAR) detector was introduced and its performance

is compared with the Weibull and Gaussian CFAR detectors. The approach in [16] is a statistical

model based approach. In this paper, we are interested in a non-statistical model-based approach

for UWB sense-through-foliage target detection, and we will apply our expertise in signal process-

ing, data fusion, sensor networks, etc to achieve effective sense-through-foliage technology. We are

interested in investigating more features from sense through foliage signals and extracting as much

information as possible for data fusion.

The rest of this paper is organized as follows. In Section 2, we summarize the measurement and

collection of data we used in this paper. In Section 3, we propose a discrete-cosine-transform (DCT)

based approach for sense-through-foliage target detection with good signal quality. In Section 4, we

propose a radar sensor network (RSN) and DCT-based approach for sense-through-foliage target

detection when the signal quality is poor. We conclude this paper and discuss some future research

topics in Section 5.
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2 Sense-through-Foliage Data Measurement and Collection

The foliage penetration measurement effort was conducted in late summer and fall. Late summer

foliage, because of the limited rainfall, involved foliage with decreased water content. Late fall

and winter measurements involved largely defoliated but dense forest. The foliage experiment was

constructed on a seven-ton man lift, which had a total lifting capacity of 450 kg. The limit of the

lifting capacity was reached during the experiment as essentially the entire measuring apparatus

was placed on the lift. The principle pieces of equipment secured on the lift are listed below:

• Dual Antenna mounting stand

• Two antennas

• Rack system (2)

• Barth pulser

• Tektronix model 7704 B oscilloscope

• IBM laptop

• HP signal Generator

• Custom RF switch and power supply

• Weather shield (small hut)

Figure 1 shows the experiment under a weather shield that was constructed on the lift. The weather

shield was needed to protect the equipment hoisted up with the lift. A negative side effect of this

weather shield was to provide a significant sail area at the maximum lever arm relative to the lift

stabilizing jacks on the ground. Lift stabilization was achieved using cables and anchor points. A

system of 4 tethers was used under gusty conditions. The transmit and receive rotating platform
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systems were built using heavy gauge Unistruts, thrust bearings, and roller bearings for the multiple

axes of freedom. The importance of the rigidity of the antenna mounts the and axis of rotation

was in the establishment and maintenance of the antenna alignment during the measurement. See

Figure 2, for a photographic side view of the equipment platform on the lift.

 

Figure 1: This figure shows the lift with the experiment. The antennas are at the far end of the

lift from the viewer under the roof that was built to shield the equipment from the elements. This

picture was taken in September with the foliage largely still present. The cables coming from the

lift are a ground cable to an earth ground and one of 4 tethers used in windy conditions.

The experimental target was a trihedral reflector with a slant length of 1.5 meters (as shown

in Fig. 3). Throughout this work, a Barth pulse source (Barth Electronics, Inc. model 732 GL)

was used. The pulse generator uses a coaxial reed switch to discharge a charge line for a very fast

rise time pulse outputs. The model 732 pulse generator provides pulses of less than 50 picoseconds
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Figure 2: This figure shows the experiment on top of the lift under the hut built for weather

protection. The black box in the foreground is a weather resistant box that held the oscilloscope

and Barth pulser during the testing.

(ps) rise time, with amplitude from 150 V to greater than 2 KV into any load impedance through

a 50 ohm coaxial line. The generator is capable of producing pulses with a minimum width of 750

ps and a maximum of 1 microsecond. This output pulse width is determined by charge line length

for rectangular pulses, or by capacitors for 1/e decay pulses. The data collections were extensive.

20 different positions were used, and 35 independent collections were performed at each position.

For the data we used in this paper, each sample is spaced at 50 picosecond interval, and 16,000

samples were collected for each collection for a total time duration of 0.8 microseconds at a rate

of approximately 20 Hz. We considered two sets of data from this experiment. Initially, the

Barth pulse source was operated at only 1 KW peak power and the system was not sufficiently

loaded for repeatable charge control pulse-to-pulse. In Fig. 4, a Barth pulse captured on TEK7704

oscilloscope is plotted. Significant pulse-to-pulse variability was noted for these collections. In this

set of experiments, 35 pulses reflected signal were averaged for each collection. The scheme for the

sense-through-foliage target detection with “poor” signal quality will be presented in Section 4.
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Figure 3: The target (a trihedral reflector) is shown on the stand at 300 feet from the lift.

This problem was remedied by running the pulser at higher power while protecting the radiating

antenna using a non-distorting attenuator Barth 3dB attenuator model number 142-NMFP-3. Pulse

production stability was very important to this measurement effort. Pulse-to-pulse differences, if

any were observed, should be due to changes in the foliage or changes in the transmitter-receiver

positions relative to the foliage and target. When operated at the higher amplitudes it was noted

that the pulse source was very stable. Fig. 5 shows a series of ten pulses. In this graph only

the peak, the most variable portion of the pulse, is shown. The measured pulse-to-pulse variation

was found to be less than 7% at the peak. In this set of experiments, 100 pulses reflected signals

were averaged for each collection to average the variation because of the movement of foliage. The

scheme for target detection with “good” signal quality will be presented in Section 3.

8
590 of 816



Figure 4: Barth Pulse captured on TEK7704 oscilloscope.

3 Sense-through-Foliage Target Detection with Good Signal Qual-

ity: A DCT-based Approach

In Fig. 6, we plot two collections with good signal quality, one without target on range (Fig. 6a)

and the other one with target on range (Fig. 6b and target appears at around sample 13,900). To

make it more clear to the readers, we provide expanded views of traces (with target) from sample

13,001 to 15,000 for the above two collections in Figs. 7a and 7b. Since there is no target in Fig.

7a, it can be treated as the response of foliage clutter. It’s quite straightfoward that the target

response will be the echo difference between Fig. 7b and Fig. 7a, which is plotted in Fig. 7c.

However, it’s impossible to obtain Fig. 7a (clutter echo) in practical situation if there is target on

range. The challenge is how to make target detection based on Fig. 7b (with target) or Fig. 7a

(no target) only?

Observe Fig. 7b, for samples where target appears (around sample 13,900), the sample strength

changes much abruptly than that in Fig. 7a, which means echo from target contains more AC values
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Figure 5: Barth pulse output peaks captured by a TEK7704 oscilloscope when operated at higher

power. Only the peak of the ten traces are shown and the reference level is 0. Ten traces are

overlaid and display a peak pulse-to-pulse variability of less than 7%.

than that without target. Motivated by this, we applied Discrete Cosine Transform (DCT) to the

echos x(iM +n) (n = 0, 1, 2, · · · , N − 1) where N is the DCT window length, M is the step size of

each DCT window, and i is the window index. Let x(n, i)
�
= x(iM + n)

X(K, i) =
N−1∑
n=0

x(n, i) cos(
2π
N
nK) (1)

then we cumulate the power of AC values (for K > 2)

P (i) =
N−1∑
K=3

X(K, i)2 (2)

For N = 100 and M = 10, we plot the power of AC values P (i) versus iM (time domain sample

index) in Figs. 8a and 8b for the above data sets in Figs. 7a and 7b respectively. Observe that

in Fig. 8b, the power of AC values (around sample 13,900) where the target is located is non-

fluctuating (monotonically increase then decrease). Although some other samples also have very

high AC power values, it is very clear that they are quite fluctuating and the power of AC values
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behave like random noise because generally the clutter has Gaussian distribution in the frequency

domain [2]. Based on our simulations, the window length N in DCT affects the performance of the

target detection. The appropriate N should be the length of target impulse response with strong

signal strength (see Fig. 7c). This depends on target size, UWB signal resolution, and propagation

environment.

We compared our DCT-based approach to the scheme proposed in [33]. In [33], 2-D image was

created via adding voltages with the appropriate time offset. In Figs. 9a and 9b, we plot the 2-D

image created based on the above two data sets (from samples 13,800 to 14,200). However, it’s not

clear which image shows there is target on range.

We also compared our approach to the matched filter approach. The matched filter is by

definition a filter in the radar receiver designed to maximize the SNR at its output. The impulse

response of the filter having this property turns out to be a replica of the transmitted waveform’s

modulation function that has been reversed in time and conjugated [25]. Assume the transmitted

waveform is s(t), then the matched filter impulse response h(t) = s∗(TM − t) The time TM at

which the SNR is maximized is arbitrary, however, TM ≥ t is required for h(t) to be causal. Given

the received echo x(t) consisting of clutter, target, and noise components, the output y(t) of the

matched filter is given by the convolution between x(t) and h(t)

y(t) =
∫ ∞
−∞

x(τ)h(t− τ)dτ (3)

=
∫ ∞
−∞

x(τ)s∗(τ + TM − t)dτ (4)

In this paper, we choose TM = 16001, and the matched filter outputs for received signal in Fig. 6a

(without target) and signal in Fig. 6b (with target) are plotted in Figs. 10a and 10b respectively.

Since the received echoes plotted in Fig. 6a and b are averaged over 100 pulses, the transmitted

pulse s(t) in (4) is obtained via averaging corresponding 100 transmission pulses and is plotted in

Fig. 11. Observe Figs. 10ab, it’s impossible to perform target detection based on the matched
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filter output.

Why the matched filter approach doesn’t work for UWB radar-based target detection? We

further studied the UWB channel using CLEAN algorithm [12][5][27]. Based on the transmit pulse

in Fig. 11 and received echo in Fig. 7a, we applied CLEAN algorithm and obtained the UWB

channel (plotted in Fig. 12). Observe Fig. 12, the UWB channel has memory because it’s a linear

filter. However, the matched filter is derived based on the assumption that the radar channel has

no memory. The memory in UWB radar channel causes intersymbol interference of transmit pulse

and makes the matched filter approach perform poor.

4 Sense-through-Foliage Target Detection with Poor Signal Qual-

ity: A Sensor Network and DCT-based Approach

As mentioned in Section 2, when the Barth pulse source was operated at low amplitude and the

sample values are not obtained based on sufficient pulse response averaging (averaged over 35 pulses

for each collection), significant pulse-to-pulse variability was noted and the return signal quality is

poor. In Figs. 13a and 13b, we plot two collections with poor signal quality. Fig. 13a has no target

on range, and Fig. 13b has target at samples around 13,900. We plot the echo differences between

Figs. 13a and 13b in Fig. 13c. However, it is impossible to identify whether there is any target and

where there is target based on Fig. 13c. We observed the DCT-based approach failed to detect

target based on one collection. Since significant pulse-to-pulse variability exists in the echos, this

motivate us to explore the spatial and time diversity using Radar Sensor Networks (RSN).

In RSN, the radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireline backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,
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disaster relief, search and rescue, etc. Scalability concern suggests a hierarchical organization

of radar sensor networks with the lowest level in the hierarchy being a cluster. As argued in

[21] [15] [13] [24], in addition to helping with scalability and robustness, aggregating sensor nodes

into clusters has additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for

only the nodes in attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their pulse parameters such as timing to their clusterhead radar,

and the clusterhead radar can combine the echos (RF returns) from the target and clutter. In this

paper, we propose a RAKE structure for combining echos, as illustrated by Fig. 14. The RAKE

structure is so named because it reminds the function of a garden rake, each finger collecting echo

signals similarly to how tines on a rake collect leaves. The integration means time-average for a

sample duration T and it’s for general case when the echos are not in discrete values. It is quite

often assumed that the radar sensor platform will have access to Global Positioning Service (GPS)

and Inertial Navigation Unit (INU) timing and navigation data [1]. In this paper, we assume the

radar sensors are synchronized in RSN. In Fig. 14, the echo, i.e., RF response by the pulse of

each cluster-member sensor, will be combined by the clusterhead using a weighted average, and the

weight wi is determined by the power of each echo xi(n) (n is the sample index),

wi =
Ei∑M
i=1Ei

(5)
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and

Ei = var(xi(n)) + [mean(xi(n))]2 (6)

We ran simulations for M = 30, and plot the power of AC values in Figs. 15a and 15b for

the two cases (with target and without target) respectively. Observe that in Fig. 8b, the power

of AC values (around sample 13,900) where the target is located is non-fluctuating (monotonically

increase then decrease). Although some other samples also have very high AC power values, it is

very clear that they are quite fluctuating and the power of AC values behaves like random noise

because generally the clutter has Gaussian distribution in the frequency domain.

5 Conclusions and Future Works

In this paper, we proposed a DCT-based approach for sense-through-foliage target detection when

the echo signal quality is good, and a sensor network and DCT-based approach when the echo signal

quality is poor. A RAKE structure which can combine the echos from different cluster-members is

proposed for clusterhead in the RSN. We compared our approach with ideal case when both echos

are available, i.e., echos with target and without target. We also compared our approach against

the scheme in which 2-D image was created via adding voltages with the appropriate time offset

as well as the matched filter-based approach. We observed that the matched filter-based couldn’t

work well because the UWB channel has memory. Simulation results show that our DCT-based

scheme works much better than the existing approach, and our RSN and DCT-based approach can

be used for target detection successfully while the ideal case fails to do it. For future works, we will

collect more data with different targets and perform automatic target recognition besides target

detection.
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Figure 6: Measurement with very good signal quality and 100 pulses average. (a) No target on

range, (b) with target on range (target appears at around sample 13,900).
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Figure 7: Measurement with very good signal quality and 100 pulses average. (a) Expanded view

of traces (with target) from samples 13,001 to 15,000. (b) Expanded view of traces (without target)

from samples 13,001 to 15,000. (c) Echo differences between (a) and (b).
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Figure 8: The power of AC values versus sample index. (a) No target (b) With target in the field.
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Figure 9: 2-D image created via adding voltages with the appropriate time offset. (a) No target

(b) With target in the field.
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Figure 10: The matched filter output (a) no target, and (b) with target.
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Figure 12: The channel impulse responses for UWB channel using CLEAN method.
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Figure 13: Measurement with poor signal quality and 35 pulses average. (a) Expanded view of

traces (no target) from sample 13,001 to 15,000. (b) Expanded view of traces (with target) from

sample 13,001 to 15,000. (c) The differences between (a) and (b).
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Figure 14: Echo combining by clusterhead in RSN.
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Figure 15: Power of AC values based on UWB radar sensor networks and DCT based approach.

(a) No target (b) With target in the field.
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ABSTRACT

In this paper, we present new developed tenary code – punctured
binary sequence-pair, give its definitions and the autocorrelation
properties. We also investigate Doppler shift performance of the
proposed code. The significant advantages of this tenary codes
over conventional pulse compression codes, such as the widely
used Barker codes, are zero autocorrelation sidelobes and the
longer length of the code which can be as long as 31 so far. We
apply our new tenary codes to radar system for target detection
and observe that our codes outperform some other conventional
pulse compression codes.

Index Terms— Tenary, Phase coded waveform, Pulse com-
pression, Radar system.

1. INTRODUCTION

Pulse compression, which allows a radar to simultaneously
achieve the energy of a long pulse and the resolution of a short
pulse without the high peak power required by a high energy
short duration pulse [1], is generally used in modern radar sys-
tem. The main purpose of this technique is to raise the signal
to maximum sidelobe (signal-to-sidelobe) ratio to improve the
target detection and range resolution abilities of the radar system.
The lower the sidelobes, relative to the mainlobe peak, the better
the main peak can be distinguished.

One of the basic waveform designs suitable for pulse com-
pression is the phase-coded waveform, a long pulse of durationT
is divided intoN subpulses each of widthTs. Each subpulse has
a particular phase, which is selected in accordance with a given
code sequence. The pulse compression ratio equals to the number
of subpulsesN = T/Ts.

The criterion for selecting the subpulse phases is that all the
time-sidelobe of the compressed pulse should be equal and as
low as possible. One family of binary phase code widely used as
a form of phase coding nowadays that can produce compressed
waveforms with constant sidelobe levels equal to unity is the
Barker code. It has special features with which its sidelobe struc-
ture contains the minimum energy which is theoretically possible
for binary codes, and the energy is uniformly distributed among
the sidelobes (the sidelobe level of the Barker codes is1/N 2 that
of the peak signal) [2]. Unfortunately, the lengthN of known
binary and complex Barker codes is limited to 13 and 25, re-
spectively [3], which may not be sufficient for the desired radar

applications. In [4] [5], polyphase codes, with better Doppler
tolerance and lower range sidelobes such as the Frank and P1
codes, the Butler-matrix derived P2 code and the linear-frequency
derived P3 and P4 codes were intensively analyzed. However,
the low range sidelobe of the polyphase codes can not reach the
level zero either, what is more, the structure of polyphase codes
is more complicated and is not easy to generate comparing with
binary codes. Therefore, we propose and analyze a new tenary
code–punctured binary sequence-pair, whose sidelobe level is as
low as zero and the longest length of which is found 31 so far,
and subsequently apply it to radar system as pulse compression
waveform. The results show that the new code can be a good
alternative for the current used pulse compression codes in radar
system.

The rest of the paper is organized as following. Section 2 in-
troduces the basic concept and properties of our proposed code.
In Section 3, examples of punctured binary sequence-pair are
given and the properties are investigated. In Section 4, the per-
formance of our proposed code is also simulated and analyzed in
radar targets detection system. In Section 5, some conclusions
are drawn about our tenary code.

2. DESIGN OF PUNCTURED BINARY SEQUENCE-PAIR

A CW sequence is made up ofN bits of durationTs. The com-
plex envelope during one period is given by

x(t) =
N∑

i=1

xi[t− (i− 1)Ts], 0 ≤ t ≤ NTs (1)

Definition 1: A sequence-pair(x, y) is made up of twoN-length
sequencesx = (x0, x1, · · · , xN−1) andy = (y0, y1, · · · , yN−1).

Rxy(τ) = Rxy(rTs) =
N−1∑
j=0

xjy
∗
(j+τ)modN , (2)

0 ≤ r ≤ N − 1, 0 ≤ τ ≤ (N − 1)Ts

is called the periodic autocorrelation function of the sequence
pair, while x = y, the sequence-pair(x, y) turns to be a one-
sequence code.
Definition 2 [6]: Sequencey = (y0, y1, · · · , yN−1) is the punc-
tured sequence forx = (x0, x1, · · · , xN−1),

yj =
{

0 if yj is punctured
xj if yj is Non-punctured

(3)
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Wherep is the number of punctured bits in sequencex, sup-
posexj ∈ [−1, 1], yj ∈ [−1, 0, 1], (x, y) is called a punctured
binary sequence-pair.
Definition 3: The periodic autocorrelation of punctured sequence-
pair (x, y) is defined

Rxy(τ) = Rxy(rTs) =
N−1∑
j=0

xjy
∗
(j+r)modN , 0 ≤ r ≤ N − 1

If

Rxy(τ) =
{
E τ ≡ 0 mod N
0 otherwise

(4)

(x, y) is called optimized punctured sequence-pair [6]. Here,
E =

∑N−1
j=0 xiyi = N − p, is the energy of punctured sequence-

pair. Then binary sequence-pair(x, y) is called ap-punctured
sequence-pair.
Definition 4: The balance of the sequencex is defined asI =∑N−1

j=0 xj = np − nn, whilenp, nn are the number of′ + 1′ and
′ − 1′ in x separately.

Assume(x, y) to be an optimized punctured binary sequence-
pair. Several Theorems are deduced to construct more optimized
punctured sequence-pairs easily.
Theorem 1: Mapping property, ifx

′
i = x−i, y

′
i = y−i, then

(x
′
, y

′
) is optimized punctured binary sequence-pair.

Theorem 2: Opposite to element symbol property, ifx
′
i =

−xi, y
′
i = −yi,then (x

′
, y

′
) is optimized punctured binary

sequence-pair.
Theorem 3: Cyclic shift property, ifx

′
i = −x(i+u), y

′
i =

−y(i+u),then (x
′
, y

′
) is optimized punctured binary sequence-

pair.
Theorem 4: Periodically sampling property, ifx

′
i = −xki, y

′
i =

−yki, k and N are relatively prime, then(x
′
, y

′
) is optimized

punctured binary sequence-pair.
In [6], the properties, existing necessary conditions and some

constructing methods have been well studied and examples of
length from 3 to 31 are presented there.

3. PROPERTIES

3.1. Autocorrelation Properties

The autocorrelation function is one of the most important prop-
erties that represent the compressed pulse in an ideal pulse com-
pression system, since it is proportional to the matched filter
response in the noise-free condition.
EXAMPLE 1
The autocorrelation property of 31-length punctured binary
sequence-pair(x31 = [++++−−−+−+−+++−−−−
+−−+−−+++−++−] andy31 = [++++000+0+0+
++0000+00+00+++0++0]) (′+′for′1′and′−′ for′−1′)
shown in Fig. 1.

As it is known that a suitable criterion for evaluating code of
lengthN is the peak signal to peak signal sidelobe ratio (PSR)[7]
of their autocorrelation function. The only aperiodic uniform
phase codes that can reach thePSRmax are the Barker codes
whose length is equal or less than 13. However, the sidelobe of

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delayτ/t
b

N
or

m
al

iz
ed

 a
m

ib
ig

ui
ty

 c
ut

 fo
r 

f=
0

Fig. 1. Periodic autocorrelation property of 31-length punctured
binary sequence-pair

the new code shown in Fig. 1 could be as low as 0. Thus, the
peak signal to peak signal sidelobe ratio can be as large as infi-
nite. The length of the new code can expand at least to 31 that is
much longer than the length of the Barker code.

3.2. Ambiguity Function

When the transmitted impulse is reflected by a moving target, the
reflected echo signal includes a linear phase shift which corre-
sponds to a Doppler shiftFD [8]. As a result of the Doppler shift
FD, the main peak of the autocorrelation function is reduced as
well as SNR. And the sidelobe structure is also changed thanks
to the Doppler shift.

We use different codes for the transmitter and the receiver,
so the single period ambiguity function of sequence-pair can be
defined as:

AT−pair(τ, FD) ∼= | 1
T

∫ T

0

x(t+
τ

2
)ej2πFDty∗(t− τ

2
)dt| (5)

When the signal is of durationMT , the response of the cor-
relation receiver is the PAF (periodic ambiguity function) forM
periods. After normalization and splitting it intoM sections,

AMT−pair(τ, FD) ∼= | 1
MT

∫ MT

0

x(t+
τ

2
)ej2πFDty∗(t− τ

2
)dt|

= AT−pair(τ, FD)|sin(πFDMT )
Msin(πFDT )

| (6)

EXAMPLE 2
Ambiguity functions of our ternary code of length 13(x 13 =
[+ + +−+ +−−−−+ +−], y13 = [+0 + 0 + +0000 + +0])
is studied, where maximal time delay is 1 unit (normalized to
length of the code, in units ofNTs) and maximal Doppler shift
is 5 units (normalized to the inverse of the length of the code, in
units of1/NTs). The ambiguity function of 13-bit long Barker
code is also presented in Fig. 2 in order to compare with our
ternary code of the same length. According to Fig. 2, the sidelobe
of our ternary code can reach as low as zero. Nevertheless, when
there are Doppler shift and time delay, the ambiguity functions of
our code is not as flat as those of Barker code. Our ternary code
is less tolerant of Doppler shifts than Barker code. The reasons
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Fig. 3. Contour plot of sequence-pair

why our code is not tolerant of large Doppler shift could be that
the periodic correlation property of our code is studied instead of
the aperiodic correlation property.
EXAMPLE 3
In order to improve the tolerance of Doppler shift of our proposed
code, we repeat the sequence-pairM times to construct the signal
of duration ofMT . We study the performance of the sequence-
pair ofM periods in this section. The optimized punctured binary
sequence-pair of length 7(x7 = [+ + + − − + −], y7 = [+ +
+00 + 0]) is used here.

Figs. 3 presents contour plots of the absolute amplititude of
the ambiguity function, for the two casesM = 1, 4. The scales
are normalized with respect to the bit duration ofTs. Namely, the
delay axis is ofτ/Ts, and the Doppler shift axis is ofFDTs. Since
the single period isT = NTs, the ambiguity function repeats
itself everyN normalization delay units. The pronounced strips,
parallel to the Doppler shift axis, appear atN normalized delay
units.

The corresponding 3-D plots are given in Figs. 4. The promi-
nent feature of the ambiguity function, whenM > 1, the strips
get narrower asM increases. The cuts of periodic ambiguity
function atτ/Ts = nN are independent of the number of peri-
odsM .

3.3. Doppler Shift Performance Without Time Delay

According to the previous work [8], the cut along Doppler axis is
obtained as, namely, when the time delay is zero,

AT (0, FD) = |sin(πFDT )
πFDT

| (7)

It is easy to see thatFD = n/T for all but n = 0, (n =
±1,±2, ...), the amplititude must get a zero. It is known that
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Fig. 4. 3-D view of ambiguity function of sequence-pair (x7, y7)
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Fig. 5. Doppler shift of codes(time delay=0): (a) 31-length Punc-
tured binary sequence-pair (b) P4 code (c) 7x5-length Punctured
binary sequence-pair

Doppler frequencyFD is given by

FD = 2
vfc

c
(8)

wherev is the speed of moving target,fc is the carrier fre-
quency of radar andc is the speed of light. This states that
Doppler shifts which equal to multiples of the PRF (pulse repeti-
tion frequency) will render the radar blind to the velocities of the
targets. However, the optimized punctured sequence-pairs used
here are in a different case which would be studied in this sec-
tion.

The ambiguity function of single period can be simplified
when there is no time delay:

AT−pair(0, FD) = | 1
T

∫ T

0

x(t)y∗(t)e(j2πFDt)dt| (9)

According to the equation (8), the ambiguity function of du-
ration ofM periods could be expressed as:

AMT−pair(0, FD) = AT−pair(0, FD)|sin(πFDMT )
Msin(πFDT )

| (10)

WhereM is the number of the periods.
The Doppler shift performance without time delay is pre-

sented in Fig. 5. Without time delay, while the Doppler shift
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Fig. 6. 31-length Punctured binary sequence-pair VS. 31-length
P4 code

is less than 1 unit, the amplitude of our 31-length code has a
sharp downward trend and decreases more quickly than P4 code.
However, when the Doppler shift is larger than 1 unit, the perfor-
mances of these codes are distinguished. On one hand, the trend
presented by our 31-length code is not as regular as the other
two codes. On the other hand, for P4 code, its multiples of the
pulse repetition frequency will render the radar blind[1] to the ve-
locities. Nevertheless, ambiguity values of 31-length punctured
binary sequence-pair do not go to zero when Doppler frequencies
are equal to multiples of the PRF. According to Fig. 5(c),7x5-
length punctured binary sequence-pair which generally resem-
bles the 31-length P4 code is more tolerant of Doppler shift than
the punctured binary sequence-pair of correspongding length31,
but it has more amiguity values go to zero when Doppler shift
equals to some multiples of the PRF. Therefore, using the our
ternary code as the compression code could, to some extent, im-
prove the blind speed problem in moving target detection sys-
tem. Using several periods of punctured binary sequence-pair
could improve the tolerance of Doppler shift when Doppler shift
is larger than 1 unit.

4. APPLICATION TO RADAR SYSTEM

According to [8],PD (Probability of Detection),PFA (Probabil-
ity of False Alarm) andPM (Probability of Miss) suffice to spec-
ify all of the probabilities of interest in radar system. Therefore,
the above three probabilities of our newly provided ternary code
in radar system are simulated, as shown in Fig. 6(a) and Fig.
6(b). The performance of 13-length Barker code and 31-length
P4 code are also provided in order to compare with the perfor-
mance of our ternary codes of corresponding lengths. In the sim-
ulation model, we ran Monte-Carlo simulation for105 times at
each SNR value, the Doppler shift frequency which is kept less
than 1 unit (normalized to the inverse of the length of the code,
in units of1/NTs) is randomly given by Matlab.

In Fig. 6(a), we plotted the probabilities of miss targets detec-
tion of our 31-length ternary code and those of the same length
P4 code. The probability of miss targets detection of the system
using our 31-length ternary code is less than 31-length P4 code
especially when the SNR is not large. When SNR is larger than
17 dB, both probabilities of miss targets detection of the system
approach zero. However, the probability of miss targets of P4
code is a little lower than our ternary code.

In addition, we also plotted the probability of detection ver-
sus probability of false alarm of the coherent receiver in Fig. 6(b).
Fig. 6(b) illustrates performance of our 31-length ternary codes
and the same length P4 code when the SNR is 12dB and 14dB.
Having the same SNR value such as 12dB or 14dB in the figure,
thePD of our 31-length ternary code is larger thanPD of our
31-length P4 code while thePFA of the first code is also smaller
thanPFA of the latter code. In some other words, our 31-length
ternary code has much higher target detection probability while
keeping a lower false alarm probability. Furthermore, observe
Fig. 6(b), our 31-length ternary code even has much better per-
formance at 10dB SNR than 31-length P4 code at 14dB SNR.

5. CONCLUSION

A new ternary code and its properties have been investigated
in this paper. The significant advantage of punctured binary
sequence-pair over conventional phase compression code is the
considerably reduced sidelobe as low as zero and correspond-
ingly the significantly improved PSR. We apply the new code to
the target detection in the radar system and obtain better perfor-
mance. In conclusion, the punctured binary sequence-pair, which
has much longer code length and better autocorrelation sidelobe
property than the biphase code such as Barker code, and simpler
structure than those polyphase codes such as P4 code, effectively
increases the variety of candidates for pulse compression codes
especially for long code.
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Abstract— Sensing-through-wall will benefit various applica-
tions such as emergence rescues and military operations. In
order to add more signal processing functionality, it is vital to
understand the characterization of sense-through-wall channel.
In this paper, we propose a statistical channel model on a
basis of real experimental data using UWB noise radar. We
employ CLEAN algorithm to obtain the multipath channel
impulse response (CIR) and observe that the channel amplitude
at each path can be accurately characterized as T location-scale
distribution. We also analyze that the multipath contributions
arrive at the receiver are grouped into clusters. The time of
arrival of clusters can be modeled as a Poisson arrival process,
while within each cluster, subsequent multipath contributions
or rays also arrive according to a Poisson process. However,
these arrival rates are much smaller than those of indoor UWB
channels.

I. INTRODUCTION

Sensing-through-wall techniques have attracted great inter-
est due to a broad range of military and civilian applications.
During detection, it is more likely that signal processing occurs
at one side of the wall and the interior space to be exploited
is on the other and it can not be seen through conventional
measures. Therefore it is desirable that the wall penetration
sensing provide following information: building layouts like
rooms and inner objects; identification of humans and their
positions; the composition and structure of the wall. These
characterizations will be of great use in locating weapon
caches during military operations, searching and rescuing
people from natural diasters such as earthquakes and providing
sustainability assessment of bridges and buildings.

In recent years UWB waveforms are frequently employed
for indoor wireless propagation systems due to the exceptional
range resolution and strong penetrating capability. There has
been a great amount of research on statistical modeling of
UWB indoor multipath channels [1]-[3] and IEEE [4] has
standardized it on a basis of Saleh and Valenzuela (S-V)
channel model [5]. There have been some efforts investigating
sensing-through-wall using UWB waveforms. [6] uses finite
difference time-domain (FDTD) method to simulate reflected
UWB pulses for three different types of walls. [7] proposes
UWB transmission pulses for walls with different thickness
and conductivity. However, these reports only describe about
transmitted or reflected waveforms based on simulation, sense-

through-wall channel has not yet been touched on. Imaging
techniques have also been employed to show objects behind
the wall in [8] and [9]. [8] uses wideband synthetic aperture
radar and incorporates wall thickness and dielectric constant to
generate the indoor scene through image fusion. [9] discusses
the advantages of using thermally generated noise as a probing
signal and analyzes the basic concepts of synthetic aperture
radar image formation using noise waveforms. Nevertheless
these studies haven’t provide any insight into any property of
through-wall radio channel.

In this paper, we propose a statistical multipath model of
through-wall radio channel based on real measurement. The
UWB noise waveform presented in [9] has been adopted in
our work. This is due to the inherently low probability of
intercept (LPI) and low probability of detection (LPD). These
characterizations provide immunity from detection, jamming,
and interference. We investigate the model based on channel
impulse response (CIR) obtained through CLEAN processing
method. It is observed that the amplitude of channel coefficient
at each path can be accurately characterized by T location-
scale distribution. It is also observed that the multipath con-
tributions arrive at the receiver are grouped into clusters. The
time of arrival of clusters can be modeled as a Poisson arrival
process, while within each cluster, subsequent multipath con-
tributions or rays also arrive according to a Poisson process.

The rest of this paper is organized as follows. In Section
II, we summarize the measurement and collection of the data.
In Section III, we apply CLEAN algorithm to extract CIR.
Section IV presents the channel model in terms of amplitude
and temporal parameters. Conclusion and future work is given
in Section V.

II. MEASUREMENT SETUP

A UWB noise radar system was set up in the Radar Imaging
Lab at Villanova University. Fig. 1 illustrates the layout of the
experiment room. The wall segment, constructed utilizing solid
concrete blocks with a dielectric constant of 7.66, is 0.14m
thick 2.8m long and 2.3m high. The room behind this wall is
empty.

A horn antenna, model ETS-Lindgren 3164-04, with an
operational bandwidth from 0.7 to 6 GHz, was used as the
transceiver. The antenna was placed only 1cm to the front
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Fig. 1. Experiment Setup

wall, which is illustrated in Fig. 2. Therefore the propagation
length from antenna front edge to the backside of the wall is
15cm. 37 times of measurements are collected at different but
equally spaced positions along the wall with step size 5cm.
An Agilent network analyzer, model ENA 5071B, was used
for signal synthesis and data collection.

Fig. 2. Radar antenna and wall in the experiment

III. CHANNEL IMPULSE RESPONSE BASED ON THE
MEASURED DATA AND CLEAN ALGORITHM

The transmitted noise waveform and received echoes of one
measurement are plotted in Fig. 3. It shows that UWB noise
waveform has a very good sensing-through-wall capability.
During 37 experiments, the frequency of the transmitted
signal is 400 − 720 MHz and sampling rate is 1.5GHz/s.
The tremendously large amplitude at around sample 100 is
due to the antenna coupling [10]. Note that at a different
position the measurement result will be slightly different but
the characterization of the signals are quite similar. Thus the
illustration of pulses collected at one position is sufficient to
describe the property.
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Fig. 3. UWB noise waveforms: (a) transmitted pulse (b) received echoes

Fig. 4 shows the histogram of transmitted and received
waveform amplitude. It is very interesting to see that af-
ter sensing-through-the wall, the back scattered signal still
roughly follows Gaussian distribution. This conclusion applies
to all other 36 measurements. Assume the Gaussian mean and
variance are µ and σ2 respectively, Table I shows the detail
of these parameters.

Since the transmitted and received signals have been known,
the CLEAN algorithm can be used to extract channel impulse
response (CIR). This method was initially introduced in [11]
to enhance radio astronomical maps of the sky, and has
been frequently employed in UWB channel characterization
problems [12]-[14]. The CLEAN algorithm is an iterative,
high-resolution, subtractive deconvolution procedure that is
capable resolving dense multipath components which are
usually irresolvable by conventional inverse filtering [16].

Our steps involved [15] are:
1) Calculate the autocorrelation of the transmitted signal

Rss(t) and the cross-correlation of the transmitted with
the received waveform Rsy(t).
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Fig. 4. Amplitude density: (a) transmitted pulse (b) received echoes

TABLE I
ESTIMATED STATISTICAL PARAMETERS OF TRANSMITTED AND RECEIVED

SIGNALS

parameter transmitted signal received signal
µ 4.0512 -1.6756

STD Error of µ 0.258655 0.348318
σ 12.9328 17.4159

STD Error of σ 0.182952 0.246372

2) Find the largest correlation peak in Rsy(t), record the
normalized amplitudes αk and the relative time delay τk

of the correlation peak.
3) Subtract Rss(t) scaled by αk from Rsy(t) at the time

delay τk.
4) If a stopping criterion (a minimum threshold) on the

peak correlation is not met, go step 2. otherwise stop.

Fig. 5 illustrated the absolute value of through-wall CIR at
one measurement position by CLEAN algorithm. We can see
that the channel consists of multipaths that arrive in clusters.
Each cluster is made up of subsequent rays. This is very
similar to the multipath rays in S-V channel model. However,
in S-V model, the largest scattering, i.e., the highest magnitude
always appears at the first path. It is obvious to see this is not
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Fig. 5. Normalized CIR by CLEAN algorithm

the general case in the through-wall channel. On a basis of
CIR, the channel can be represented as

r(t) ≈
∑

n

anpn(t− τn) (1)

where an and τn is referred to as the amplitude and delay of
the nth propagation path. In the next Section we shall analyze
them in detail.

IV. SENSE-THROUGH-WALL CHANNEL MODELING

A. Temporal Characterization

Like in S-V model, multipath contributions arrive at the
receiver grouped into clusters and therefore similar method-
ology used in S-V model studies may be also applied to
sensing-through-wall CIR. The time of arrival of clusters can
be modeled as a Poisson arrival process with a rate Λ, while
within each cluster, subsequent multipath contributions or rays
also arrive according to a Poisson process with a rate λ.

We define:
• Tl : the arrival time of the first path of the l-th cluster;
• τk,l : the delay of the k-th path within the l-th cluster

relative to the first path arrival time Tl;
• Λ : the cluster arrival rate;
• λ : the ray arrival rate, i.e., the arrival rate of the paths

within each cluster;
• τ̄ : the mean excess delay;
• στ : the rms delay spread

By definition, we have τ0l = Tl. The distributions of the
cluster arrival time and the ray arrival time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0
p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (2)

τ̄ , στ are defined by

τ̄ ≡
∑

n a2
nτn∑

n a2
n

(3)

στ ≡
√

τ̄2 − τ̄2 (4)
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where

τ̄2 ≡
∑

n a2
nτ2

n∑
n a2

n

(5)

We analyze these parameters based on 37 experiments and
show the result in Table II.

TABLE II
TEMPORAL PARAMETERS FOR SENSE-THROUGH-WALL CHANNEL

MODEL

parameter Λ(1/ns) λ(1/ns) τ̄(µs) στ

value 0.002 0.0224 1.8153 0.0827

We may compare the Λ and λ in Table II with the same para-
meters for indoor UWB, which are 0.0667 and 2.1 respectively
with unit 1/ns [17]. The parameters for through-wall channel
is much smaller due to the resistance of wireless propagation
in wall.

B. Statistical Distribution of Channel Amplitude

In the S-V model, the amplitude follows rayleigh distribu-
tion. In the IEEE UWB indoor channel model [4], log-normal
distribution was introduced for representing the fluctuations of
the total multipath gain. In this Section we propose that the
amplitude of sensing-through-wall channel follows T location-
scale distribution. Its probability density function (PDF) is

f(x) =
Γ(ν+1

2 )
φ
√

νπ · Γ(ν
2 )

[
ν + (x−δ

φ )2

ν
]−( ν+1

2 ), φ > 0, ν > 0 (6)

where δ is the location parameter, φ is scale parameter, ν is
shape parameter and Γ(·) denotes gamma function. Note that if
define y ≡ x−δ

φ , then y follows student’s T distribution with ν
degrees of freedom. As v goes to infinity, the T location-scale
distribution approaches the standard Gaussian distribution.
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Fig. 6. Goodness-of-fit

Fig. 6 clearly illustrates to what extend does the CIR
amplitude match the PDF curve of the statistic model. The

absolute amplitude values of CIR have been plotted in terms
of histogram. We compare T location-scale distribution with
Gaussian distribution. Although the transmitted and received
signal amplitude follows Gaussian model, this is not the case
for the channel. It can be easily seen that T location-scale
model provides perfect goodness-of-fit.

On a basis of CIR amplitudes from 37 different positions,
we apply Maximum Likelihood Estimation (MLE) approach to
estimate the parameters [18] [19]. It is generalized as follows:

Let y1, y2, · · · , yN be N independent samples drawn from a
random variable Y with m parameters θ1, θ2, · · · , θm, where
θi ∈ θ, then the joint PDF of y1, y2, · · · , yN is

LN (Y|θ) = fY |θ(y1|θ1, · · · , θm) . . . fY |θ(yn|θ1, · · · , θm)
(7)

When expressed as the conditional function of Y depends
on the parameter θ, the likelihood function is

LN (Y|θ) =
N∏

k=1

fY |θ(yk|θ1, θ2, · · · , θm) (8)

The maximum likelihood estimate of θ1, θ2, · · · , θm is the set
of values θ̂1, θ̂2, · · · , θ̂m that maximize the likelihood function
LN (Y|θ).

As the logarithmic function is monotonically increas-
ing, maximizing LN (Y|θ) is equivalent to maximizing
ln(LN (Y|θ)). Hence, it can be shown that a necessary but not
sufficient condition to obtain the ML estimate θ̂ is to solve the
likelihood equation

∂

∂θ
ln(LN (Y|θ)) = 0 (9)

We obtain δ̂, φ̂ and ν̂ for T location-scale distribution, µ̂
and σ̂ for Gaussian distribution. These are shown in table III.
We also explore the standard deviation (STD) error of each
parameter. These descriptions are also shown in table III in
the form of εx, where x denotes different parameter for each
model. It can be seen that T location-scale provides smaller
STD errors than those of Gaussian distribution.

TABLE III
STATISTICAL AMPLITUDE PARAMETERS FOR SENSE-THROUGH-WALL

CHANNEL MODEL

PDF T location-scale Gaussian

Parameters

δ̂ = 0.0136836

φ̂ = 0.00129967
ν̂ = 2.18286

εδ = 2.35418e−005

εφ = 2.50893e−005

εν = 0.0821753

µ̂ = −0.0138875
σ̂ = 0.00267908

εµ = 3.78917e−005

εσ = 2.67975e−005

RMSE 9.8983 25.5854

We may also observe the goodness-of-fit by root mean
square error (RMSE). Let i (i=1, 2, · · · , n) be the sample index
of CIR amplitude in Fig. 6. ci is the corresponding density
value of CIR amplitude and ĉi is the density value of the
statistical model with estimated parameters by means of MLE.
RMSE is obtained through
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RMSE =

√√√√ 1
n

n∑

i=1

(ci − ĉi)2 (10)

where n is the total amount of sample index. The RMSE for
T location-scale and Gaussian distributions have been listed
in Table III also. It demonstrates that T location-scale is the
model that fits the channel amplitude data very well.

V. CONCLUSION

From our investigation, we would draw following con-
clusions: 1)UWB noise waveform may have a very good
sensing-through-wall capability for walls composed of solid
concrete blocks. 2)Sense-through-wall channels are made up
of multipath components and the highest magnitude does not
always appear at the first path. 3)The multipath contributions
arrive at the receiver are grouped into clusters. The time of
arrival of clusters can be modeled as a Poisson arrival process,
while within each cluster, subsequent multipath contributions
or rays also arrive according to a Poisson process. However,
these arrival rates are much smaller than those of indoor
UWB channels. 4) The amplitude of channel coefficient at
each path can be more accurately characterized as T location-
scale distribution other than Gaussian distribution due to better
goodness-of-fit and smaller root-mean-square-error (RMSE).
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ABSTRACT

Based on the Zero Correlation Zone (ZCZ) concept, we
present the definition and properties of a set of new triphase
coded waveforms –ZCZ sequence-pair set (ZCZPS) in this
paper and propose a method to use the optimized punctured
sequence-pair along with Hadamard matrix construct the
optimized punctured ZCZ sequence-pair set (optimized
punctured ZCZPS). According to property analysis under
the Doppler shift condition, the optimized punctured ZCZPS
has good autocorrelation and cross correlation properties
when Doppler shift is not large. We apply it to radar
target detection. The simulation results show that optimized
punctured ZCZ sequence-pairs (optimized punctured ZCZPs)
outperform other conventional pulse compression codes, such
as the well known polyphase code–P4 code.
Keywords: Triphase; Zero correlation zone; Optimized
punctured ZCZ sequence-pair; Phase coded waveform.

INTRODUCTION

Pulse compression allows a radar to simultaneously achieve
the energy of a long pulse and the resolution of a short pulse
without the high peak power which is required by a high
energy short duration pulse [1]. One of the waveform de-
signs suitable for pulse compression is phase-coded waveform
design, which is a long pulse of durationT divided into N
subpulses each of widthTs. Each subpulse has a particular
phase, which is selected in accordance with a given code
sequence. The pulse compression ratio equals the number of
subpulsesN = T/Ts. In general, a phase-coded waveform with
longer code word, in other words, higher pulse compression
ratio, can have lower sidelobe of autocorrelation, relative
to the mainlobe peak, allowing its main peak to be better
distinguished. Moreover, the cross correlation property of the
pulse compression codes should be considered in order to
reduce the interference among radars when we choose a set
of pulse compression codes, because in the real world, a
radar may not work alone, such as in the RSN (Radar Sensor
Network).

Much time and effort was put in the waveform design.
However, the most popular biphase coded waveform is Barker
code, which is only found at the maximum length of 13.
It is also known that for most good binary sequences of
length N(N > 13), the attainable autocorrelation sidelobe
levels are approximately

√
N [2] [3], and the mutual cross

correlation peaks of sequences of the same length are larger
and usually in the order of2

√
(N) to 3

√
(N). Set of binary

sequences of lengthN with autocorrelation sidelobes and
cross-correlation peak values both of approximately

√
(N) are

only achieved in paper [4]. In addition to binary sequences,
other sources [5] [6] [7] provided and intensively analyzed
polyphase codes with better Doppler tolerance and lower range
sidelobes (such as the Frank and P1 codes, the Butler-matrix
derived P2 code and the linear-frequency derived P3 and
P4 codes). However, the sidelobe’s range of the polyphase
codes can not be as low as zero either. The structure of
polyphase codes is more complicated and is not easy to
generate comparing with binary codes. On the other hand,
for the periodic sequences, the lowest periodic autocorrelation
function (ACF) that could be achieved for binary sequences,
as in the case of m-sequences [8] or Legendre sequences,
is |Ri(τ �= 0) = 1|. GMW [9] has the same periodic ACF
properties, but posses larger linear complexity. Considering the
non-binary case, it is possible to find perfect sequences, such
as two valued Golomb sequences, Ipatov ternary sequences,
Frank sequences, Chu sequences, and modulatable sequences.
It should be noted that for both binary and non-binary cases,
it is impossible for the sequences to have perfect ACF and
cross correlation function (CCF) simultaneously although ideal
CCFs could be achieved alone. One can synthesize a set
of non-binary sequences with impulsive ACF and the lower
bound of CCF:Rij =

√
N, ∀τ, i �= j [10][11], which is

governed by Welch bound and Sidelnikov bound.
In a word, so far in the previous work, range sidelobes

could hardly reach as low as zero. In addition, it has also been
well proven that it is impossible to design a set of codes with
ideal impulsive autocorrelation function and ideal zero cross-
correlation functions, since the corresponding parameters have
to be limited by certain bounds, such as Welch bound [10],
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Sidelnikov bound [11], Sarwate bound [12], Levenshtein
bound [13], etc. To overcome these difficulties, the new
concepts, generalized orthogonality (GO), also called Zero
Correlation Zone (ZCZ) is introduced. Therefore, based on
the ZCZ [14] concept, we propose triphase coded waveforms
called ZCZ sequence-pair set (ZCZPS), which can reach zero
autocorrelation sidelobe during ZCZ and zero mutual cross
correlation value during the whole period. We also propose and
analyze a method that optimized punctured sequence-pair joins
together with Hadamard matrix to construct the triphase coded
waveforms called optimized punctured ZCZ sequence-pairs set
(optimized punctured ZCZPS), and subsequently apply them to
a radar detection system. For the performance evaluation of the
proposed triphase coded waveforms, an example is presented
and investigated in the radar targets detection simulation sys-
tem. According to the simulation performances, our proposed
new codes can be effective candidates for pulse compression
application.

The rest of the paper is organized as follows. Section
2 introduces the definition and properties of ZCZPS. In
Section 3, the optimized punctured ZCZPS is introduced,
and a method using optimized punctured sequence-pair and
Hadamard matrix to construct ZCZPS is given and proved. In
Section 4, the properties and ambiguity function of optimized
punctured ZCZPS are simulated and analyzed. In section 5, the
performance of optimized punctured ZCZPS is investigated in
radar targets detection simulation system comparing with P4
code. In Section 6, final conclusions are made on optimized
punctured ZCZPS.

DEFINITIONS OF ZCZ SEQUENCE-PAIR SET

Zero Correlation Zone is a new concept provided by
Fan [14] in which the autocorrelation and cross correlation
sidelobes are zero while the time delay is kept within the
valueZ0 instead of the whole period of time domain, andZ 0

is called the ZCZ.
We consider ZCZPS(X,Y), X is a set ofK sequences of

lengthN and Y is a set ofK sequences of the same length
N :

x(p) ∈ X p = 0, 1, 2, ...,K − 1 (1)

y(q) ∈ Y q = 0, 1, 2, ...,K − 1 (2)

The periodic autocorrelation function for sequence-pair
(x(p), y(p))is defined by:

Rx(p)y(p)(τ) =
N−1∑
i=0

x(p)
i y(p)∗

(i+τ)modN , 0 ≤ τ ≤ N − 1 (3)

The periodic cross correlation function for sequence-pair
(x(p), y(p)) and(x(q), y(q)), p �= q is defined by:

Cx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+τ)modN , 0 ≤ τ ≤ N − 1 (4)

Cx(q)y(p)(τ) =
N−1∑
i=0

x
(q)
i y

(p)∗
(i+τ)modN , 0 ≤ τ ≤ N − 1 (5)

For pulse compression sequences, some properties are of
particular concern in the optimization for any design in en-
gineering field. They are the peak sidelobe level, the energy
of autocorrelation sidelobes and the energy of their mutual
cross correlation [4]. Therefore, the peak sidelobe level which
represents a source of mutual interference and obscures weaker
targets can be presented asmaxK |Rx(p)y(p)(τ)|, τ ∈ Z0(zero
correlation zone) for ZCZPS. Another optimization criterion
for the set of sequence-pairs is the energy of autocorrelation
sidelobes joined together with the energy of cross correlation.
By minimizing the energy, it can be distributed evenly, and
the peak autocorrelation level can be minimized as well [4].
Here, the energy of ZCZPS can be employed as:

E =
K−1∑
p=0

Z0∑
τ=1

R2
x(p)y(p)(τ) +

K−1∑
p=0

K−1∑
q=0

N−1∑
τ=0

Cx(p)y(q)(τ) (6)

(p �= q)

According to (6), it is obvious to see that the energy can be
kept low while minimizing the autocorrelation sidelobes and
cross correlation of the sequence-pair set.

As a result, the ZCZPS could be constructed to mini-
mize the autocorrelation sidelobes and cross correlation of
the sequence-pair set, and the definition of ZCZPS can be
expressed:
Definition 2-1 Assume(x(p), y(p)) to be a sequence-pair of
set (X,Y) of lengthN and the number of sequence-pairsK,
wherep = 0, 1, ...,K − 1. If sequences in the set satisfy the
following equation:

Rx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+m)mod(N) (7)

=




λN, for τ = 0, p = q
0, for τ = 0, p �= q
0, for 0 < |τ | ≤ Z0

where0 < λ ≤ 1, τ = mτc and i = 0, 1, ..., N − 1, then
(x(p), y(p)) is called a ZCZ sequence-pair,ZCZP (N,K,Z0)
is an abbreviation, and(X,Y) is called a ZCZ sequence-pair
set,ZCZPS(N,K,Z0) is an abbreviation.

OPTIMIZED PUNCTURED ZCZ SEQUENCE-PAIR
SET

A. Definition of Optimized Punctured ZCZ Sequence-pair Set

Matsufuji and Torii have provided some methods of con-
structing ZCZ sequences in [15] [16]. In this section, we
apply optimized punctured sequence-pair [17] to Zero Cor-
relation Zone to construct our newly provided triphase coded
waveform–optimized punctured ZCZ sequence-pair set (opti-
mized punctured ZCZPS). In other words, optimized punc-
tured ZCZPS is a specific kind of ZCZPS.
Definition 3-1 [17] Sequenceu = (u0, u1, ..., uN−1) is the
punctured sequence forv = (v0, v1, ..., vN−1),

uj =
{

0, if uj is punctured
vj , if uj is Non-punctured

(8)

2
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whereP is the number of punctured bits in sequencev. Then,
supposevj = (−1, 1), u is P -punctured binary sequence,
(u, v) is called a punctured binary sequence-pair.

Theorem 3-1 [17] The autocorrelation of punctured
sequence-pair(u, v) is defined as

Ruv(τ) =
N−1∑
i=0

uiv(i+m)modN , 0 ≤ m ≤ N − 1 (9)

where τ = mτc. If the punctured sequence-pair has the
following autocorrelation property:

Ruv(τ) =
{
E, if m ≡ 0modN
0, others

(10)

the punctured sequence-pair is called optimized punctured
sequence-pair [17]. Where,E =

∑N−1

i=0
uiv(i+m)modN =

N − p, is the energy of punctured sequence-pair.
Definition 3-2 If (X,Y) in Definition 2-1 is constructed by

optimized punctured sequence-pair and a certain matrix, such
as Hadamard matrix or an orthogonal matrix, where

x
(p)
i ∈ (−1, 1), i = 0, 1, 2, ..., N − 1

y
(q)
i ∈ (−1, 0, 1), i = 0, 1, 2, ..., N − 1

Rx(p)y(q)(τ) =
N−1∑
i=0

x
(p)
i y

(q)∗
(i+m)modN (11)

=




λN, for τ = 0, p = q
0, for τ = 0, p �= q
0, for 0 < |τ | ≤ Z0

where0 < λ ≤ 1 and τ = mτc, then (X,Y) can be called
optimized punctured ZCZ sequence-pair set.

B. Design For Optimized Punctured ZCZ Sequence-pair Set

Based on odd length optimized punctured binary sequence
pairs and a Hadamard matrix, an optimized punctured ZCZPS
can be constructed from the following steps:

Step 1: Given an odd length optimized punctured binary
sequence-pair(u, v), the length of each sequence isN1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),
v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),

Step 2: Given Hadamard matrixB(consists ofN2 Walsh
sequences), the length of the sequence isN2 which is equal
to the number of the sequences.

B = (b(0); b(1); ..., b(N2−1)), b(p) = (b(p)
0 , b

(p)
1 , ..., b

(p)
N2−1)

Step 3: Doing bit-multiplication of optimized punctured
binary sequence-pair and each row of Hadamard matrix B,

x
(p)
j = uj modN1b

(p)
j modN2

, 0 ≤ p ≤ N2 − 1, 0 ≤ j ≤ N − 1,

X = (x(0); x(1); ...; x(N2−1)), x(p) = (x(p)
0 , x

(p)
1 , ..., x

(p)
N−1)

y
(p)
j = vj modN1b

(p)
j modN2

, 0 ≤ p ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y(0), y(1), ..., y(N2−1)), y(p) = (y(p)
0 , y

(p)
1 , ..., y

(p)
N−1)

Since the optimized punctured binary sequence-pairs are of
odd lengths and the lengths of Walsh sequence are2n, n =
1, 2, ..., it is easy to see thatgcd(N1, N2) = 1, common divisor
of N1 and N2 is 1, N = N1 ∗ N2. The three steps make
the sequence-pair set(X,Y) an optimized punctured ZCZPS,
where ZCZZ0 = N1 − 1. The length of each sequence in
optimized punctured ZCZPS isN = N1 ∗ N2 that depends
on the product of length of optimized punctured sequence-
pair and the length of a row in Hadamard matrix. The number
of sequence-pairs in optimized punctured ZCZPS rests on the
order of the Hadamard matrix. The sequencex (p) in X and
the corresponding sequencey(p) in Y construct an optimized
punctured ZCZP(x(p), y(p)) that can be used as a phase coded
waveform, such asx(p) for radar transmitter andy(p) for
radar receiver. The phase states for any sequence-pair among
(x(p), y(p)) are only of three options, so our newly provided
optimized punctured ZCZPS is a new set of triphase codes.

The correlation property of the sequence-pair in optimized
punctured ZCZPS is:

Rx(p)y(q)(τ) = Ruv(τ modN1)Rb(p)b(q)(τ modN2)

=




EN2, if m = 0, p = q
0, if 0 < |m| ≤ N1 − 1, p = q
0, if 0 ≤ |m| ≤ N1 − 1 andp �= q

whereN1 − 1 is the Zero Correlation ZoneZ0 andτ = mτc.
Proof:

1) Whenp = q,

τ = 0, Ruv(0) = E,Rb(p)b(q) (0) = N2,

Rx(p)y(q)(0) = Ruv(0)Rb(p)b(q)(0) = EN2;
0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,
Rx(p)y(q)(τ) = Ruv(m modN1)Rb(p)b(q)(m modN2) = 0;

2) Whenp �= q,

τ = 0, Rb(p)b(q)(0) = 0,

Rx(p)y(q)(0) = Ruv(m modN1)Rb(p)b(q) (m modN2) = 0;
0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,
Rx(p)y(q)(τ) = Ruv(m modN1)Rb(p)b(q)(m modN2) = 0.

According to Definition 2-1, the sequence-pair set constructed
by the above method is a ZCZPS.

PROPERTIES OF OPTIMIZED PUNCTURED ZCZ
SEQUENCE-PAIR SET

Considering the optimized punctured ZCZPS that is con-
structed by the method mentioned in the last part, the auto-
correlation and cross correlation properties can be simulated
and analyzed with Matlab. For example, the optimized punc-
tured ZCZPS(X,Y) is constructed by 31-length optimized
punctured binary sequence-pair(u, v), u = [++++−−−+
− + − + + + −− −− + − − + −− + + + − + + −], v =
[++++000+0+0+++0000+00+00+++0++0] (using
′+′ and ′−′ symbols for′1′ and ′ − 1′) and Hadamard matrix
H of order 4. We follow the three steps presented in Section
B to construct the 124-length optimized punctured ZCZPS.

3
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The number of sequence-pairs here is 4, and the length of
each sequence is31 ∗ 4 = 124. The first row of each matrix
X = [x1; x2; x3; x4] andY = [y1; y2; y3; y4] constitute a certain
optimized punctured ZCZP(x1, y1). Similarly, the second row
of each matrixX andY constitute another optimized punctured
ZCZ sequence-pair(x2, y2) and so on.

x1 = [+ + + + −−− + − + − + + + −− −− + −−
+ −− + + + − + + − + + + + −−− + − + −
+ + + −−−− + −− + −− + + + − + + − +
+ + + −−− + − + − + + + −−−− + −− +
−− + + + − + + − + + + + −−− + − + − +
+ + −−−− + −− + −− + + + − + + −],

y1 = [+ + + + 000 + 0 + 0 + + + 0000 + 00
+00 + + + 0 + +0 + + + +000 + 0 + 0 + + + 00
00 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0
+ + +0000 + 00 + 00 + + + 0 + +0 + + + +00
0 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0];

x2 = [+ − + −− + −−−−−− + −− + − + + + −
−− + + − + + + −−− + − + + − + + + + +
+ − + + − + −−− + + + −− + −−− + + +
− + −− + −−−−−− + −− + − + + + −−
− + + − + + + −−− + − + + − + + + + + +
− + + − + −−− + + + −− + −−− + +],

y2 = [+ − + − 000 − 0 − 0 − + − 0000 + 00
−00 + − + 0 + −0 − + − +000 + 0 + 0 + − + 00
00 − 00 + 00 − + − 0 − +0 + − + −000 − 0 − 0
− + −0000 + 00 − 00 + − + 0 + −0 − + − +00
0 + 0 + 0 + − + 0000 − 00 + 00 − + − 0 − +0].

A. Autocorrelation and Cross Correlation Properties

The autocorrelation propertyR(x1, y1) and cross correlation
property R(x1, y2) = R(y1, x2) of 124-length optimized
punctured ZCZPS(X,Y), are shown in Fig.1.
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Fig. 1. Periodic autocorrelation property of optimized punctured ZCZPS

From the Fig.1, the sidelobe of autocorrelation of ZCZPS
can be as low as 0 when the time delay is kept withinZ0 =
N1 − 1 = 30 and the cross correlation value is 0 during the
whole time domain.

It is known that a suitable criterion for evaluating code of
lengthN is the ratio of the peak signal divided by the peak
signal sidelobe (PSR) of their autocorrelation function, which
can be bounded by [18]

[PSR]dB ≤ 20logN = [PSRmax]dB (12)

The only uniform phase codes that can reach thePSRmax are
the Barker codes whose length is equal or less than 13. The
sidelobe of the new code shown in Fig.1 can be as low as 0,
and the peak signal divided by the peak signal sidelobe can
be as large as infinite. Besides, the length of the new code is
various and much longer than the length of the Barker code.

B. Ambiguity function

When the transmitted impulse is reflected by a moving
target, the reflected echo signal includes a linear phase shift,
which comes from the Doppler shiftFd [18]. As a result of the
Doppler shiftFd, the main peak of the autocorrelation function
is reduced. At the same time, SNR degradation occurs as well.

The ambiguity function, which is commonly used to analyze
the radar performance within Doppler shift can be found
in [18] shown as following:

A(τ, FD) = |
∫ ∞

−∞
x(s)ej2πFDsx∗(s− τ)ds| ≡ |Â(t, FD)| (13)

wheret is the time delay andFD is the Doppler shift.
In [19], PAF (Periodic Ambiguity Function) is introduced

by Levanon as an extension of the periodic autocorrelation
for Doppler shift. And the single-periodic complex envelope
is [20]:

Aperiodic(τ, FD) ≡ | 1
T

∫ T

0

x(s+
τ

2
)ej2πFDsx∗(s− τ

2
)ds|

≡ |Âperiodic(τ, FD)| (14)

whereT is one period of the signal.
We are studying sequence-pairs in this research, so we use

different codes for transmitting part and receiving part. The
single-period ambiguity function for ZCZPS can be rewritten
as

Apair(τ, FD) ≡ |Âpair(τ, FD)| (15)

The Âpair(τ, FD) in one period of lengthT = Nτc can be
expressed as:

Âpair(τ, FD) =
1
T

∫ T

0

x(p)(s+
τ

2
)ej2πFDsy(p)∗(s− τ

2
)ds (16)

where p, q = 0, 1, 2...,K − 1, T = Nτc is one period of
the signal andτc is one bit duration. At the same time, when
p = q, equation (16) can be used to analyze the autocorrelation
performance within the Doppler shift, and whenq �= p,
equation (16) can be used to analyze the cross correlation
performance within the Doppler shift. Equation (16) is plotted
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in Fig.2 in a three-dimensional surface plot to analyze the
radar performance of optimized punctured ZCZPS within the
Doppler shift. Here, maximal time delay is 1 unit (normalized
to length of the code, in units ofNTs) and the maximal
doppler shift is 5 units for cross correlation and 3 units for
autocorrelation (normalized to the inverse of the length of the
code, in units of1/NTs).
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Fig. 2. Ambiguity function of 124-length ZCZPS: (a) autocorrelation (b)
cross correlation

In Fig.2(a), there is a relative uniform plateau suggesting
low and uninform sidelobes. This low and uniform sidelobes
minimizes target masking effect in ZCZ of time domain, where
Z0 = 30, −30 ≤ τ ≤ 30. From Fig.2(b), we can consider a
cross correlation property between any two optimized punc-
tured ZCZ sequence-pairs in the ZCZ sequence-pair set such
asR(x1, y2) or R(y1, x2) where(x1, y1) and(x2, y2) are two
pairs of optimized punctured ZCZP. A 124-length optimized
punctured ZCZP is tolerant of Doppler shift when the Doppler
shift is not large. When the Doppler shift is zero, the range
sidelobe of cross correlation of our proposed code is zero in
the whole time domain.

As synchronization technology develops exponentially in
the industrial world, time delay can, to some extent, be
well controlled. Therefore, it is necessary to investigate the
performance of our proposed code without time delay. When

t = 0, the ambiguity function can be expressed as:

Âpair(0, FD) =
∫ (N−1)Ts

0

x(p)(s)y(q)∗(s)e(j2πFDs)ds (17)

And this kind of Doppler shift performance with no time delay
is presented in the Fig.3.
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Fig. 3. Doppler shift of 124-length ZCZPS(time delay=0): (a) autocorrelation
(b) cross correlation

Fig.3(a) illustrates that without a time delay and having
the Doppler shift less than 1 unit, the autocorrelation value
of optimized punctured ZCZPS falls sharply during one unit,
and the trend of the amplitude over the whole frequency
domain decreases as well. Fig.3(b) shows that there are
some convex surfaces in the cross correlation performance.
One should observe Fig.3(a) and Fig.3(b), when Doppler
frequencies equal to multiples of the pulse repetition frequency
(PRF = 1/PRI = 1/Ts), all the ambiguity value turns to
zero except when Doppler frequency is equal to 2 PRF for
cross correlation. That is the same as many widely used pulse
compression binary code such as the Barker code. Overall,
the amibuguity function performances of optimized punctured
ZCZP can be as efficient as conventional pulse compression
binary code.
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SYSTEM SIMULATION IN RADAR SYSTEM

According to [18], PD (Probability of Detection),PFA

(Probability of False Alarm) andPM (Probability of Miss)
suffice to specify all of the probabilities of interest in a radar
system. Therefore, we simulated the above three probabilities
of optimized punctured ZCZP to a radar system in this section.
The performance of the 124-length P4 code is also studied
in order to compare with the performance of the optimized
punctured ZCZP of corresponding length. In the simulation
model,105 times of Monte-Carlo simulation has been run for
each SNR value. The Doppler shift frequency that is kept less
than 1 unit (normalized to the inverse of the length of the code,
in units of1/NTs) is a random variable, and the time delay is
assumed to be zero. Also, threshold detection is used in this
coherent system where the threshold is adaptively adjusted.
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Fig. 4. Probability of miss targets detection (No time delay, Doppler shift
less than 1): 124-length optimized punctured ZCZP VS. 124-length P4 code

In Fig.4, the probabilities of a miss target detectionPM of
the system using the 124-length optimized punctured ZCZP
are lower than the 124-length P4 code especially when the
SNR is not large. When SNR is larger than 18 dB, both
probabilities of the system’s miss targets approach zero.

We plotted the probability of detectionPD versus probabil-
ity of false alarmPFA of the coherent receiver in Fig.5.

Fig.5 shows the performance of the 124-length optimized
punctured ZCZP and the same length P4 code when the SNR
is 12dB and 14dB. Within the same SNR value either 12dB
or 14dB, the probabilities of detection of optimized punctured
ZCZP are much larger than the detection probabilities of P4
code. While this is all happening, the false alarm probabilities
of the first code are also smaller than that of the latter code.
In other words, the 124-length optimized punctured ZCZP
has higher target detection probability while keeping a lower
false alarm probability. Furthermore, from observing Fig.5,
the 124-length optimized punctured ZCZP has a much better
performance at 12dB SNR than the 124-length P4 code at
14dB SNR.

CONCLUSION

The definition and properties of a set of our newly provided
triphase coded waveforms–ZCZ sequence-pair set were dis-
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Fig. 5. Probability of detection versus probability of false alarm of the
coherent receiver(No time delay, Doppler shift less than 1) : 124-length
optimized punctured ZCZ sequence-pair VS. 124-length P4 code

cussed in this paper. Based on optimized punctured sequence-
pair and Hadamard matrix, we have investigated a constructing
method for the triphase coded waveform–optimized punctured
ZCZPS made up of a set of optimized punctured ZCZPs along
with studying its properties. The significant advantage of the
optimized punctured ZCZPS is that it considerably reduces the
sidelobe as low as zero in the ZCZ, and also zero mutual cross
correlation value in the whole time domain. The disadvantage
of our proposed code is that the number of the sequences
in the set depends on the order of Hadamard matrix that is
limited by 2k, (k = 0, 1, ...). However, 124-length optimized
punctured ZCZPS has better performance than 124-length P4
code when the Doppler shift is kept less than 1 unit. A general
conclusion can be drawn that the optimized punctured ZCZPs
in an optimized punctured ZCZPS can effectively increase the
variety of candidates for pulse compression codes if and only
if optimized punctured ZCZPS has much better autocorrelation
and cross correlation properties than the optimum biphase
codes (longer than 13), whose autocorrelation sidelobes and
cross correlation peak value have been found to be both
approximately

√
N . Because of the ideal cross correlation

properties of optimized punctured ZCZPS, future work should
focus on the application of the optimized punctured ZCZPS
in a multiple radar system such as a radar sensor network.
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Abstract— DoD has defined three levels of data fusion
for Network Centric Warfare (NCW). Level 1 data fusion
combines data from single or multiple sensors and sources
to provide the best estimate of objects and events in the
battlespace. Level 2 data fusion focuses on situation assess-
ment. Level 3 data fusion is threat assessment. To facilitate
situation assessment, we investigate the problem of jointly
classifying and identifying multiple targets in radar sensor
networks where the maximum number of categories and the
maximum number of targets in each category are obtained a
priori based on statistical data. However, the actual number
of targets in each category and the actual number of target
categories being present at any given time are assumed
unknown. It is assumed that a given target belongs to one
category and one identification number. The target signals
are modeled as zero-mean complex Gaussian processes. We
propose a joint multi-target identification and classification
(JMIC) algorithm for radar surveillance using cognitive
radars. The existing target categories are first classified and
then the targets in each category are accordingly identified.
Simulation results are presented to evaluate the feasibility
and effectiveness of the proposed JMIC algorithm in a query
surveillance region.

Index Terms : Situation assessment, radar sensor networks,
multiple target identification and classification, Gaussian
process.

I. INTRODUCTION

In current and future military operational environments,
such as Global War on Terrorism (GWOT) and Maritime
Domain Awareness (MDA), warfighters require technolo-
gies evolved to support information needs regardless of
location and consistent with the users level of command
or responsibility and operational situation. To support
this need, the U.S. Department of Defense (DoD) has
developed the concept of Network Centric Warfare (NCW),
defined as “military operations that exploit state-of-the-art
information and networking technology to integrate widely
dispersed human decision makers, situational and target-
ing sensors, and forces and weapons into a highly adaptive,

comprehensive system to achieve unprecedented mission
effectiveness” [1]. DoD has defined three levels of data
fusion for NCW. Level 1 data fusion combines data from
single or multiple sensors and sources to provide the best
estimate of objects and events in the battlespace in terms
of their position, kinematics (e.g. tracks), identity, or iden-
tification features. Level 2 data fusion focuses on situation
assessment. This requires recognition of objects/entities in
the regions of interest, as well as recognizing activities
of these objects, and inferring their relationships. Level 3
data fusion is threat assessment which requires inferring
intent of objects/entities, or groups of objects, in the
regions of interest. Situation assessment needs lower level
data fusion results such as multi-target Identification and
Classification.

Many algorithms have been suggested to handle the task
of multiple target identification and classification. In [7], a
Gaussian Mixture Model (GMM) classifier was proposed
to distinct target categories in a semi-structured outdoor
environment. For radar target identification, a multi-feature
decision space approach was discussed in detail in [8]. In
[4], complex Gaussian distribution was applied to cogni-
tive radar sensor network target recognition. Collaborative
classification algorithms [6] were applied to single target
scenarios and then extended to more complex scenarios of
multiple targets.

We consider the scenario wherein the total number of
targets K is unknown in a region of interest and a query
regarding to the classification of these targets and the
identification of the targets in each category is inquired.
This is the general surveillance scenario since each target
belonging to one distinct category as in [3] is no longer
considered. In this work, some targets now share the same
target category but possess different identification numbers.
In order to perform this higher complexity version of
surveillance scenario, we assume that each given target
belongs to one distinct pair of one target category and one
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identification number. Based on statistical data, we then
reasonably assume that the maximum number of target
categories M and the maximum number of targets N in
each category are a priori known parameters. However, the
actual number of existing target categories and the actual
number of targets being present in each category at any
given time are unknown. It is assumed that there are R
cognitive radar sensors in the query region.

Within the above-described framework, we propose a
joint multi-target identification and classification (JMIC)
algorithm for radar surveillance. Firstly, the existing target
categories are classified based on M �-ary hypothesis test-
ing whereM � = 2M . Note that,M � hypotheses correspond
to all possibilities we may have regarding to the presence
or absence of each category. Thereafter, based on the
result obtained from classification specifying which target
categories exist, we identify targets belonging to each
detected category. Targets in a category are identified based
on their identification numbers or identification indices.
Therefore, N � (N� = 2N - 1) hypotheses are set up
corresponding to all scenarios of presence or absence of
each target identification index. Numerical results based
on simulated data are finally presented to demonstrate
the feasibility and effectiveness of the proposed JMIC
algorithm in a query surveillance region.

The rest of the paper is organized as follows. In section
II, we provide a framework and formulate the multi-target
classification and identification problem in a cognitive
radar network. In section III, we propose the joint multi-
target identification and classification algorithm. Simula-
tion results are presented in section IV. Finally, section V
concludes the paper.

II. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

The general system architecture for MTIC problem used
in this work is shown in Fig. 1. This architecture accommo-
dates the deployment of R cognitive radar sensors (CRSs).
These sensors will collect and then send all the target
signals to the fusion center. It is assumed that there are K
targets in the region of interest. Each target is considered as
a point source and target signals are modeled as zero-mean
complex Gaussian processes [3]. All measurements from
sensors are combined to reduce the impact of target signal
variability. At any given time, the measurements in distinct
cognitive radar sensors are approximately independent.

We assume that at most M distinct target categories and
N targets in each category are present in the surveillance
region in the observation duration. However, the actual
existing number of target categories is unknown. Therefore,
we set up 2M hypotheses corresponding to all possible
scenarios of presence or absence of each target category.
We denote these hypotheses by Hk (k = 0, 1, ..., 2M − 1).

Query region

CRS 1

CRS 2

CRS R

FUSION CENTER

Fig. 1. System architecture for JMIC algorithm

Target categories are denoted by i (i = 1, 2, ..., M ) and in
each ith category, targets are identified by the identification
indices j (j = 1, 2, ..., N ). We use the parameter b ij ∈
{0, 1} to denote the event in which target of category i,
index j is absent or present. Specifically,

bij =
{

0 if target of category i, index j is absent
1 if target of category i, index j is present

Classification and identification parameters are given
in Table I wherein each row represents one target cate-
gory and each column represents one target index. The
probability of target of category i, index j being absent
P (bij = 0) is denoted by pij , i.e., P (bij = 0) = pij .
Hence, the probability of presence of this target P (b ij = 1)
is: P (bij = 1) = 1- pij .

We employ hypothesis H0 for scenario of no category
being present, hypothesis H1 for scenario of category 1
being present,..., and hypothesis H2M−1 for scenario of
all M categories being present. We assume that the total
number of targetsK in the region of interest is unknown. In
the case of K = 0, i.e., there is no target in the surveillance
region, hypothesis H0 is chosen. The prior probability of
hypothesis H0 is given by:

P (H0) = P {no category present}
= P (∀b1j = 0; ∀b2j = 0; ...; ∀bMj = 0),

for j = 1, 2, ..., N (1)

Since the possibilities for presence or absence of targets
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are independent, we have

P (H0) = P (∀b1j = 0).P (∀b2j = 0)...P (∀bMj = 0)
= (p11.p12...p1N )(p21.p22...p2N )...(pM1...pMN )

=
N∏

j=1

p1j ·
N∏

j=1

p2j . . .
N∏

j=1

pMj (2)

Similarly, the prior probability of H1 is given by:

P (H1) = P {category 1 present}
= P (at least one b1j = 1; ∀b2j = 0; ...; ∀bMj = 0)
= P (∃ one b1j = 1).P (∀b2j = 0)...P (∀bMj = 0)

= (1 −
N∏

j=1

p1j) ·
N∏

j=1

p2j . . .

N∏
j=1

pMj (3)

Generally, we obtain the prior probability of hypothesis
Hk in the form as follows:

P (Hk) =
M∏
i=1

[b(k)
i (1 −

N∏
j=1

pij) + (1 − b
(k)
i )

N∏
j=1

pij ] (4)

where b(k)
i takes the value of 0 when category i is absent,

otherwise b
(k)
i takes the value of 1 when category i is

present under hypothesis Hk.

III. JOINT MULTI-TARGET IDENTIFICATION AND

CLASSIFICATION ALGORITHM

Joint multi-target identification and classification algo-
rithm consists of two steps. In the first step, multiple
target classification is implemented to investigate which
target categories are present within the entire surveillance
region. Then, in the second step, based on classification
results, targets in each detected category are identified
using identification indices. Our JMIC algorithm relies on
the framework previously presented in section II.

A. Multiple Target Classification

The M �-ary hypothesis testing problem is given by:

Hk : zl = sl + nl, k = 0, 1, ..., 2M − 1 (5)

where zl is a feature vector of dimension D collected by
the lth (l = 1,2,..., R) cognitive radar sensor. We assume
that target signals have the same energy, i.e., these signals
are modeled as zero-mean complex Gaussian vectors with
covariance matrix Σm. Thus,

sl ∼ CN (0,Σslk
), where Σslk

=
M∑

i=1(i∈Hk)

N∑
j=1

bijΣm

(6)
Signals are corrupted by zero-mean complex white
Gaussian noise.

nl ∼ CN (0, σ2
nI). (7)

TABLE I

CLASSIFICATION AND IDENTIFICATION PARAMETERS

Index 1 Index 2 Index 3 . . . Index N

Category 1 b11 b12 b13 . . . b1N

Category 2 b21 b22 b23 . . . b2N

Category 3 b31 b32 b33 . . . b3N

...
...

...
...

...
...

Category M bM1 bM2 bM3 . . . bMN

Under hypothesis Hk, the probability density function of
the feature vector zl is given by:

P (zl|Hk) = pk(zl)

=
1

πD|Σzlk
| exp {−zH

l Σ−1
zlk

zl} (8)

where Σzlk
= Σslk

+ σ2
nI

We denote P (Hk) by δk. The decision rule for the
multiple target classifier is therefore given by:

k̂ = arg max
k=0,1,...,M�−1

pk(z1, z2, ..., zR)δk (9)

Due to the conditional independence of z l, (9) can be
expressed as:

k̂ = arg max
k=0,1,...,M�−1

R∏
l=1

pk(zl)δk (10)

In term of log-likelihood, we have

Δk(z1, z2, ..., zR) = log
R∏

l=1

pk(zl)δk

=
R∑

l=1

log pk(zl) + log δk (11)

By substituting pk(zl) from (8) to (11) and omitting
constants that do not depend on categories, we then obtain
Δk in the following form, :

Δk(z1, z2, ..., zR) = −R log |Σzlk
|−

R∑
l=1

zH
l Σ−1

zlk
zl+log δk

(12)
The information about zl is then sent from the lth (l =
1, 2,..., R) cognitive radar sensor to the fusion center.
The classifier at the fusion center then makes the final
classification decision in the form:

k̂ = arg max
k=0,1,...,M�−1

Δk(z1, z2, ..., zR)

= arg min
k

{R log |Σzlk
| +

R∑
l=1

zH
l Σ−1

zlk
zl − log δk}

(13)
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From (13), we map the integer value of k̂ to binary value
to obtain a category vector c = [c1, c2, ...., cM ] where ci (i
= 1, 2, ..., M ) takes value of 1 corresponding to category i
being present or takes value of 0 corresponding to category
i being absent in the area of interest. The total number of
target categories being present in the surveillance region is
given by:

NC =
M∑
i=1

ci (14)

For example, if k̂ = 5, then we get c = [1, 0, 1, 0, ...,0], i.e.,
only categories 1 and 3 are present within the surveillance
region. Therefore, the total number of target categories
being present NC is 2.

B. Multiple Target Identification

Based on the estimated value k̂, we realize which
target categories have shown up in the surveillance region.
However, we still have no information about the number of
targets belonging to each category. Therefore, the second
step of the JMIC algorithm is repeatedly applied to each
detected category to identify targets in the surveillance
region. We aim at searching all the targets using their jth
indices. For each category i, we denote H i

h,k̂
to represent

the hypothesis h (h = 0, 1, ..., 2N - 1), given category i
∈ S being present under hypothesis H k̂. Note that, S is a
set of all categories i being present in hypothesis H k̂.

S = {i present in Hk̂} (15)

Since category i is estimated to be present, i.e, at least
one target index j shows up in this category, thus, the
scenario of no target index of category i being present is
eliminated, i.e., P(H i

0,k̂
) = 0. Thus, we only have N � =

2N - 1 hypotheses corresponding to h = 1, 2, ..., N �. We
choose H i

1,k̂
to represent the hypothesis of target index

�1 of category i ∈ S being present, H i
2,k̂

to represent
the hypothesis of target index �2 of category i ∈ S being
present, ..., H i

N�,k̂
to represent the hypothesis of all targets

index �1, �2, ..., �N of category i ∈ S being present.
We have

P (H i
h,k̂

) = P (Hi
h, Hk̂)

= P (Hi
h|Hk̂)P (Hk̂) (16)

The conditional probability of hypothesis H i
1,k̂

is given by:

P (H i
1|Hk̂) = P {target index �1 category i present}

= P (bi1 = 1; bi2 = 0; ...; biN = 0)
(17)

TABLE II

CLASSIFICATION AND IDENTIFICATION EXAMPLE

Index 1 Index 2 Index 3 Index 4

Category 1 0 1 0 1
Category 2 1 1 0 1
Category 3 1 1 0 0

Because the possibilities for presence or absence of targets
are independent, we have

P (Hi
1|Hk̂) = P (bi1 = 1).P (bi2 = 0)...P (biN = 0)

= (1 − pi1).pi2...piN (18)

Similarly, the conditional probability of hypothesis H i
2,k̂

is:

P (Hi
2|Hk̂) = P {target index �2 category i present}

= P (bi1 = 0; bi2 = 1; ...; biN = 0)
= P (bi1 = 0).P (bi2 = 1)...P (biN = 0)
= pi1.(1 − pi2)...piN (19)

In general, we obtain the conditional probability of hypoth-
esis Hi

h,k̂
as follows:

P (Hi
h|Hk̂) =

N∏
j=1

[b(h)
ij (1 − pij) + (1 − b

(h)
ij )pij ] (20)

where b
(h)
ij takes the value of 0 when target index j of

category i is absent, otherwise b
(h)
ij takes the value of

1 when target index j of category i is present under
hypothesis H i

h given hypothesis Hk̂.
We now set up N � hypotheses:

Hi
h,k̂

: zi
l = si

l + ni
l, h = 1, 2, ..., N� (21)

where zi
l is collected by lth (l = 1, 2, ..., R) cognitive

radar sensor regarding to ith category. Target signals of
ith category are given by:

si
l ∼ CN (0,Σsi

l,h
), where Σsi

l,h
=

N∑
j=1(j∈Hi

h,k̂
)

bijΣm

(22)
Signals are corrupted by zero-mean complex white
Gaussian noise.

ni
l ∼ CN (0, σ2

nI) (23)

Under hypothesis H i
h,k̂

, the probability density function of

the feature vector zi
l of category i is given by:

P (zi
l |Hi

h,k̂
) = ph,k̂(zi

l)

=
1

πD|Σzi
l,h
| exp {−(zi

l)
HΣ−1

zi
l,h

zi
l}(24)
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where Σzi
l,h

= Σsi
l,h

+ σ2
nI.

We denote P (H i
h|Hk̂) by αi

h. From (16) and due to the
conditional independence of zi

l , the identification decision
rule is hence given by:

ĥ = arg max
h=1,2,...,N�

R∏
l=1

ph,k̂(zi
l)α

i
hδk̂ (25)

In term of log-likelihood, we have

Δi
k = log

R∏
l=1

ph,k̂(zi
l)α

i
hδk̂

=
R∑

l=1

log ph,k̂(zi
l) + logαi

h + log δk̂ (26)

By substituting ph,k̂(zi
l) from (24) to (26) and omitting

constants that do not depend on target indices in each
category, we have Δi

k in the following form:

Δi
k = −R log |Σzi

l,h
| −

R∑
l=1

(zi
l)

HΣ−1
zi

l,h

zi
l + logαi

h + log δk̂

(27)
The information about zi

l is sent from the lth cognitive
radar sensor to the fusion center. The identifier at the fusion
center then makes the final identification decision:

ĥ = arg max
h=1,2,...,N�

Δi
k

= arg min
h

{R log |Σzi
l,h
| +

R∑
l=1

(zi
l)

HΣ−1
zi

l,h

zi
l − logαi

h

− log δk̂} (28)

From (28), we map the integer value of ĥ to binary value
to obtain a index vector bi = [bi1, bi2, ..., biN ] where every
component of bi takes the value of 1 or 0. Component
�j takes value of 1 corresponding to the scenario of target
index �j of category i being present. The total number of
targets Ni in each category i is calculated by:

Ni =
N∑

j=1

bij (29)

Following the example previously described in classifi-
cation step, for i = 1, if ĥ = 7, then we get b1 = [1, 1, 1,
0, ...,0]. Therefore, only targets with indices 1, 2 and 3 of
category 1 are present within the surveillance region. The
total number of targets of category 1 being present N 1 is
3. Repeatedly implementing this step, for i = 3, if ĥ = 3,
we obtain b3 = [1, 1, 0, 0, ..., 0]. So, targets with indices
1 and 2 of category 3 are present. The total number of
targets of category 3 being present N3 is 2.

2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

Signal−to−noise power ratio (dB)

P
ro

ba
bi

lit
y 

of
 e

rr
or

 fo
r 

K
 =

 3

R = 3
R = 5
R = 10

Fig. 2. Probability of error using JMIC algorithm for K = 3
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Fig. 3. Surveillance scenario of K = 3

The total number of targets K in the surveillance region
is finally given by:

K =
M∑
i=1

Ni =
M∑
i=1

N∑
j=1

bij (30)

In the example, the total number of targets within the
surveillance region K is 5.

IV. SIMULATION RESULTS

We perform simulations to illustrate the performance of
the proposed JMIC algorithm. An encounter of unknown
K targets in the region of query was simulated. A set
of R cognitive radar sensors was deployed. A cognitive
radar sensor may detect more than one target at any given
time. Therefore, a more accurate estimation about target
categories and the total number of targets being present in
each category can be obtained by fusion of several radar
sensors. The maximum number of categories M = 3 and
the maximum number of targets in each category N = 4
were assumed in this region of interest.

An example using JMIC for K = 7 targets in the region
of interest is given in Table II. We use JMIC algorithm
to obtain k̂ = 7 which specifies that categories 1, 2, 3
are present and thus Nc = 3. The number of targets of
category 1 is 2 (target index �2 and �4) corresponding to
ĥ = 10. The number of targets of category 2 is 3 (target
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Fig. 5. Surveillance scenario of K = 6

index �1, �2, and �4) corresponding to ĥ = 11. The total
number of targets of category 3 is 2 ( target index �1 and
�2) corresponding to ĥ = 3.

To evaluate the performance of the proposed JMIC algo-
rithm, we conduct a Monte-Carlo simulation of 105 runs.
The probability of error of the proposed JMIC algorithm
given in the form of function of signal-to-noise power
ratio is shown in Fig. 2 and Fig. 4. The scenarios of R
= 3, 5 and 10 cognitive radar sensors were used in the
simulations. From Fig. 2, we realize that a sufficiently low
probability of error can be obtained with a small number of
cognitive radar sensors R = 5 in the surveillance scenario
of K = 3 targets as shown in Fig. 3. Comparison of
probability of error for the different number of cognitive
radar sensors in the scenario of K = 3 targets was shown in
Fig. 2. The simulation results demonstrate our algorithm
in the surveillance scenarios of K = 6 as described in
Fig. 5 is given in Fig. 4. From Fig. 2 and Fig. 4, we
also observe that for a given number of targets K in the
surveillance region, the performance of JMIC using R =
5 or R = 10 radar sensors is better than that using R =
3 radar sensors. Besides, for a given number of R radar
sensors, the identification and classification performance is
reduced when we notice an increasing number of targets
in the surveillance region. The probability of JMIC error
is inversely proportional to signal-to-noise power ratio. At
high SNR, the probability of error is rather small. The

simulation results validate the robustness and effectiveness
of our proposed JMIC algorithm.

V. CONCLUSION

We have demonstrated that K targets in a query region
can be classified and identified efficiently by a network
of R cognitive radar sensors using our JMIC algorithm. A
computer simulation with simulated radar data was used to
investigate the accuracy of classification and identification
algorithm in the variations of the target signals in the net-
work. Using JMIC algorithm, we show that a sufficiently
low probability of error can be achieved with a fairly small
number of radar sensors for a given common number of
targets. The unprecedented desire of knowing not only the
number of target categories, but also the total number of
targets in each category in a surveillance region is making
JMIC algorithm an attractive choice in practice for military
applications.
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Abstract. Inspired by biological systems’ (such as human’s) innate abil-
ity to process and integrate information from disparate, network-based
sources, we apply biologically-inspired information integration mecha-
nisms to target detection in cognitive radar sensor network. Humans’
information integration mechanisms have been modelled using maximum-
likelihood estimation (MLE) or soft-max approaches. In this paper, we
apply these two algorithms to radar sensor networks target detection.
Discrete-cosine-transform (DCT) is used to process the integrated data
from MLE or soft-max. We apply fuzzy logic system (FLS) to automatic
target detection based on the AC power values from DCT. Simulation re-
sults show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches
perform very well in the radar sensor network target detection, whereas
the existing 2-D construction algorithm doesn’t work in this study.

1 Introduction and Motivation

A radar sensor network consists of multiple networked radar sensors and radar
sensors sense and communicate with each other collaboratively to complete a
mission. In real world, radar sensor network information integration is necessary
in different applications. For example, in an emergency natural disaster scenario,
such as Utah Mine Collapse in August 2007 or West Virginia Sago mine disaster
in January 2006, radar sensor network-based information integration for first
responders is critical for search and rescue. Danger may appear anywhere at any
time, therefore, first responders must monitor a large area continuously in order
to identify potential danger and take actions. Due to the dynamic and complex
nature of natural disaster, some buried/foleage victims may not be found with
image/video sensors, and UWB radar sensors are needed for penetrating the
ground or sense-through-wall. Unfortunately, the radar data acquired are often
limited and noisy. Unlike medical imaging or synthetic aperture radar imag-
ing where abundance of data is generally available through multiple looks and
where processing time may not be crucial, practical radar sensor networks are
typically the opposite: availability of data is limited and required processing
time is short. This need is also motivated by the fact that biological systems

B. Liu et al. (Eds.): WASA 2009, LNCS 5682, pp. 115–124, 2009.
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such as humans display a remarkable capability to quickly perform target recog-
nition despite noisy sensory signals and conflicting inputs. Humans are adept
at network visualization, and at understanding subtle implications among the
network connections. To date, however, human’s innate ability to process and
integrate information from disparate, network-based sources for situational un-
derstanding has not translated well to automated systems. In this paper, we
apply biologically-inspired information integration mechanisms to information
fusion in radar sensor network.

2 Sense-through-Foliage Radar Sensor Networks Data
Measurement and Collection

Our work is based on the sense-through-foliage UWB radar sensor networks. The
foliage experiment was constructed on a seven-ton man lift, which had a total
lifting capacity of 450 kg. The limit of the lifting capacity was reached during the
experiment as essentially the entire measuring apparatus was placed on the lift.
The principle pieces of equipment secured on the lift are: Barth pulser, Tektronix
model 7704 B oscilloscope, dual antenna mounting stand, two antennas, rack
system, IBM laptop, HP signal Generator, Custom RF switch and power supply
and Weather shield (small hut). The target is a trihedral reflector (as shown
in Fig. 1). Throughout this work, a Barth pulse source (Barth Electronics, Inc.
model 732 GL) was used. The pulse generator uses a coaxial reed switch to
discharge a charge line for a very fast rise time pulse outputs. The model 732
pulse generator provides pulses of less than 50 picoseconds (ps) rise time, with
amplitude from 150 V to greater than 2 KV into any load impedance through a 50
ohm coaxial line. The generator is capable of producing pulses with a minimum
width of 750 ps and a maximum of 1 microsecond. This output pulse width is
determined by charge line length for rectangular pulses, or by capacitors for 1/e
decay pulses.

For the data we used in this paper, each sample is spaced at 50 picosecond
interval, and 16,000 samples were collected for each collection for a total time
duration of 0.8 microseconds at a rate of approximately 20 Hz. We plot the
transmitted pulse (one realization) in Fig. 2a) and the received echos in one
collection in Fig. 2b (averaged over 35 pulses).

3 Human Information Integration Mechanisms

Recently, a maximum-likelihood estimation (MLE) approach was proposed for
multi-sensory data fusion in human [4]. In the MLE approach [4], sensory esti-
mates of an environmental property can be represented by Ŝj = fi(S) where S
is the physical property being estimated, f is the operation the nervous system
performs to derive the estimate, and Ŝ is the perceptual estimate. Sensory es-
timates are subject to two types of error: random measurement error and bias.
Thus, estimates of the same object property from different cues usually differ. To
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Fig. 1. The target (a trihedral reflector) is shown on the stand at 300 feet from the lift

reconcile the discrepancy, the nervous system must either combine estimates or
choose one, thereby ignoring the other cues. Assuming that each single-cue esti-
mate is unbiased but corrupted by independent Gaussian noise, the statistically
optimal strategy for cue combination is a weighted average [4]

Ŝc =
M∑
i=1

wiŜi (1)

where wi = 1/σ2
i∑

j 1/σ2
j

and is the weight given to the ith single-cue estimate, σ2
i is

that estimates variance, and M is the total number of cues. Combining estimates
by this MLE rule yields the least variable estimate of S and thus more precise
estimates of object properties.

Besides, some other summation rules have been proposed in perception and
cognition such as soft-max rule: y = (

∑M
i=1 x

n
i )

1
n [3] where xi denotes the input

from an input source i, and M is the total number of sources. In this paper, we
will apply MLE and soft-max human brain information integration mechanisms
to cognitive radar sensor network information integration.

4 Human-Inspired Sense-through-Foliage Target
Detection

In Figs. 3a and 3b, we plot two collections of UWB radars. Fig. 3a has no
target on range, and Fig. 3b has target at samples around 13,900. We plot the
echo differences between Figs. 3a and 3b in Fig. 3c. However, it is impossible to
identify whether there is any target and where there is target based on Fig. 3c.
Since significant pulse-to-pulse variability exists in the echos, this motivate us
to explore the spatial and time diversity using Radar Sensor Networks (RSN).
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Fig. 2. Transmitted pulse and received echos in one experiment. (a) Transmitted pulse.
(b) Received echos.

In RSN, each radar can provide their pulse parameters such as timing to
their clusterhead radar, and the clusterhead radar can combine the echos (RF
returns) from the target and clutter. In this paper, we propose a RAKE structure
for combining echos, as illustrated by Fig. 4. The integration means time-average
for a sample duration T and it’s for general case when the echos are not in discrete
values. It is quite often assumed that the radar sensor platform will have access to
Global Positioning Service (GPS) and Inertial Navigation Unit (INU) timing and
navigation data [1]. In this paper, we assume the radar sensors are synchronized
in RSN. In Fig. 4, the echo, i.e., RF response by the pulse of each cluster-member
sensor, will be combined by the clusterhead using a weighted average, and the
weight wi is determined by the two human-inspired mechanisms.

We applied the human-inspired MLE algorithm to combine the sensed echo
collection from M = 30 UWB radars, and then the combined data are processed
using discrete-cosine transform (DCT) to obtain the AC values. Based on our
experiences, echo with a target generally has high and nonfluctuating AC values
and the AC values can be obtained using DCT. We plot the power of AC values
in Figs. 5a and 5b using MLE and DCT algorithms for the two cases (with target
and without target) respectively. Observe that in Fig. 5b, the power of AC values
(around sample 13,900) where the target is located is non-fluctuating (somehow
monotonically increase then decrease). Although some other samples also have
very high AC power values, it is very clear that they are quite fluctuating and
the power of AC values behaves like random noise because generally the clutter
has Gaussian distribution in the frequency domain.

Similarly, we applied the soft-max algorithm (n = 2) to combine the sensed
echo collection from M = 30 UWB radars, and then used DCT to obtain the AC
values. We plot the power of AC values in Figs. 5a and 5b using soft-max and
DCT algorithms for the two cases (with target and without target) respectively.
Observe that in Fig. 6b, the power of AC values (around sample 13,900) where
the target is located is non-fluctuating (somehow monotonically increase then
decrease).
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Fig. 3. Measurement with poor signal quality and 35 pulses average. (a) Expanded
view of traces (no target) from sample 13,001 to 15,000. (b) Expanded view of traces
(with target) from samples 13,001 to 15,000. (c) The differences between (a) and (b).

We made the above observations. However, in real world application, au-
tomatic target detection is necessary to ensure that our algorithms could be
performed in real time. In Section 5, we apply fuzzy logic systems to automatic
target detection based on the power of AC values (obtained via MLE-DCT or
soft-max-DCT).

We compared our approaches to the scheme proposed in [6]. In [6], 2-D image
was created via adding voltages with the appropriate time offset. In Figs. 7a and
7b, we plot the 2-D image created based on the above two data sets (from samples
13,800 to 14,200). The sensed data from 30 radars are averaged first, then plotted
in 2-D [6]. However, it’s not clear which image shows there is target on range.

5 Fuzzy Logic System for Automatic Target Detection

5.1 Overview of Fuzzy Logic Systems

Figure 8 shows the structure of a fuzzy logic system (FLS) [5]. When an input
is applied to a FLS, the inference engine computes the output set corresponding
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Fig. 4. Echo combining by clusterhead in RSN
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Fig. 5. Power of AC values using MLE-based information integration and DCT. (a)
No target (b) With target in the field.

to each rule. The defuzzifer then computes a crisp output from these rule output
sets. Consider a p-input 1-output FLS, using singleton fuzzification, center-of-
sets defuzzification [5] and “IF-THEN” rules of the form

Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl.

Assuming singleton fuzzification, when an input x′ = {x′1, . . . , x′p} is applied,
the degree of firing corresponding to the lth rule is computed as

μFl
1
(x′1) � μFl

2
(x′2) � · · · � μFl

p
(x′p) = T p

i=1μFl
i
(x′i) (2)

where � and T both indicate the chosen t-norm. There are many kinds of de-
fuzzifiers. In this paper, we focus, for illustrative purposes, on the center-of-sets
defuzzifier [5]. It computes a crisp output for the FLS by first computing the
centroid, cGl , of every consequent set Gl, and, then computing a weighted av-
erage of these centroids. The weight corresponding to the lth rule consequent
centroid is the degree of firing associated with the lth rule, T p

i=1μFl
i
(x′i), so that

ycos(x′) =

∑M
l=1 cGlT p

i=1μFl
i
(x′i)∑M

l=1 T
p

i=1μFl
i
(x′i)

(3)
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Fig. 6. Power of AC values using soft-max based information integration and DCT.
(a) No target (b) With target in the field.

where M is the number of rules in the FLS. In this paper, we design a FLS for
automatic target recognition based on the AC values obtained using MLE-DCT
or soft-max-DCT.

5.2 FLS for Automatic Target Detection

Observe that in Figs. 5 and 6, the power of AC values are quite fluctuating
and have lots of uncertainties. FLS is well known to handle the uncertainties.
For convenience in describing the FLS design for Automatic Target Detection
(ATD), we first give the definition of footprint of uncertainty of AC power values
and region of interest in the footprint of uncertainty.

Definition 1 (Footprint of Uncertainty). Uncertainty in the AC power val-
ues and time index consists of a bounded region, that we call the footprint of
uncertainty of AC power values. It is the union of all AC power values.

Definition 2 (Region of Interest (RoI)). An RoI in the footprint of uncer-
tainty is a contour consisting of a large number (greater than 50) of AC power
values where AC power values increase then decrease.

Definition 3 (Fluctuating Point in RoI). P (i) is called a fluctuating point
in the RoI if P (i − 1), P (i), P (i + 1) are non-monotonically increasing or de-
creasing.

Our FLS for automatic target detection will classify each ROI (with target or
no target) based on two antecedents: the centroid of the ROI and the number
of fluctuating points in the ROI. The linguistic variables used to represent these
two antecedents were divided into three levels: low, moderate, and high. The
consequent – the possibility that there is a target at this RoI – was divided into
5 levels, Very Strong, Strong, Medium, Weak, Very Weak. We used trapezoidal
membership functions (MFs) to represent low, high, very strong, and very weak ;
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Fig. 7. 2-D image created via adding voltages with the appropriate time offset. (a) No
target (b) With target in the field.

and triangle MFs to represent moderate, strong, medium, and weak. All inputs
to the antecedents are normalized to 0–10.

Based on the fact the AC power value of target is non-fluctuating (somehow
monotonically increase then decrease), and the AC power value of clutter behaves
like random noise because generally the clutter has Gaussian distribution in the
frequency domain, we design a fuzzy logic system using rules such as:

Rl : IF centroid of a RoI (x1) is F1
l , and the number of fluctuating points in the

ROI (x2) is F2
l , THEN the possibility that there is a target at this RoI (y) is Gl.

where l = 1, . . . , 9. We summarize all the rules in Table 1. For every input
(x1, x2), the output is computed using

y(x1, x2) =

∑9
l=1 μF1

l
(x1)μF2

l
(x2)clavg∑9

l=1 μF1
l
(x1)μF2

l
(x2)

(4)
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SETS

FUZZY  OUTPUT
SETS

x ε X y=f(x) ε Y

Fig. 8. The structure of a fuzzy logic system

We ran simulations to 1000 collections in the real world sense-through-foliage
experiment, and found that our FLS performs very well in the automatic target
detection based on the AC power values obtained from MLE-DCT or soft-max-
DCT, and achieve probability of detection pd = 100% and false alarm rate
pfa = 0.

Table 1. The rules for target detection. Antecedent 1 is centroid of a RoI, Antecedent
2 is the number of fluctuating points in the ROI, and Consequent is the possibility that
there is a target at this RoI.

Rule # Antecedent 1 Antecedent 2 Consequent

1 low low medium

2 low moderate weak

3 low high very weak

4 moderate low strong

5 moderate moderate medium

6 moderate high weak

7 high low very strong

8 high moderate strong

9 high high medium

6 Conclusions

Inspired by biological systems’ (such as humans) innate ability to process and inte-
grate information from disparate, network-based sources, we applied biologically-
inspired information integration mechanisms to target detection in radar sensor
network. Humans’ information integration mechanisms have been modelled using
maximum-likelihood estimation (MLE) or soft-max approaches. In this paper, we
applied these two algorithms to cognitive radar sensor networks target detection.
Discrete-cosine-transform (DCT) was used to process the integrated data from
MLE or soft-max. We applied fuzzy logic system (FLS) to automatic target de-
tection based on the AC power values from DCT. Simulation results showed that
our MLE-DCT-FLS and soft-max-DCT-FLS approaches performed very well in
the radar sensor network target detection, whereas the existing 2-D construction
algorithm couldn’t work in this study.
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Abstract— Humans use multiple sources of sensory informa-
tion to estimate environmental properties and has innate ability
to integrate information from heterogeneous data sources. How
the multi-sensory and multimodal information are integrated
in human brain? There is consensus that it depends on the
prefrontal cortex (PFC). The PFC has top-down control (favor
weak) and rule-based mechanisms, and we incorporate the
favor weak mechanism into rule-based fuzzy logic systems
(FLS) via using upper and lower membership functions. The
inference engine of favor weak fuzzzy logic system is proposed
under three different categories based on fuzzifiers. We apply
the favor weak FLS to situation understanding based on
heterogeneous sensor network, and it shows that our favor
weak fuzzy logic system has clear advantage comparing to the
type-1 FLS. The favor weak FLS can increase the probability
of threat detection, and provides timely indication & warning
(I&W).

I. INTRODUCTION AND MOTIVATION

Humans use multiple sources of sensory information to
estimate environmental properties. For example, the eyes and
hands both provide relevant information about an objects
shape. The eyes estimate shape using binocular disparity,
perspective projection, etc. The hands supply haptic shape in-
formation by means of tactile and proprioceptive cues. Com-
bining information across cues can improve estimation
of object properties but may come at a cost: loss of single-
cue information. Recent studies [7] showed that single-cue
information is indeed lost when cues from within the same
sensory modality (e.g., disparity and texture gradients in
vision) are combined, but not when different modalities
(vision and haptics) are combined. In another study on
human [4], gaze shifts are coordinated movements of the
eyes (eyes-re-head) and head (head-re-space) that rapidly
reorient the visual axis (eyes-re-space) to a target of interest.
Reaction latencies for gaze shifts to combined auditory and
visual stimuli presented in close spatial and temporal register
are less than those to either stimulus presented alone,
suggesting that the integration of multisensory information

may play an important role in forming appropriate mo-
tor behaviors. These studies demonstrate that human has
innate ability to integrate information from heterogeneous
data sources and multi-sensory and multimodal information
integration has clear advantage.

In this paper, we incorporate human brain mechanisms
to a new fuzzy logic system design and apply it to sit-
uation understanding based on heterogeneous sensor net-
work. A heterogeneous sensor network consists of multiple
networked sensors with different modality (video, audio,
acoustic, radar, etc), and such networks are necessary in
different applications. For example, in an emergency natural
disaster scenario, information integration for first responders
is critical for search and rescue. Besides, the first responders
need to be situation-aware. Danger may appear anywhere at
any time, therefore, first responders must monitor a large
area continuously in order to identify potential danger and
take actions. Due to the dynamic and complex nature of
natural disaster, some victims may not be found with a
single type of sensor modality, for example, image/video
sensors can’t be used to find a buried/foleage victim, UWB
radar sensors need to be used for penetrating the ground
or sense-through-wall, and acoustic sensors are needed to
collect the voice from victims. Similarly, some potential
dangers may not be identified using a single modality sensor.
More modalities are required to search victims and identify
potential dangers and that means large-scale Heterogeneous
Sensor Networks (HSN) are needed for search, rescue,
and situation awareness. However, information integration
algorithms (especially for situation awareness) for heteroge-
neous sensor networks don’t exist. Motivated by the above
challenges, we study human-inspired information integration
for heterogeneous sensor networks.

The remaining of the paper is organized as follows. In
Section II, we present the heterogeneous information inte-
gration in Human brain and challenges to fuzzy logic system
design. In Section III, we present the inference engine for
favor weak fuzzy logic system. The application to situation

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2009 proceedings

978-1-4244-3435-0/09/$25.00 ©2009 IEEE
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:35 from IEEE Xplore.  Restrictions apply. 

643 of 816



understanding based on heterogeneous sensor network is
presented in Section IV. Section V concludes this paper.

II. HETEROGENEOUS INFORMATION INTEGRATION IN

HUMAN BRAIN AND CHALLENGES TO FUZZY LOGIC

SYSTEM DESIGN

One of the great mysteries of the brain is cognitive control.
How can the interactions between millions of neurons result
in behavior that is coordinated and appears willful and vol-
untary? There is consensus that it depends on the prefrontal
cortex (PFC) [14][16]. A schematic diagram of some of the
extrinsic and intrinsic connections of the PFC is depicted
in Fig. 1 [14]. Many PFC areas receive converging inputs
from at least two sensory modalities [2][9]. For example,
the dorsolateral (DL) (areas 8, 9, and 46) and ventrolateral
(12 and 45) PFC both receive projections from visual,
auditory, and somatosensory cortex. Furthermore, the PFC
is connected with other cortical regions that are themselves
sites of multimodal convergence. Many PFC areas (9, 12,
46, and 45) receive inputs from the rostral superior temporal
sulcus, which has neurons with bimodal or trimodal (visual,
auditory, and somatosensory) responses [1][17]. The arcuate
sulcus region (areas 8 and 45) and area 12 seem to be
particularly multimodal. They contain zones that receive
overlapping inputs from three sensory modalities [17]. Ob-
serve, for example, that mid-dorsal area 9 directly processes
and integrates visual, auditory, and multimodal information.

A. PFC Top-Down Control (Favor Weak) and Rule-Based
Mechanisms

According to [14][16], the PFC is modulatory rather than
transmissive. That is, the pathway from input to output
does not “run through” the PFC. Instead, the PFC guides
activity flow along task-relevant pathways in more posterior
and/or subcortical areas. The PFC is important when “top-
down” processing is needed; that is, when behavior must be
guided by internal states or intentions. The PFC is critical
in situations when the mappings between sensory inputs,
thoughts, and actions either are weakly established relative to
other existing ones or are rapidly changing. This is when we
need to use the “rules of the game,” internal representations
of goals and the means to achieve them [14]. Several
investigators have argued that this is a cardinal function of
the PFC [3][18][6][20][13]. The top-down control and favor
weak mechanism can be illustrated using the Stroop task.

In the Stroop task [19], subjects either read words or
name the color in which they are written. To perform this
task, subjects must selectively attend to one attribute. This is
especially so when naming the color of a conflict stimulus
(e.g. the word GREEN displayed in red), because there is
a strong prepotent tendency to read the word (“green”),
which competes with the response to the color (“red”). This
illustrates one of the most fundamental aspects of cognitive
control and goal-directed behavior: the ability to select a

weaker, task-relevant response (or source of information)
in the face of competition from an otherwise stronger, but
task-irrelevant one. Patients with frontal impairment have
difficulty with this task, especially when the instructions vary
frequently, which suggests that they have difficulty adhering
to the goal of the task or its rules in the face of a competing
stronger (i.e. more salient or habitual) response [14].

The Stroop task, naming the color of a conflict stimulus,
is variously described as tapping the cognitive functions
of either selective attention, behavioral inhibition, top-
down control, working memory, or rule-based or goal-
directed behavior [14]. In this paper, we will study hu-
man brain top-down control and rule-based mechanisms
inspired information integration. In current HSN design, the
clusterhead only serves a “transmissive” (data collection
and relay to gateway) function. In this project, the HSN
clusterhead will also provide a “modulatory” function, i.e.,
multimodal information integration. In natural disaster or
terrorist attack recovery, the most dangerous potential threat
factors (stimuli) are weak or hidden but are highly correlated
with the situation understanding task, and of course, they
are time sensitive (rapidly changing), which indicates that
the PFC “top-down” control mechanism can be applied to
HSN-based situation understanding.

The PFC top-down control signals favor weak (but task-
relevant) stimulus-response mappings when they are in com-
petition with more habitual, stronger ones (as in the Stroop
task, where the word GREEN is stronger and the color red is
weak). Moreover, all of the PFC neural mechanisms depend
on the representation of goals and rules in the form of
patterns of activity in the PFC, which configure processing
in other parts of the brain in accordance with current task
demands [14][16]. Such mechanisms motivate us to heavily
revisit a rule-based approach: fuzzy logic systems (FLS),
mimicking the rule-based PFC neural mechanism, and sub-
sequently applying it to HSN-based situation awareness.

B. Overview of Fuzzy Logic Systems and Its Shortfall

The current type-1 FLS designs doesn’t have “favor strong
or favor weak control”. In a type-1 FLS with a rule base of
M rules, in which each rule has p antecedents, let the lth
rule be denoted by Rl, where Rl: IF x1 is Fl

1, and x2 is
Fl

2, and, . . ., and xp is Fl
p THEN y is Gl. The membership

function, μBl(y), of a fired rule can be expressed by the
following sup-star composition [12]:

μBl(y) = supx∈A∗ [μA∗(x) � μAl→Bl(x, y)] (1)

where A∗ is a p-dimensional Cartesian product space, A∗ =
A∗

1 × · · · × A∗
p, A∗

k is the measurement domain of input xk,
(k = 1, · · · , p); and, A∗ is given by

μA∗(x) = μA∗
1×···×A∗

p
(x) = μX1(x1) � · · · � μXp(xp) (2)
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In the current type-1 FLS design,

μ
Al→B̃l(x, y) = μFl

1
(x1) � μFl

2
(x2) � · · · � μFl

p
(xp) � μGl(y)

(3)
For the Stroop task, to name the color of a conflict

stimulus (e.g. the word GREEN displayed in red), needs the
favor weak mechanism because there is a strong prepotent
tendency to read the word (“green”), which competes with
the response to the color (“red”).

So in the FLS design, the firing degree for “red” should be
boosted to reflect the “favor weak” mechanism if a conflict
stimulus presents, but no control should be taken if no
conflict stimulus presents (e.g., name the word when the
word GREEN displayed in red). This motivates us to use
different membership degrees under different scenarios. We
propose to use interval type-2 fuzzy membership function
for this favor weak (using upper membership function) or
no control (using lower membership function) mechanism.

III. THE INFERENCE ENGINE FOR FAVOR WEAK FLSS

In a favor weak FLS with a rule base of M rules, in which
each rule has p antecedents, let the lth rule be denoted by
Rl, where Rl: IF x1 is F̃

l

1, and x2 is F̃
l

2, and, . . ., and xp is

F̃
l

p THEN y is Gl. Although the rule may look the same as
that of the interval type-2 FLS, but the inference engine is
different.

In a favor weak FLS with p antecedents, without loss
of generality, assume the first w (w < p) antecedents are
weak and should be favored, and all other antecedents (w+
1, iw+2, · · · , ip) should be in no control. If the antecedents
are not in this order, they can be re-orderred. Then we can
obtain the following Theorem. Our major result for favor
weak FLSs is given in:

Theorem 1: In a favor weak nonsingleton FLS (the first
w antecedents are weak and should be favored) with type-2
fuzzification and meet under minimum or product t-norm:
(a) the firing degree for rule l, i.e., the result of the input
and antecedent operations, is

f l = sup
x∈X

∫
X1

· · ·
∫

Xp

[μX̃1
(x1) � μF̃l

1
(x1)] � · · · �

�[μX̃w
(xw) � μ

F̃l
w
(xw)] � [μ

X̃w+1
(xw+1)

�μ
F̃l

w+1
(xw+1)] � · · · � [μ

X̃p
(xp) � μF̃l

p

(xp)]/x ;(4)

the supremum is attained when each term in brackets attains
its supremum;
(b) the rule Rl fired output consequent set, μBl(y), is

μBl(y) = f l � μGl(y) (5)

where μ
G̃

l(y) and μ
G̃

l(y) are the lower and upper member-
ship grades of μ

G̃
l(y); and,

(c) the output fuzzy set, μB(y), is

μB̃(y) =
M⋃
l=1

μBl(y) (6)

When the input is fuzzified to a type-1 fuzzy set, so that
μX̃k

→ μXk
(k = 1, . . . , p), the upper and lower MFs of

μX̃k
merge into one MF, μXk

(xk), in which case Theorem 1
simplifies to:

Corollary 1: In a favor weak FLS (the first w antecedents
are weak and should be favored) with nonsingleton type-1
fuzzification and meet under minimum or product t-norm, f l

in (4) simplifies to: the firing degree for rule l is

f l = sup
x∈X

∫
X1

· · ·
∫

Xp

[μX1(x1) � μF̃l
1
(x1)]

� · · · � [μXw
(xw) � μ

F̃l
w
(xw)] � [μXw+1(xw+1)

�μ
F̃l

w+1
(xw+1)] � · · · � [μXp

(xp) � μF̃l
p

(xp)]/x ;(7)

the supremum is attained when each term in brackets attains
its supremum;

When a singleton fuzzifier is used, the upper and lower
MFs of μX̃k

(xk) merge into one crisp value, namely 1, in
which case Theorem 1 simplifies further to:

Corollary 2: In a favor weak FLS (the first w antecedents
are weak and should be favored) with singleton fuzzification
and meet under minimum or product t-norm, f l in (4)
simplifies to: the firing degree for rule l, i.e., the result of
the input and antecedent operations,

f l = μ
F̃l
1
(x1) � · · · � μF̃l

w
(xw) � μ

F̃l
w+1

(xw+1) � · · · � μF̃l
p

(xp)
(8)

where xi (i = 1, . . . , p) denotes the location of the singleton.

IV. APPLICATION TO SITUATION UNDERSTANDING

BASED ON HETEROGENEOUS SENSOR NETWORK

In situation awareness, the “weak” can be interprated as,
for example, 1) a target (or entity) rarely appears in the
sensor field; or 2) the behavior pattern of this target (or
entity) has low match with the existing ones in database;
or 3) space/time correlation of data/entities to events is low,
etc. All the above information can be obtained based on the
assumption that high quality information about objects and
events is available as a contributor to situation awareness. In
general, however, such information is insufficient to provide
adequate situation awareness. Actually, some lessons gained
from terrorist attacks have already demonstrated that the
above “weaks” should be favored in situation awareness.
Situation awareness needs the “favor weak” and rule-based
mechanisms from PFC.

The new favor weak FLS can be used for level 2/3 fusion
(situation awareness and threat assessment) for inferring
activities, relationships, and intentions of objects and people
in the battlespace based on retrieved knowledge consisting of
behavioral patterns, new activities, and anticipated behavior,
and also taking into account contextual information (terrain,
roads, weather, etc). The level 1 data fusion results (tradi-
tional automatic target recognition and pattern recognition)
from multimodal sensors will be used as antecedents. For
example, considering a heterogeneous sensor network with
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radar, image/video sensors, and GPS sensor, we can choose
the following three antecedents:

1) The number of switches from non-maneuvering set
(constant behavior in speed, acceleration, and direc-
tion, etc) to the maneuvering set (varying behavior in
speed, acceleration, and direction, etc). When a target
is beginning a maneuver from a non-maneuvering
class, the tracking system can switch the algorithms
applied to the problem from a non-maneuvering set
to the maneuvering set. The errors in distance from
where the tracker estimates the position of a target
between the actual position can be very large when the
incorrect motion models are applied to the problem.
Additionally, when the tracker does finally catch up
to the target after the maneuver, the track will “jump”
across the operator’s scope giving a very unrealistic
and unreliable picture of what that target is actually
doing. So a threat target will quite often switch from
a non-maneuvering set to the maneuvering set, and
vice versa, to avoid being tracked all the time. This
knowledge can be used as an antecedent for situation
awareness.

2) The frequency of appearance of such type of target
based on some a priori knowledge such as archival
radar data. Generally threat targets are new comparing
to archival radar data.

3) The importance of geolocation of this target based on
the geographical information systems (GISs). Exam-
ples of important geolocations include large metroplex,
landmarks, military bases, airport, etc. Threats happen
quite often in such areas.

Of the above three antecedents, the frequency of appearance
of such type of target is weak stimulus and should be favored.
A typical rule using the above three antecedents can be

IF the number of switches from non-maneuvering set to
the maneuvering set is High, and the frequency of

appearance of such target is Low, and the importance of
geolocation of such type of target is High, THEN the

possibility that an I&W needs to be issued is Very Strong.

The linguistic variables used to represent each antecedent
are divided into three levels: Low, Moderate, and High. The
consequent – the possibility that an indication and warning
(I&W) needs to be issued – is divided into 5 levels, Very
Strong, Strong, Medium, Weak, Very Weak. So we need to
set up 33 = 27 (because every antecedent has 3 fuzzy sub-
sets, and there are 3 antecedents) rules for this FLS. Table
I summarizes the fuzzy rules we use in this paper.

For input (x1, x2, x3), the output is computed using

y(x1, x2, x3) =

∑27
l=1 μF̃1

l

(x1)μF̃2
l
(x2)μF̃3

l

(x3)clavg∑27
l=1 μF̃1

l

(x1)μF̃2
l
(x2)μF̃3

l

(x3)
(9)

By repeating these calculations for ∀xi ∈ [0, 10], we obtain
a hypersurface y(x1, x2, x3). This equation represents the

nonlinear mapping between three inputs and one output
of the FLS. Since it’s a 4-D surface (x1, x2, x3, y), it’s
impossible to be plotted visually.

If we have x3 = 8, and two other antecedents, x1 and x2

are variables, we obtain a hypersurface y(x1, x2, 8) based
on the favor weak FLS, as plotted in Fig. 2(a). In contrast,
we use a type-1 FLS where the antecedent membership
functions are the lower membership functions since favor
weak mechanism is not used, and its output hypersurface
y(x1, x2, 8) is plotted in Fig. 2(b). Observe that from Fig. 2,
the favor weak FLS provides a higher possibility that this
target is a threat, which makes sense because the weak factor,
frequency of appearance of such type of target, has been
favored. So our proposed favor weak FLS can increase the
probability of threat detection, and provides timely I&W.

V. CONCLUSIONS

Humans use multiple sources of sensory information to es-
timate environmental properties and has innate ability to in-
tegrate information from heterogeneous data sources. There
is consensus that it depends on the brain PFC. The PFC has
top-down control (favor weak) and rule-based mechanisms,
which can be illustrated using the Stroop model. In this
paper, we proposed to incorporate the favor weak mechanism
into rule-based fuzzy logic systems (FLS) via using upper
and lower membership functions. The inference engine of
favor weak fuzzzy logic system was proposed under three
different categories based on fuzzifiers. We analyzed that the
favor weak FLS is a special type-1 FLS which is embeded
in an interval type-2 FLS, so it’s much simpler in computing
than an interval type-2 FLS. We apply the favor weak FLS
to situation understanding based on heterogeneous sensor
network, and it shows that our favor weak fuzzy logic system
has clear advantage comparing to the type-1 FLS. The favor
weak FLS can increase the probability of threat detection,
and provides timely indication & warning (I&W).
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TABLE I

FUZZY RULES USED IN THE APPLICATION. ANTE 1 IS THE NUMBER OF

SWITCHES FROM NON-MANEUVERING SET TO THE MANEUVERING SET

OR VICE VERSA; ANTE 2 THE FREQUENCY OF APPEARANCE OF SUCH

TYPE OF TARGET; ANTE 3 IS THE IMPORTANCE OF GEOLOCATION OF

THIS TARGET; AND CONSEQUENT IS THE POSSIBILITY THAT THIS

TARGET IS A THREAT.

Rule # Ante 1 Ante 2 Ante 3 Consequent
1 low low low Weak
2 low low moderate Medium
3 low low high Strong
4 low moderate low Very Weak
5 low moderate moderate Weak
6 low moderate high Medium
7 low high low Very Weak
8 low high moderate Weak
9 low high high Medium
10 moderate low low Medium
11 moderate low moderate Strong
12 moderate low high Very Strong
13 moderate moderate low Weak
14 moderate moderate moderate Medium
15 moderate moderate high Strong
16 moderate high low Very Weak
17 moderate high moderate Weak
18 moderate high high Medium
19 high low low Medium
20 high low moderate Strong
21 high low high Very Strong
22 high moderate low Weak
23 high moderate moderate Medium
24 high moderate high Strong
25 high high low Very Weak
26 high high moderate Weak
27 high high high Moderate
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Fig. 1. Schematic diagram of some of the extrinsic and intrinsic
connections of the PFC. Most connections are reciprocal; the exceptions
are indicated by arrows. The frontal eye field (FEF) has variously been
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Fig. 2. The threat assessment surface for different FLSs when x3 = 8.
(a) Favor weak FLS, and (b) Traditional type-1 FLS.
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ABSTRACT

In radar sensor network (RSN), interference with each
radar can be effectively reduced when waveforms are properly
designed. In this paper, we firstly perform some theoretical
studies on co-existence of phase coded waveforms in RSN.
Then we give the definition of a new set of triphase coded
waveforms called optimized punctured Zero Correlation Zone
sequence-pair set (optimized punctured ZCZPS) and analyze
their properties especially their optimized cross correlation
property of any two sequence-pairs in the set. Furthermore,
we apply our newly provided triphase coded waveforms and
equal gain combination technique to the system simulation,
and study the performances versus different number of radars
in RSN, with Doppler shift or not. Simulation results show that
detection performances of multiradars (utilizing our optimized
punctured ZCZPS and equal gain combination), either under
the Doppler shift condition or not, are superior to those of
singler radar.
Keywords: Zero correlation zone; Opimized punctured ZCZ
sequence-pair; Radar sensor network.

I. INTRODUCTION

With recent rapid development in information fusion tech-
nology, much time and effort have been put in radar waveform
design for a single active radar [1] [2]. However, multiple
radar sensors can be combined to form a multiradar system
to overcome performance degradation of single radar along
with waveform optimization. In [3], Liang studied constant fre-
quency (CF) pulse waveform design and proposed maximum-
likelihood (ML) automatic target recognition (ATR) approach
for both nonfluctuaing and fluctuating targets in a network
of multiple radar sensors. In [4], RSN design based on linear
frequency modulation (LFM) waveform was studied and LFM
waveform design was applied to RSN with application to ATR
with delay-Doppler uncertainty by Liang as well. J.Liang [5]
provided an orthogonal waveform model for RSN, which
eliminates interference when there is no Doppler shift.

Nevertheless, the radar sensor network using phase coded
waveforms has not been well studied so far. Phase coded
waveform design is one of the widely used waveform design
methods for pulse compression which allows a radar to simul-
taneously achieve the energy of a long pulse and the resolution

of a short pulse without the high peak power which is required
by a high enery short duration pulse [1]. In this paper, we
firstly theoretically study RSN design based on phase coded
waveforms: the conditions for waveforms co-existence. We
perform studies on the codes’ properties, especially the cross
correlation property and analyze the performance of optimized
punctured ZCZ sequence-pairs in RSN system with Doppler
shift. Then we apply our newly proposed triphase codes
called optimized punctured ZCZ sequence-pair set (optimized
punctured ZCZPS) to RSN. The simulation results show that
RSN based on a set of optimized punctured ZCZ sequence-
pairs provides promising detection performance much better
than that of single radar.

The rest of the paper is organized as follows. In Section
2, we study the co-existence of phase coded waveforms.
Section 3 introduces the definition and properties of our newly
provided triphase coded waveform–optimized punctured ZCZ
sequence-pair set. In Section 4, we study the performance
versus the number of radars in RSN with Doppler shift.
In Section 5, conclusions are drawn on a RSN using our
optimized punctured ZCZPS.

II. CO-EXISTENCE OF PHASE CODED
WAVEFORMS IN RSN

We assume there are N radars networking together in a
self-organizing fashion in our RSN. The radar i transmits a
waveform as

xi(t) =
N−1X
n=0

x
(n)
i (t− nτc) =

N−1X
n=0

exp(j2πβ
(n)
i (t− nτc)) (1)

Here, 0 < t <= τc.
When the phase coded waveforms are orthogonal to each

other, the interference from one waveform to the another can
be minimized or even removed. The cross correlation between
xi(t) and xj(t) could beZ T/2

−T/2
xi(t)x

∗
j (t)dt = τc

N−1X
n=0

exp[j2π(−N
2
+
1

2
)τc(β

(n)
i − β

(n)
j ]

sinc[τc(β
(n)
i − β

(n)
j )] (2)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2009 proceedings

978-1-4244-3435-0/09/$25.00 ©2009 IEEE
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:37 from IEEE Xplore.  Restrictions apply. 

648 of 816



The optimized cross correlation is that of orthogonal wave-
forms Z T/2

−T/2
xi(t)x

∗
j (t)dt =

½
Nτc i = j
0 i 6= j

(3)

It is easy to see that when
PN−1

n=0 πτc(β
(n)
i − β

(n)
j ) =

kπ, k = 1, 2, 3..., it satisfies the equation (3). In this way
can phase coded waveforms be orthogonal to each other and
work well simultaneously in Radar Sensor Network.

Nevertheless, there are time delay and Doppler shift ambi-
guity that will introduce interference to waveforms in RSN.
Ambiguity function (AF) [6] is usually used to succinctly char-
acterize the behavior of a waveform paired with its matched
filter. In the RSN of M radars, the radar i not only receives
its own back-scattered waveform, but also scattered signals
generated by other M−1 radars which caused interference to
radar i.

Assuming each radar transmits signal synchronously, t1 =
t2 = tM = 0. Considering time delay τ = mτc for receiving
radar i and interferences from all the other M − 1 radars, the
ambiguity function of radar i could be

Ai(τ, FD1 , ..., FDM ) (4)

= |τc
MX
j=1

N−1X
n=m

exp[j2π[β
(n−m)
i (

N

2
+m− 1)τc

+β
(n)
j (−N

2
+ 1)τc + FDj

(−N
2
+ n+ 1)τc]]

sinc[τc(β
(n)
j − β

(n−m)
i + FDj

)]|
Here, 0 < i <= M . (4) consists of two parts: useful signal
j = i part in the (4); and interferences from other M − 1
radar waveforms, j 6= i parts in (4). Since

PN−1
n=0 πτc(β

(n) −
β(n−m)+FD) = kπ, k = 1, 2..., it satisfies that A(τ, FD) = 0,
when FD =

k
τc
, k = 0, 1, ....

III. OPTIMIZED PUNCTURED ZCZ SEQUENCE-PAIR SET

Zero correlation zone (ZCZ) is a new concept provided by
Fan [7] in which both autocorrelation and cross correlation
sidelobes are zero while the time delay is kept within the ZCZ
instead of the whole period of time domain.

Matsufuji and Torii have provided some methods of con-
structing ZCZ sequences in [8] [9]. In this section, we apply
optimized punctured sequence-pair [10] in ZCZ to construct
optimized punctured ZCZ sequence-pair set.

A. The Definition of Optimized Punctured ZCZ Sequence-Pair
Set

Definition 3-1 Assume (x(p), y(p)) to be a sequence-pair of
set (X,Y ) of length N and the number of sequence-pairs K,
where p = 0, 1, ..., N − 1, i = 0, 1, ...,K − 1, if sequences in
the set satisfy the following equation:

Rx(p)y(q)(τ) =
N−1X
i=0

x
(p)
i y

(q)∗
(i+τ)mod(N) =

N−1X
i=0

y
(p)
i x

(q)∗
(i+τ)mod(N)

=

⎧⎨⎩ λN, for τ = 0, p = q
0, for τ = 0, p 6= q
0, for 0 < |τ | ≤ Z0

(5)

where 0 < λ ≤ 1, (x(p), y(p)) is called a ZCZ sequence-pair,
ZCZP (N,K,Z0) is an abbreviation. (X,Y ) is called a ZCZ
sequence-pair set, ZCZPS(N,K,Z0) is an abbreviation.

Definition 3-2 [10] Sequence u = (u0, u1, ..., uN−1) is the
punctured sequence for v = (v0, v1, ..., vN−1),

uj =

½
0, if j ∈ p punctured bits
vj , if j ∈ Non-punctured bits (6)

Here, p is the number of punctured bits in sequence v. Suppose
vj ∈ (−1, 1), u is p-punctured binary sequence that uj ∈
(−1, 0, 1), (u, v) is called a punctured binary sequence-pair.

Theorem 3-1 [10] The autocorrelation of punctured
sequence-pair (u, v) is defined

Ruv(τ) =
N−1X
i=0

uiv(i+τ)modN , 0 ≤ τ ≤ N− 1 (7)

If the punctured sequence-pair has the following autocorre-
lation property:

Ruv(τ) =

½
E, if τ ≡ 0modN
0, others (8)

the punctured sequence-pair is called optimized punctured
sequence-pair [10]. Where, E =

PN−1
i=0 uiv(i+τ)modN =

N − p, is the energy of punctured sequence-pair.
The properties, existing necessary conditions and some

construction methods of punctured binary sequence-pair have
been well studied by Jiang [10]. Many optimized punctured
sequence-pairs have been found of length from 7 to 31 so far.

Definition 3-3 If (x(p), y(p)) in Definition 3-1 is constructed
by optimized punctured sequence-pair and a certain matrix,
such as Hadamard matrix or an orthogonal matrix, where

x
(p)
i ∈ (−1, 1), i = 0, 1, 2, ..., N − 1

y
(q)
i ∈ (−1, 0, 1), i = 0, 1, 2, ..., N − 1

Rx(p)y(q)(τ) =
N−1X
i=0

x
(p)
i y

(q)∗
(i+τ)modN =

N−1X
i=0

y
(p)
i x

(q)∗
(i+τ)modN

=

⎧⎨⎩ λN, for τ = 0, p = q
0, for τ = 0, p 6= q
0, for 0 < |τ | ≤ Z0

(9)

where 0 < λ ≤ 1, then (x(p), y(p)) can be called an optimized
punctured ZCZP.

B. Design for Optimized Punctured ZCZ Sequence-pair Set
An optimized punctured ZCZ sequence-pair set can be

constructed from the following steps:
Step 1: Given an odd length optimized punctured binary

sequence-pair (u, v), the length of each sequence is N1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),
v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),
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Step 2: Given Hadamard matrix B, the length of the
sequence is N2 which is equal to the number of the sequences.

B = (b0; b1; ..., bN2−1), bi = (bi0, b
i
1, ..., b

i
N2−1)

Step 3: Process bit-multiplication of optimized punctured
binary sequence-pair and each row of Hadamard matrix B,

xij = ujmodN1b
i
jmodN2

, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,
X = (x0;x1; ...;xN2−1), xi = (xi0, x

i
1, ..., x

i
N−1, )

yij = vjmodN1b
i
jmodN2

, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,
Y = (y0, y1, ..., yN2−1), yi = (yi0, y

i
1, ..., y

i
N−1, )

Where GCD(N1, N2) = 1 and N = N1 ∗ N2. The
three steps make the sequence-pair set (X,Y ) an optimized
punctured ZCZPS, where ZCZ Z0 = N1 − 1. The length of
each sequence in optimized punctured ZCZPS is N = N1∗N2

that depends on the product of length of optimized punctured
sequence-pair and the length of a row in Hadamard matrix. The
number of sequence-pairs in optimized punctured ZCZPS rests
on the order of the Hadamard matrix. The sequence xi in X
and the corresponding sequence yi in Y construct an optimized
punctured ZCZP (xi, yi) that can be used as a phase coded
waveform, such as xi for radar transmitter and yi for radar
receiver. The phase states for any sequence-pair among (xi, yi)
are only of three options, so our newly provided optimized
punctured ZCZPS is a new set of triphase codes.

It is easy to prove that the correlation property of the
sequence-pairs in the set is:

Rxiyj (τ) = Rxjyi(τ) = Ruv(τmodN1)Rbibj (τmodN2)

=

⎧⎨⎩ EN2, if τ = 0, i = j
0, if 0 < |τ | ≤ N1 − 1, i = j
0, if i 6= j

According to Definition 3-1, the sequence-pair set con-
structed by the above method is a ZCZPS.

C. Properties of Optimized Punctured ZCZ Sequence-pair set
An example is given to analyze the autocorrelation and

cross correlation properties of the optimized punctured ZCZPS
constructed by the method mentioned above. The 124-length
optimized punctured ZCZPS (X,Y ) is constructed by 31-
length optimized punctured binary sequence-pair (u, v), u =
[++++−−−+−+−+++−−−−+−−+−−+++−++
−], v = [++++000+0+0+++0000+00+00+++0++0]
(using 0+0 and 0−0 symbols for 010 and 0 − 10) and Hadamard
matrix H of order 4. Each row of matrix X = [x1;x2;x3;x4]
and Y = [y1; y2; y3; y4] constitute a certain optimized punc-
tured ZCZP (xi, yi).

1) Autocorrelation and Cross Correlation Properties: The
autocorrelation property R(x1, y1) and cross correlation prop-
erty R(x1, y2) = R(y1, x2) of 124-length optimized punctured
ZCZPS (X,Y ), are shown in Fig.1.

According to Fig.1, the sidelobe of autocorrelation of
ZCZPS can be as low as 0 when the time delay is kept within
Z0 = N1 = 31 and the cross correlation value is 0 during the
whole time domain. The only uniform phase codes that can
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Fig. 1. Periodic autocorrelation property of optimized punctured ZCZ
sequence-pair set

reach the maximum peak signal sidelobe ratio (PSR) [6] are
the Barker codes whose length is equal or less than 13. The
sidelobe of the new code shown in Fig.1 can be as low as 0,
and the PSR can be as large as infinite. Besides, the length of
the new code is various and much longer than the length of
the Barker code.

2) Ambiguity function: Because of the Doppler shift fd [6],
the main peak of the autocorrelation function is reduced and
so as to the SNR degradation. Focusing on the sequence-pair
(x, y) here, the receiving sequence in ambiguity function is
different from the echo signal and the periodic correlation
is used instead of aperiodic correlation here. The ambiguity
function can be rewritten as

A(τ, FD) = |
Z −T

2 +τ

−T
2

x(t)exp(j2πFDt)y
∗(t+ T − τ))dt

+

Z T
2

− t
2+τ

x(t)exp(j2πFDt)y
∗(t− τ)dt| (10)

In order to analyze the autocorrelation performance of an
optimized punctured ZCZP with delay-Doppler shift, Equation
(10) is plotted in Fig.2(a) in a three-dimensional surface
plot. In Fig.2(a), there is relative uniform plateau suggesting
low and uninform sidelobes. This low and uniform sidelobes
minimize target masking effect in ZCZ of time domain, where
Z0 = 31, −31 < τ < 31, τ 6= 0.
D. Co-existence of Optimized Punctured ZCZ Sequence-pairs

Considering interference from other radars j 6= i, with
delay-Doppler shift, the ambiguity function of radar i is

A(τ, FD1 , ...FDM )

= |
Z ∞
−∞

MX
j

(xj(t)exp(j2πFDi
t)y∗i (t− τ)dt| (11)

Fig.2(b) is three-dimensional surface plot to analyze the
ambiguity function of radar i (considering interference from
other radars). Fig.2(b) closely resembles Fig.2(a). Without
Doppler shift, there are regular high peaks on multiplers of
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(b)

Fig. 2. (a)Ambiguity function of a 124-length ZCZ sequence-pair(xi, yi)
(b)Ambiguity function of radar i (considering interference from other radars)

period of 31 which is the length of ZCZ. And the high peak
on zero time delay point can be used to detect targets. Hence,
even considering the interference from other M−1 radars, the
radar i may work as well as there is no interference.

IV. SYSTEM SIMULATION IN RADAR SENSOR NETWORK

In RSN of M radars, the combined received signal for the
radar i is

ri(u, t) =
MX
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t) (12)

FDj and tj are Doppler shift of target and time delay relative
to waveform j, and n(u, t) is additive white Gaussian noise
(AWGN). The structure can be constructed as Fig.3.

According to this structure, the combined received signal
ri(u, t) is processed by its corresponding matched filter i and
the output of branch i is Zi(u, t). Each Zi(u, t) can be equal
gain combined to construct the final output Z(u, t).

The output |Zi(u)| of branch i is

|
Z −T

2

−T
2

[
MX
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t)]y∗i (t− ti)dt| (13)

Where n(u) =
R−T

2

−T
2

n(u, t)y∗i (t− ti)dt can be easily proved
to be still an AWGN.
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Fig. 3. Waveform diversity combining in RSN

We can also have two special cases for |Zi(u)|:
1)If there is Dopper shift but no time delay, all the radar
sensors transmit signals synchronously, |Zi(u)| turns to be:

|
Z −T

2

−T
2

[
MX
j=1

xj(t)exp(j2πFDj
) + n(u, t)]y∗i (t)dt| (14)

Assuming that the Doppler shift can be well estimated in
the receiving radar sensor, so the Doppler shift compensation
factor exp∗(j2πFDj

) is introduced here.

|Zi(u)| ≤ |E|+ |
Z −T

2

−T
2

[
MX
j=1

xj(t)exp(j2π(FDj − FDi))y
∗
i (t)|

+|
Z −T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDit)dt| (15)

If FD1
= FD2

= ... = FDj
= FD, further simlified as

|Zi(u)| ≤ |E|+ 0+ |
Z −T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDit)dt| (16)

2) If both time delay and Doppler shift exist in the RSN,
assuming FD1 = FD2 = ... = FDj = FD, considering the
Doppler shift compensation factor in the receiving sensor,

|Zi(u)| ≤ |E|+ |
Z −T

2

−T
2

[
MX
j 6=i

xj(t− tj)]y
∗
i (t− ti)dt|

+|
Z −T

2

−T
2

n(u, t)y∗i (t− tj)exp
∗(j2πFDi

t)dt| (17)

Because of the good properties of our proposed codes, we
modify the frame of receiving data before the matched filter
on the receiver to improve the RSN performance. The data
from N + 1 to max(tj) + N are added to data from 1 to
max(tj), bit by bit, where N is the original data length and
tj is the time delay for jth transmitting radar sensor. In this
way can we get the output of the matched filter

|Zi(u)| ≤ |E|+ 0+ |
Z −T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDit)dt| (18)
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According to (16) and (18), it is easy to see that using our
provided codes and frame modification the RSN under the
condition of time delay for each radar sensor can, to some
extent, work as well as the RSN where all the radar sensors
transmit signals synchronously.

We apply optimized punctured ZCZPS as a bank of phase
coded waveforms together with equal gain combination tech-
nique in the simulation in order to study the performance
versus different number of radars in RSN with Doppler shift.
We respectively simulated PM (Probability of Miss Detection)
and PFA (Probability of False Alarm) of different number of
radars using different number of optimized punctured ZCZ
sequence-pairs. Two special cases of performances have been
simulated. They are performances under the condition of no
time delay but Doppler shift, and under the condition of time
delay for each radar sensor and having Doppler shift.
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Fig. 4. Probability of miss detection in RSN under the condition of no time
delay but Doppler shift or time delay and Doppler shift

Fig.4 illustrates that when PM = 10−3, SNR of 8-radars are
2.2dB smaller than that of single radar system using Barker
code with Doppler shift. Considering time delay for each radar
in Fig.4, SNR of 8-radar RSN can gain 1.7dB smaller than
4-radar SNR to acheive the same PM = 10−3.

According to Fig.5, the SNR of 8-radars can be nearly
3.8dB smaller than that of single radar system using Barker
code in order to achieve the same PFA = 10

−2. In addition,
4-radar system requires 1.7dB more than that of 8-radar RSN
under the condition of both time delay and Doppler shift.

The above figures distinctly illustrate that performances of
detection of multiradars are superior to that of singler radar.
The performances of 4-radar and 8-radar RSN considering
time delay for each radar transimtting sensor can be com-
parable to those under the condition of no time delay, when
large amount of radars are used in the RSN.

V. CONCLUSION

We have studied phase coded waveform design and spatial
diversity under the condition of Doppler shift in RSN. In
this paper, we also investigate the definition and properties of
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Fig. 5. Probability of false alarm in RSN under the condition of no time
delay but Doppler shift or time delay and Doppler shift

optimized punctured ZCZPS. The significant advantage of the
optimized punctured ZCZ sequence-pair set is a considerably
reduced autocorrelation sidelobe as low as zero in ZCZ and
zero mutual cross correlation value in the whole time domain.
The general conclusion can be drawn that applying our opti-
mized punctured ZCZPS as a bank of phase coded waveforms
to a RSN can effectively satisfy higher demands criterion for
detection accuracy in modern military and security affairs.
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Abstract— In this paper, we study target detection in foliage
environment. When radar echoes are in good quality, the detec-
tion of target can be achieved by applying short time Fourier
transform (STFT) to the received UWB radar waveform. We
compare our approach in case of no target as well as with target
against the scheme in which 2-D image was created via adding
voltages with the appropriate time offset. Results show that our
approach can detect target more easily. When radar echoes are
in poor condition and single radar is unable to carry out the
detection, we employ both Radar Sensor Networks (RSN) and
RAKE structure to combine the echoes from different radar
members and finally detect the target.

I. INTRODUCTION

Forest has been an asymmetric threat environment due to a
limited sensing capability of a warfighter. It provides excellent
concealment from observation, ambush, and escape, as well
as secure bases for enemy command & control (C2), weapons
caches, and improvised explosive device (IED)/ weapon of
mass destruction (WMD) assembly. Detecting targets beneath
foliage has been a long-standing problem for both military and
civilian communities. In addition, it will benefit other sensing
problems such as detection and recognition of targets obscured
by soil or building structures.

There have been many efforts undertaken to investigate fo-
liage penetration. [1] measured one-way transmission proper-
ties of foliage using a bistatic and coherent wide-band system
over the band from 300 to 1300 MHz. [2] made measurements
of two-way foliage attenuation by synthetic aperture radar
(SAR) and discussed probability dependency for frequency,
polarization and depression angle. These studies has shown
that foliage contains many spikes and is very “impulsive”,
which makes target detection difficult to achieve. Some other
works are based on foliage clutter modeling. Although K-
distribution has been favored for statistic model of radar clutter
[3], [4] demonstrated that in very spiky and impulsive foliage
clutter, K-distribution is inaccurate. Afterwards, an alpha-
stable foliage clutter model has been proposed in [5]. However,
all the above efforts are focusing on the analysis of foliage
characterization. The pragmatic target detection measurements
in foliage has not been available previously in the literature.

A new foliage penetration measurement effort began in
August 2005 and continued through December 2005. The
foliage measured included late summer foliage and fall and
early winter foliage. Late summer foliage, because of the

 

Fig. 1. The target (a trihedral reflector) is shown on the stand.

limited rainfall, involved foliage with decreased water content.
Late fall and winter measurements involved largely defoliated
but dense forest. Ultra-wide band (UWB) radars have been
employed due to the exceptional range resolution coupled with
penetrating capability and low power [6] [7]. The triangular-
shaped target, which was shown in Fig. 1, was a round trip
distance of 600 feet from the bistatic antennas (300 feet one
way). The collected data is illustrated in Fig. 2.

UWB

Target No Target

Transmit Receive Transmit Receive

Poor Signal Good Signal

Fig. 2. Data file structure.

For further detailed measurement, please refer to [8]. In
[8], we applied differential based technology to received UWB
radar waveforms in order to detect the target. Although it can
work well for good quality echoes and poor ones with the
help of radar sensor networks (RSN), actually a threshold is
needed to separate false-alarm signal from real target echoes.
This will be further illustrated in Section III.
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In this paper we propose a short-time Fourier transform
(STFT) based approach to detect the target obscured by foliage
canopy. Compared with the differential based technology, this
new approach is more accurate and intuitive. The organization
of the paper is as follows: Section II elaborates the target
detection problem. Section III proposes a STFT based ap-
proach for through-foliage target detection when the signal
quality is good. Section IV applies RSN and RAKE structure
for through-foliage target detection when the signal quality is
poor. Section V concludes this paper.

II. TARGET DETECTION PROBLEM

We considered two sets of data from this experiment:
“good” and “poor”. Good signal quality data were collected
using high amplitude pulses and 100 pulses reflected signals
were averaged for each collection. When the Barth pulse
source was operated at low amplitude and significant pulse-to-
pulse variability was noted for these collections. We refer this
set of collections as “poor” signal. Fig. 3 shows the received
UWB waveforms with and without target for good signal.
Poor echoes look similar on the whole. In order to further
analyze their difference as well as the discrepancy between no
target and with target, we provide expanded views from sample
13001 to 15000 in Fig.4 and 5. Each sample is spaced at 50
picosecond interval, and 16,000 samples were collected for
each collection for a total time duration of 0.8 microseconds.

The target response for good and poor signals will be
the echo differences, plotted in Fig. 4c and 5c respectively.
However, in a practical situation we either obtain clutter echo
without target or waveforms with target on range without the
knowledge about the presence of it. The challenge is how can
we make target detection only based on Fig. 4b and Fig. 5b
(with target)? How can we tell the absence of target only based
on Fig. 4a or Fig. 5a (no target)?

III. TARGET DETECTION WITH GOOD SIGNAL QUALITY

Although Fig. 4a and 4b look quite similar at first sight, after
careful observation, it is not difficult to find that the sample
strength change more abruptly where target appears (around
sample 14000), which implies that echo from target contains
more AC values than that without target. This phenomenon
inspires the application of short time Fourier transform (STFT)
[9].

STFT uses a slide window to determine the sinusoidal
frequency and phase content of a signal as it changes over
time. This form of the Fourier transform, also known as time-
dependent fourier transform, has a great many applications in
sonar and radar processing. We will show that STFT - based
approach is able to make target detection more intuitively and
easily.

For the continuous-time signal, the function to be trans-
formed is multiplied by a nonzero window sliding along
the time axis, therefore a two-dimensional expression can be
defined as:

F (m,w) =
∫ ∞

−∞
x(t)w(t − m)e−jwtdt (1)
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Fig. 3. Measurement with very good signal quality and 100 pulses integration.
(a) no target on range (b) with target on range (target appears at around sample
14000)

where x(t) is the function to be transformed and w(t) is the
window function. F (m,w) represents sinusoidal values at the
center of the window w(t) that starts at time position m.

The discrete STFT can be expressed as

F (m,w) =
N−1∑
n=0

r(n)w(n − m)e−jwn (2)

where r(n) is radar measurement and w(n) is the window
function.

We apply a rectangular window, with its length L = 30 and
step size M = 16.

w(n) =
{

1 if 0 ≤ n ≤ 29
0 otherwise

(3)

Then the cumulated power of AC values (m ≥ 4) can be
obtained by

P (m) =|
L−1∑
w=4

F (m,w)2 | (4)

We plot the power of AC values P (m) versus time domain
sample index in Fig. 6a and 6b for the data sets in Fig. 3a
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Fig. 4. Measurement with good signal quality and 100 pulses integration
(a) Expanded view of traces (no target) from samples 13001 to 15000 (b)
Expanded view of traces (with target) from samples 13001 to 15000 (c)
Expanded view of traces difference between with and without target

and 3b respectively. We can see that at the samples where
there is a target, the curve of the power signal looks like a
Gaussian pdf rather than chaotic impulses. And thus it is quite
straightforward to see that there is no target on range in Fig.
6a.

It’s worth mentioning that for better visual inspection,
window length and step size may change on a basis of different
radar data.

Based on the approach in [8], the power of clutter-accounted
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Fig. 5. Measurement with poor signal quality (a) Expanded view of traces
(no target) from samples 13001 to 15000 (b) Expanded view of traces (with
target) from samples 13001 to 15000 (c) Expanded view of traces difference
between with and without target

and differentiated echoes in Fig. 7. If no thereshold is applied,
one may claim that the high impulses occurred around sample
13400 and 13500 indicate the presence of targets. Therefore, a
threshold comparison is indefensible to reduce false alarm for
the differential-based target detection approach. However, this
step will increase computing complexity and system cost. The
new STFT based technology does not demand the threshold
detection at all. Therefore without a threshold, STFT based
approach will lead to smaller false alarm compared to the
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Fig. 6. The power of AC values versus sample index. (a) no target (b) with
target in the field

differential based one.

IV. TARGET DETECTION WITH POOR SIGNAL QUALITY

As mentioned in Section II, when the Barth pulse source
was operated at low amplitude and the sample values are
obtained based on insufficient pulse response averaging (aver-
aged over 35 pulses for each collection), significant pulse-to-
pulse variability was noted and the return signal quality is poor.
Fig. 5 illustrate the received echoes in this situation. Even with
the application of the STFT - based scheme proposed above,
we can not tell whether there is a target or not in the range.
Since pulse-to-pulse variability exists in the echoes at different
time or different site, this motivate us to explore the spatial
and time diversity using Radar Sensor Networks (RSN).

In nature, a network of multiple radar sensors can been uti-
lized to combat performance degradation of single radar [12].
These radar sensors are managed by an intelligent clusterhead
that combines waveform diversity in order to satisfy the com-
mon goals of the network other than each radar operate sub-
stantively. As radar sensors are environment dependent [13],
it may provide better signal quality if different radars work
collaboratively to perform data fusion. For example, consider
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Fig. 7. The power of processed waveforms (a) no target (b) with target in
the field

a system of two radars. When the signal of either radar
unfortunately experience a severe fading, if two radars are
spaced sufficiently far apart, it is not likely that both of the
radars experience deep fade at the same time. By selecting
better waveform from the two radars, the useful data is less
likely to be lost.

In this paper, we assume the radar sensors are synchronized
in RSN and we employed RAKE structure to combine received
information for RSN. The detailed process is shown in Fig.
9. The echo, i.e., RF response by the pulse of each cluster-
member radar sensor, will be combined by the clusterhead
using a weighted average, and the weight Ai is determined by
the power of each echo xi(m) (m is the sample index),

Ai =
Ei∑n
i=1 Ei

(5)

and
Ei = var(xi(m)) + [mean(xi(m))]2 (6)

As for STFT, we apply window length L = 25 and step size
M = 15. We ran simulations for n = 35 and plot the power of
combined signal obtained through STFT - based approach in
Fig. 8. Compare this figure with Fig. 5a and Fig. 5b, it is quite
obvious to see that there is a target around sample 14,000.
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Fig. 8. The power of AC values versus sample index. (a) no target (b) with
target in the field

Fig. 9. Block diagram of STFT - based approach and diversity combination
in RSN

V. CONCLUSION

In this paper, we propose a short time Fourier transform
(STFT) - based signal processing approach on received UWB
Radar waveforms to improve through-foliage target detection.
The foliage penetration measurements were taken in Holliston,
Massachusetts. When radar echoes are in good quality, the
detection of target can be achieved by applying STFT-based
technology to single radar. We compared our approach in case
of no target as well as with target against the scheme in
which 2-D image was created via adding voltages with the
appropriate time offset. Results show that our approach can
detect target more intuitively. When radar echoes are in poor
condition and single radar is unable to carry out detection,
we employe both Radar Sensor Networks (RSN) and RAKE
structure to combine the echoes from different radar members
and finally successfully detect the target.
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Abstract— In this paper, we study the wireless channel
modeling in foliage environment, a rich scattering and time-
varying environment, based on extensive data collected using
UWB and narrowband (200MHz and 400MHz) radars. We
apply two approaches to the wireless channel modeling: Saleh
and Valenzuela (S-V) method for UWB channel modeling
and CLEAN method for narrowband and UWB channel
modeling. We validated that UWB echo signals (within a
burst) don’t hold self-similarity, which means the future
signals can’t be forecasted based on the received signals and
channel modeling is necessary from statistical point of view.
Based on the S-V method for UWB channel modeling, in
foliage UWB channel, the multi-path contributions arrive at
the receiver are grouped into clusters. The time of arrival of
clusters can be modeled as a Poisson arrival process, while
within each cluster, subsequent multipath contributions or
rays also arrive according to a Poisson process. At different
field (near field, medium field, and far field), we observe
that the Poisson process parameters are quite different.
We also observe that the amplitude of channel coefficient
at each path follows Rician distribution for medium and
far field, and it’s non-stationary for paths from near field
(one of two Rician distributions), and these observations
are quite different with the IEEE indoor UWB channel
model and S-V indoor channel model. Based on the CLEAN
method, the narrowband (200MHz and 400MHz) and UWB
channel impulse responses have many similarities: both can
be modeled as linear time-variant filter channel.

I. INTRODUCTION AND MOTIVATION

In July 2003, the Channel Modeling sub-committee of
study group IEEE 802.15.SG3a published the final report
regarding the UWB indoor multipath channel model [4]. It
is a modified version of the indoor Saleh and Valenzuela
(S-V) channel model [6]. The S-V model was developped
for NLOS channel, and it has also been applied to LOS
channels where it is perhaps less valid, unless LOS compo-
nents are specifically added [5] The IEEE suggested an ini-
tial set of values for the indoor UWB channel model which
has range less than 10 meters. However, lots of applications
of UWB are for outdoor activities such as sense-through-
foliage target detection. Forests favor asymmetric threats
because the warfighter has a limited sensing capability.

Forests provide excellent concealment from observation,
ambush, and escape, as well as provide secure bases for
enemy Command & Control (C2), weapons caches, and
Improvised Explosive Device (IED)/ Weapon of Mass
Destruction (WMD) assembly. These have become “the
high ground” in fourth-generation warfare, providing a
significant strategic advantage. Unfortunately, no work has
been done on the outdoor UWB channel modeling.

In this paper, we will model the UWB and narrowband
channels using UWB and narrowband radars in foliage
environment which is a rich scattering and time-varying
environment. UWB radar emissions are at a relatively
low frequency-typically between 100 MHz and 3 GHz.
Additionally, the fractional bandwidth of the signal is very
large (greater than 0.2). Such radar sensor has exceptional
range resolution that also has an ability to penetrate many
common materials (e.g., walls). Law enforcement person-
nel have used UWB ground penetrating radars (GPRs)
for at least a decade. Like the GPR, sense-through-foliage
radar takes advantage of UWB’s very fine resolution (time
gating) and low frequency of operation.

The rest of this paper is organized as follows. In Section
II, we summarize the measurement and collection of data
we used in this paper. In Section III, we present our outdoor
UWB channel model in rich scattering and time-varying
environment. In Section IV, we study the channel impulse
response based on CLEAN method for narrowband and
UWB channels. We conclude this paper in Section V.

II. EXPERIMENT SETUP AND DATA COLLECTION

Our work is based on the data collected in UWB radar-
based sense-through-foliage experiment in late summer and
fall. Late summer foliage, because of the limited rainfall,
involved foliage with decreased water content. Late fall
and winter measurements involved largely defoliated but
dense forest, so it’s a rich scattering environment. Because
of wind or different temperature in dense forest, it’s
also a time-varying environment. The UWB radar-based
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experiment was constructed on a seven-ton man lift, which
had a total lifting capacity of 450 kg. The limit of the lifting
capacity was reached during the experiment as essentially
the entire measuring apparatus was placed on the lift (as
shown in Fig. 1). For the UWB data we used in this
paper, each sample is spaced at 50 picosecond interval,
and 16,000 samples were collected for each collection
for a total time duration of 0.8 microseconds at a rate
of approximately 20 Hz. The Barth pulse source was
operated at low amplitude and 35 pulses reflected signal
were averaged for each collection. Significant pulse-to-
pulse variability was noted for these collections. We plot
the transmitted pulse (one realization) in Fig. 2a) and the
received echos in one collection in Fig. 2b (averaged over
35 pulses).

 

Fig. 1. This figure shows the lift with the experiment. The antennas
are at the far end of the lift from the viewer under the roof that was
built to shield the equipment from the elements. This picture was taken
in September with the foliage largely still present. The cables coming
from the lift are a ground cable to an earth ground and one of 4 tethers
used in windy conditions.

For comparison, we also studied narrowband (200MHz
and 400MHz) radar signal propagation. For the data we
used in this paper, each sample is spaced at 50 picosecond
interval, and 16,000 samples were collected for each col-
lection for a total time duration of 0.8 microseconds at a
rate of approximately 20 Hz. Fig. 3a shows the transmitted
signal and Fig. 3b shows the received echos (averaged over
35 pulses) for 200MHz narrowband radar. Fig. 4a shows
the transmitted signal and Fig. 4b shows the received echos
(averaged over 35 pulses) for 400MHz narrowband radar.
The data collections were extensive. 20 different positions
were used, and 35 collections were performed at each
position for UWB, 200MHZ, and 400MHz radars.
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Fig. 2. UWB radar transmitted pulse and received echos in one
experiment. (a) Transmitted pulse. (b) Received echos..

III. UWB CHANNEL MODELING BASED ON S-V
APPROACHES

A. Introduction to Channel Modeling for Indoor UWB
Channel

In the S-V model [6], the arrival of clusters is modelled
as a Poisson arrival process with a rate Λ, while within
each cluster, subsequent multipath contributions or rays
also arrive according to a Poisson process with a rate λ
(see Fig. 5). In the S-V model, the magnitude of the k-th
path within the l-th cluster follows a Rayleigh distribution,
and the phase of each path is assumed to be a statistically
independent random variable over [0, 2π). Besides, the
average Power Decay Profile (PDP) is characterized by
an exponential decay of the amplitude of the clusters,
and a different exponential decay for the amplitude of the
received pulses within each cluster, as shown in Fig. 6.
In the IEEE UWB indoor channel model [4], the cluster
approach was adopted (same as S-V model), but a log-
normal distribution was suggested for characterizing the
multi-path gain amplitude, and an additional log-normal
variable was introbuced for representing the fluctuations of
the total multipath gain. Besides, the phase of each path is
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Fig. 3. Narrowband radar (200MHz) transmitted pulse and received
echos in one experiment. (a) Transmitted pulse. (b) Received echos.

assumed to be either 0 or π with equal probability.

B. Outdoor UWB Channel Modeling

1) Cluster Arrival and Power Decay Profile: We study
the outdoor UWB signal propagation in three cases: near
field (less than 55m), medium field (55m–85m), and far
field (above 85m and up to 120m in this study). In the
data collection, each sample is spaced at 50 picosecond
interval, so these cases are corresponding to samples 1–
7333 for near field, samples 7333–11333 for medium field,
and samples 11334–16000 for far field. In Fig. 7, we plot
the power profile of the received echos (averaged over 30
collections to eliminate the effect of random noise and
each collection was averaged based on 35 pulses) for the
three different cases. Since the transmitted pulse (as plotted
in Fig. 2a) is a very narrow impulse pulse (like a delta
function in time domain), we analyzed the channel property
based on the received echos power profile plotted in Fig.
7, and similar methodology was also used in S-V model
studies [6].

Observe Fig. 7, multi-path contributions arrive at the
receiver grouped into clusters. The time of arrival of
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Fig. 4. Narrowband radar (400MHz) transmitted pulse and received
echos in one experiment. (a) Transmitted pulse. (b) Received echos.
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TimeCluster 0

3rd path in
1st cluster

Fig. 5. An illustration of the channel impulse response in S-V model.

Power Delay
Profile

Time

Cluster
Envelope

Arrivals

Overall Envelope

Fig. 6. An illustration of the double exponential decay of the mean
cluster power and the ray power within clusters in S-V model.

clusters can be modeled as a Poisson arrival process with
a rate Λ, while within each cluster, subsequent multipath
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contributions or rays also arrive according to a Poisson
process with a rate λ (see Fig. 5). We define:

• Tl = the arrival time of the first path of the l-th
cluster;

• τk,l = the delay of the k-th path within the l-th cluster
relative to the first path arrival time Tl;

• Λ = the cluster arrival rate;
• λ = the ray arrival rate, i.e., the arrival rate of the

paths within each cluster.

By definition, we have τ0l = Tl. The distributions of the
cluster arrival time and the ray arrival time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0

p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (1)

The above observations are very similar as that for the
indoor UWB channel. Specifically, we also observed the
Λ and λ are quite different for three different cases.

• Observe Fig. 7a for near field, Λ (1/ns) is around 0.02
(one cluster in every 50ns or 1000 samples), and λ
(1/ns) is around 0.4 (one path in every 2.5ns or 50
samples). Perhaps it’s because some major scatters in
near field (such as tree stems) reflected signals, so
some paths are quite dominant.

• Observe Fig. 7b for medium field, clusters arrive quite
often. Λ (1/ns) is around 0.05 (one cluster in every
20ns or 400 samples), and λ (1/ns) is around 1 (one
path in every 1ns or 20 samples).

• Observe Fig. 7c for far field, clusters almost always
arrive (because of rich scattering), so Λ (1/ns) is
around 0.5 (one cluster in every 2ns or 20 samples),
and λ (1/ns) is around 4 (one path in every 250ps
or 5 samples). Perhaps it’s because of rich scattering,
every path has very similar power level.

Besides, the average PDP can be represented by an ex-
ponential decay of the amplitude of the clusters, and
a different exponential decay for the amplitude of the
received pulses within each cluster, as shown in Fig. 6.

2) Statistical Distribution of Channel Coefficients: We
also study the statistical distributions of each given path.
We plot the histogram for some sample values of the above
three cases based on 30 collections and each collection is
averaged over 35 pulses. Near field samples are based on
samples 5001–6000; medium field samples are based on
samples 8001–9000; and far field samples are based on
samples 12001–13000. Since the samples are very close
(within 7.5m distance), so their path-loss effect can be
ignored. For each case, we have 30000 samples, and we
plot their histogram in Fig. 8.

First, observe Fig. 8c for far field, the histogram can be
almost perfectly modelled by a non-zero-mean Gaussian
distribution, which means the amplitude of the channel
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Fig. 7. The power profile for three different cases: (a) near field, (b)
medium field, and (c) far field.

coefficient follows a Rician distribution,

pα(x) =
x

σ2
exp{−x

2 + s2

2σ2
}I0(xs

σ2
) x ≥ 0 (2)

where s is the mean value of Gaussian and I0(·) is the
zero order modified Bessel function. This kind of channel
is known as Rician fading channel. A Rician channel is
characterized by two parameters, Rician factor K which is
the ratio of the direct path power to that of the multipath,
i.e., K = s2/2σ2, and the Doppler spread (or single-
sided fading bandwidth) fd. Similarly, Fig. 8b for medium
field, the histogram can be approximately modelled by
a non-zero-mean Gaussian distribution, which means the
amplitude of the channel coefficient follows a Rician
distribution. Observe Fig. 8a for near field, the histogram
can be approximately modelled by two non-zero-mean
Gaussian distributions, which means it’s non-stationary,
and the amplitude of the channel coefficient follows one
of two Rician distributions. The above observations are
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quite different with the indoor UWB channel model
(log-normal distribution) and S-V model (Rayleigh
distribution). The sign of channel coefficient is either +1
or -1, i.e., its phase is either 0 or π, which matches the
IEEE indoor UWB channel model.
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Fig. 8. The histograms and their approximation using Gaussian distribu-
tions (dashed lines). The histograms are based on 30 collections and each
collection is averaged over 35 pulses. (a) near field samples, (b) medium
field samples, and (c) far field samples.

IV. WIRELESS CHANNEL MODELING BASED ON

CLEAN METHOD

We apply the CLEAN algorithm to obtain the UWB
channel model based on the transmitted pulses and received
echos. The CLEAN algorithm was first introduced in [3]
and has been applied to UWB measurements [2][7] and it
assumes that the channel is a series of impulses which is
consistent with the tapped-delay line channel model. This
algorithm searches the received echos iteratively with the
template to find the maximum correlation [1]. The steps
are [5]:

1) Calculate the autocorrelation of the template rss(t)
and the cross-correlation of the template with the
received waveform rsy(t).

2) Find the largest correlation peak in rsy(t), record the
normalized amplitudes αk and relative time delay τk
of the correlation peak.

3) Subtract rss(t) scaled by αk from rsy(t) at the time
delay τk.

4) If a stopping criterion (e.g., a minimum threshold
on the peak correlation) is not met, go to step 2.
Otherwise stop.

Based on the CLEAN method, we successfully obtained
the channel impulse responses for all transmit waveforms
and receive echoes. For illustration purposes, in Figs. 9,
10, and 11, we plot the channel impulse responses for
200MHz, 400MHz, and UWB channels using CLEAN
method in two experiments. Observe that for all channels,
channel impulse responses have many similarities: all can
be modeled as linear time-variant filter channel, which is
a more general case of the S-V model.
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Fig. 9. The channel impulse responses for 200MHz channel using
CLEAN method in two experiments.

V. CONCLUSIONS

In this paper, we studied the statistical modeling for out-
door wireless channels (200MHz, 400MHz, and UWB) in
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Fig. 10. The channel impulse responses for 400MHz channels using
CLEAN method in two experiments.

rich scattering and time-varying environment based on ex-
tensive data collected using narrowband and UWB radars.
We validated that UWB echo signals (within a burst) don’t
hold self-similarity, which means the future signals can’t
be forecasted based on the received signals and channel
modeling is necessary from statistical point of view. In
outdoor UWB channel, the multi-path contributions arrive
at the receiver are grouped into clusters. The time of
arrival of clusters can be modeled as a Poisson arrival
process, while within each cluster, subsequent multipath
contributions or rays also arrive according to a Poisson
process. At different field (near field, medium field, and
far field), we observed that the Poisson process parameters
are quite different. We also observed that the amplitude of
channel coefficient at each path follows Rician distribution
for medium and far field, and it’s non-stationary for paths
from near field (one of two Rician distributions), and these
observations are quite different with the IEEE indoor UWB
channel model and S-V model. Using CLEAN method, we
observed that for all channels, channel impulse responses
have many similarities: all can be modeled as linear time-
variant filter channel, which is a more general case of the
S-V model.
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Fig. 11. The channel impulse responses for UWB channels using
CLEAN method in two experiments.
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Abstract-In this paper we investigate a methodology named
channel selection with the aim of balancing the multiple input
multiple output (MIMO) advantage and the complexity of node
cooperations for wireless sensor networks (WSN). In respect
of cross-layer design, we propose the Maximum Spanning Tree
Searching (MASTS) algorithm to select a set of subchannels that
always provide a path connecting all sensors. The performances
are analyzed through Monte Carlo simulation in terms of
capacity, diversity gain, bit error rate (BER) and multiplexing
gain. It is shown that MASTS channel selection can achieve
satisfying performances compared to those of full virtual MIMO
with reduced resource consumption.

I. INTRODUCTION AND MOTIVATION

Virtual multiple-input-multiple-output (MIMO) has been
studied intensively in recent years in order to improve the
energy-efficiency in wireless sensor networks (WSN) [1][2].
Constrained by its physical size and limited battery, individual
sensor is allowed to contain only one antenna. Numerical
results show that if these sensors can be constructed into
cooperative MIMO systems, over certain distance ranges they
may outperform single-input-sinlge-output (SISO) systems in
energy consumption.

In order to encompass both wireless and networking com
munications, virtual MIMO based WSN have so far been
extended by incorporating the multi-hop routings and hop-by
hop recovery schemes. [3][4]. This model is illustrated in Fig.
1. Assume the multi-hop WSN are made up of n clusters.
Here cluster refers to a group of closely gathered wireless
sensors that have been cooperated as multiple transmitters
or receivers. If each cluster consists of Ci i == 1,2, ... , n

sensor nodes respectively, then the RF chains for this virtual
MIMO WSN system will tum out to be Il~l Ci, which implies
tremendous circuit energy consumption along with the increase
of n. Provided that the energy and delay cost associated with
the local information exchange have to be taken into account,
cooperative virtual MIMO WSN may not always guarantee to
be effective.

In this paper we investigate a methodology named channel
selection with the aim of balancing the MIMO advantage and
the complexity of sensor cooperations. This channel selection
based virtual MIMO WSN model is illustrated in Fig. 2. It

978-1-4244-2677-5/08/25.00 (c)2008 IEEE

o 0" ~ .& ~~)

Cluster 2 Clus1er p

Fig. 1. Cooperative clusters in multi-hop wireless sensor networks

is a common scenario that sensor nodes (denoted by circles)
are efficiently grouped into clusters while cluster-heads (de
noted by triangles) offer centralized control over cooperative
virtual MIMO channels. These cluster-heads are not subject
to strict energy constrains but others are [2]. At first, channel
side information (CSI) may be obtained by various channel
estimation techniques such as the reciprocity principle or a
feedback channel [5]. Then channel selection may be applied
through subset selection algorithms by switches either at a
transmitting or receiving cluster-head, or jointly working at
both ends. Therefore the best set of channels are selected to
be active while remaining ones are not employed. Since at
some hops transmissions are turned off, energy will be saved
during the virtual MIMO communications. If the same total
transmitting power is allocated to the best subset of channels,
performances after channel selection, such as capacity, BER
may even be better compared to those before channel selection.

It is worth mentioning that the energy consumption intro
duced by collecting CSI information is indispensable for the
proper operation of virtual MIMO. In [1], MIMO fading chan
nels is presented as a scalar matrix, which implies that CSI is
assumed to be known, however the the overhead computation
for CSI is ignored. [2] takes into account this extra training
energy to provide a fair comparison and demonstrates that if
the system is designed with judicious parameters, significant
energy efficiency can be achieved after all.

Among the existing research on conventional MIMO chan
nel selection, the following criteria have been used:

1) Capacity Maximization: In the previous work of [6] [7]
[8], channel capacity is used as the optimality criterion,
i.e., antennas that achieve the largest capacity are active.
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MASTS. It is obvious that between any two nodes XiYj, i :=:

1,2,3,j :=: 1,'" ,5; XiXj , i :=: 1,2, 3,j :=: 1,2,3, i -=I j
or Yi Yj, i :=: 1"" ,5, y :=: 1"" ,5, i -=I j, there is a path
connecting them through single hop or multi-hop. Due to the
inherent link layer connectivity, MASTS can be referred to as
a cross-layer design.

In our investigation, concrete example is presented to illus
trate each step. We also analyze its performance by means of
Monte Carlo simulations to estimate capacity, diversity gain,
bit error rate (BER) and multiplexing gain. The result shows
that at high SNR, MASTS can achieve higher capacity than
that of full virtual MIMO.

We organize the remainder of this paper as follows. In
Section II, we introduce virtual MIMO channel model. Section
III proposes MASTS algorithm step by step. Section IV
compares the perfonnances of MASTS with that of full virtual
MIMO and Section V draws the conclusion.

Fig. 2. System illustration for virtual MIMO channel selection (a) before
channel selection (b) after channel selection

In [6], it is demonstrated that in case of no CSIT
but CSIR, close capacity to that of the full-MIMO
system can be achieved as far as the number of selected
receivers is no less than the number of transmitters. [7]
and [8] considered CSIT and proposed an exhaustive
search algorithm.

2) Minimum Error rate: Apart from maximization of capac
ity based on Shannon theory, [9] derived another criteria
from the respect of minimum error rate when coherent
receivers, either maximum likelihood (ML), zero-forcing
(ZF) or the minimum mean-square error (MMSE) linear
receiver is employed.

3) Cross-layer optimal scheduling: Besides physical layer,
some related works have adopted graph theory ap
proach to consider cross-layer design. [10] performed
the optimal antenna assignment for spatial multiplex
ing by Hungarian algorithm using weighted bipartite
matching graph, and [11] took into account users' QoS
requirement with clique-searching algorithm for antenna
selection.

Although the above have provided dazzling mathematical
standards, one problem is how to accommodate them to WSN
rather than traditional communications; the other problem is
how to encompass inter-cluster multi-hop connectivity so as
to better support networking capability and QoS requirement.

In this paper, under the assumption of quasi-static channels
and both CSIT and CSIR, we propose Maximum Spanning
Tree Searching (MASTS) algorithm on a basis of Kruskal's
theory [13] to perform channel selection. The idea behind
the scheme is that selected channels not only provide better
channel gain, but also act as a connected path between two
arbitrary sensor nodes to perfectly serve the upper layer
routing and networking. Take Fig. 2(b) as an example, these
channels denoted by red lines have been selected based on

2

II. CHANNEL MODEL

Based on CSIT and CSIR, the estimated virtual MIMO
channel model with AIt transmitters and M r receivers (AIt +
M r sensors) is illustrated in Fig. 3, where each receiver
observes a superposition of the M t transmitted signals cor
rupted by flat fading and additive white gaussian noi se. Each
hj i ~ i :=: 1, 2, . . . ,AIr and j :=: 1, 2, . . . ,Mt represents the
transmission channel gain from transmitter i to receiver j
[14], which is assumed to be independent and identically
distributed (ij.d.). The additive noise also has ij.d entries
nj rv CN(O~ a 2

).

Fig. 3. Channel Graph for virtual MIMO

We may denote this virtual MIMO channels with discrete
time model:

h 12 · .. h 1Mt

h 22 · .. h 2A1t

+

YMr h Mr1 h A1r2 ··· hA1rMt X Alt nMr
(1)

We may simplify the above equation as Y :=: HX+D, where
H is a M r x M t independent zero mean random matrix and
n denotes random noise.
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Fig. 5. MASTS algorithm

(d)

3) Step 3: Continue Step 2 until the edge number of
enlarged subgraph is equal to Mt + Mr - 1. This final
subgraph is the spanning tree with the maximum sum
of weight.

As virtual MIMO graph contains the same information as
that of channel gain matrix H, we illustrate MASTS algorithm
by matrix entry selection procedure using Fig. 5 and matrix
Hb He Hd He iI.

Fig. 5 (a) is the original virtual MIMO graph. Fig. 5 (b)
shows the subgraph with 3 largest weight. These edges are
denoted by 0 in matrix Hb. This is Step 1.

III. MASTS VIRTUAL MIMO

A. Introduction of MASTS

As mentioned in section IT, we may use a graph of vertices
and edges to represent the virtual MIMO communication
scenario. From this aspect, essentially channel selection is
to remove some of vertices and edges while keep those
remaining. Spanning tree [15] suggests such an algorithm that
in an arbitrary graph, all the vertices are connected with the
minimum necessary edges, i.e., there is no isolated vertices
under the condition of the least possible edge number. For
example, when M t == 3 and M r == 5, some of the possible
spanning trees are drawn in Fig. 4.

From the respect of graph theory, Fig. 3 is a connected
graph [15], i.e., there is an edge connecting any two vertex
with sensors and transmission channels forming vertex set and
edge set respectively, hji denoting edge weight. This gives
rise to the graph theoretical approach to virtual MIMO study.
However, the integration of graph theory into communication
systems is still neonatal and deserves more attention and
development.

Our purpose is to replace H with an approximate matrix iI
with lower dimensions but satisfying performances and basic
network layer connections.

Fig. 4. Examples of spanning trees for 5 x 3 MIMO

In general, MASTS algorithm is to compute a spanning
tree with the maximum sum of weight of edge, i.e., to
select the maximum sum of channel gain while realizing
the connectivity of all the sensors on a basis of maximum
spanning tree algorithm. Our contribution is to apply the graph
theoretical concept on maximum spanning tree into virtual
MIMO channel selection and program the algorithm.

Note that for an arbitrary graph of n vertices, its spanning
tree is of n vertices and n - 1 edges [15]. Since there are
M t + M r vertices, the number of edges to be selected by
MASTS algorithm is a fixed Mt + Mr - 1, which means
MASTS always chooses Mt + Mr - 1 channels.

B. MASTS in virtual MIMO channel selection

MASTS algorithm is:

1) Step 1: Select 3 edges with the largest weight at first
(including their vertices).

2) Step 2: Enlarge the subgraph by edges with large weight
in decreasing manner and make sure no cycles are
formed.

0.6211 (0.7536) 0.6595
0.5602 (0.6596) 0.1834

Hb== 0.2440 0.2141 0.6365
(0.8220) 0.6021 0.1703
0.2632 0.6049 0.5396

Note that among the selected 3 entries, 0.8220 have the
different row index either with 0.7536 or 0.6595, so enlarging
this subgraph with any of the remaining edges will absolutely
not form a cycle.

Thus, the second step starts with selecting the edge with the
fourth largest weight, which is shown in Fig. 5 (c) and Matrix
He.

0.6211 (0.7536) (0.6595)
0.5602 (0.6596) 0.1834x

He == 0.2440 0.2141 0.6365
(0.8220) 0.6021 0.1703
0.2632 0.6049 0.5396

Note that after selection of entry 0.6595, the entry 0.1834
will no longer be selected, or there is going to form a cycle
X 2Y1X 3Y2 , so we note the entry 0.1834 with "x" and use

3
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dash line to represent the unavailability of corresponding edge

in Fig. 5(c). This implies following criteria:
Any four entries with index (i,j) (i,q) (p,j) (p,q), where i~ p :::;

M r, i =f: p; j, q ~ !v!t, j =f: q form a cycle. If any three have
been selected, the remaining one should be eliminated.

Based on this criteria, we continuously select entries as
shown in Fig. 5 (d) (e) (f) and matrix Hd He Hf. As we
only have to select 3 + 5 - 1 == 7 edges. Edges in graph (f)
represented by none-zero entries in matrix Hare the channels
finally selected.

0.6211 (0.7536) (0.6595)
0.5602 (0.6596) 0

Hd == 0.2440 0.2141 x (0.6365)
(0.8220) 0.6021 0.1703
0.2632 0.6049 0.5396

The value of SNRo must be found numerically, owning to
no existence of closed-form solution for continues distributions
of SNR [22]. This results in Monte Carlo simulation to analyze
the capacity performance on MASTS virtual MIMO. We take
following steps to do each experiment:

1) For simplicity, we apply Matlab "rand" to generate
channel gain matrix H.

2) Follow the MASTS channel selection algorithm to ob
tain the new channel gain matrix H.

3) Employ "svd" to obtain ~i and its rank f for H. Note
that ~i is different with Ai of H.

4) Use water-filling power allocation to find out the cutoff
value SNRo and the resulting capacity for MASTS
virtual MIMO based on (3) (4) and (5). Here we assume
B==1Hz.

302510 15 20
SNR (dB)

-&- Full virtual MIMO with water-filling
-B-- MASTS with water-filling
--.+-- Full virtual MIMO without water-filling
-$-- MASTS without water-filling

30,--------r-----,------.-----,----,-------,

0.6211 0.7536 0.6595
0 0.6596 0

H== 0 0 0.6365
0.8220 0 0

0 0.6049 0

(0.6211) (0.7536) (0.6595)
0.5602x (0.6596) 0

He == 0.2440x 0 (0.6365)
(0.8220) 0.6021 x 0.1703x
0.2632 0.6049 0.5396

IV. PERFORMANCE ANALYSIS

Fig. 6. Capacity for full / MASTS 4 x 4 virtual MIMO

Due to the randomness, 10000 times Monte Carlo simu
lation are applied to obtain the expectation of capacity for
both MASTS and full 4 x 4 virtual MIMO at different SNR,
which are plotted in Fig. 6. It shows when SNR is larger
than 8dB, MASTS achieves larger capacity than that of full
virtual MIMO. This is because the same total power have been
optimally allocated to the best set of channels in spite of less
channel number.

Sometimes in order to reduce the cost and complexity, in
stead of using water-fi lIing power optimization, people simply
allocate equal power to each transmitters. In that case, the
capacity becomes

T SNRi
C = 2:B1og2(1+~) (6)

i=l t

Here we also apply 10000 time Monte Carlo simulation to
obtain the expectation of capacities, which are also plotted
in Fig. 6. It shows when SNR is larger than 5dB, MASTS
achieves larger capacity than that of full virtual MIMO.

B. Diversity Gain and Multiplexing Gain

Intuitively, diversity gain corresponds to the number of
independently faded paths that a symbol passes through [23].

(5)

(3)

(4)SNRi, ~ SNRo
SNR i < SNRo

c==

where

~ = { l/SNRo ~ l/SNR;

r p.
c== max 2:Blog2(1+~Ai) (2)

L: Pi~P i=l a

where P is total power constraint for transmitters, r is the rank
of H and Ai is the eigenvalue of HHT

. Since the SNR at the
ith channel at full power is SNRi == AiP/0'2, the capacity
(2) can also be given in terms of the power allocation Pi as

T p.
C == max ""' B log2(1 + -!.-SNR i )

L:Pi<P~ P
- 1=1

for some cutoff value SNRo. The final capacity is given as

""' Bl (SNR i
)

~ og2 SNR
SNRi 2:'SNRo 0

A. Capacity

When the channel matrix H / H is known at both transmit
ters and receivers, water-filling technique can be utilized to
optimally allocate power Pi at independent parallel channel i.
The sum of capacities on each of these independent parallel
channels is the maximal capacity of virtual MIMO [14]. The
capacity on full virtual MIMO can be expressed as

4
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In general, based our assumption of independent fading chan
nel model, if finally M channels are selected, the maximal
diversity gain provided is M. Since MASTS select Alt +Afr -1
channels, its maximal diversity gain is M t +Afr -1, compared
to that of MtMr on full virtual MIMO. Therefore, MASTS
can not provide as much as full virtual MIMO on maximal
diversity gain. This is illustrated in Fig. 7.

35

30

~ Full virtual MIMO

-- MASTS

As for maximal multiplexing gain, it is the number of
equivalent multiple parallel spatial channels [25], and also it is
referred to as degrees of freedom to communicate [23], which
is related with the row and column number of Hand H. It
has been derived in [23] that the maximal multiplexing gain
provided by M t x M r MIMO is min(Mt , M r ). However, the
accurate multiplexing gain is r == rank(H) since it is possible
that H is not full rank. The maximal multiplexing gain offered
by MASTS is r == rank(H). Under the premise that H is full
rank, we ran 10000 times Monte Carlo simulation to obtain
the multiplexing gain On MASTS in Fig. 9.

2.5 3.5 4 4.5
Mt=Mr

5.5

.~ 4.5
C)
Cl

.~ 4
Q)

;g.
~ 3.5

Fig. 7. Maximal diversity comparison

If BPSK and maximal ratio combining (MRC) are employed
at maximal diversity gain, then the bit error rate (BER) is [24]

2.5 3.5 4 4.5
Mt=Mr

5.5

1-£ = j 1f~ (8)

and L is the diversity gain. Based on (7) (8), we get Fig. 8
for 2 x 2 virtual MIMO.

where

L-1
1 - J-L L '"""' L-1+k 1+J.L k

Pb == (-2-) L..t( k )( 2 )
k=O

(7)

Fig. 9. Multiplexing Gain full / MASTS virtual MIMO

It shows when M t == M r :::; 6, the difference of Multiplex
ing Gain between full and MASTS virtual MIM can be less
than 1.

In general, MASTS provide satisfying performances com
pared to that of full virtual MIMO.

V. CONCLUSION AND FUTURE WORK

l:l:
w
co

10-41.---_----L__----'-__-----'-_e----&- _

o 10
SNR (dB)

Fig. 8. BER for Full / MASTS 2 x 2 virtual MIMO

Normally, in order to increase the data rate, different trans
mitters simultaneously transmit different symbols, so in this
case diversity for full and MASTS virtual MIMO are M r and
(Mt + M r - l)/Mt respectively.

5

This paper is a preliminary work on practical virtual MIMO
channel selection algorithm. MASTS approach with a concrete
example is proposed from respect of cross-layer design. By
means of Monte Carlo simulation, we approve that MASTS
virtual MIMO can achieve even better capacity with/without
water-filling, less diversity gain and similar multiplexing gain
as those of full virtual MIMO. We not only propose the
channel selection algorithm in practice, but also provide the
detailed approach on performance analysis with Monte Carlo
simulation. Future research tracks might concern the extension
of the proposed algorithm to integrate with space time coding
(STC) so as to further optimize the system performance.
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Abstract— In this paper, we propose a Discrete-Cosine-
Transform (DCT)-based approach for sense-through-foliage
target detection when the echo signal quality is good, and a
Radar Sensor Network (RSN) and DCT-based approach when
the echo signal quality is poor. A RAKE structure which can
combine the echos from different cluster-members is proposed
for clusterhead in the RSN. We compared our approach with
the ideal case when both echos are available, i.e., echos with
target and without target. We also compared our approach
against the scheme in which 2-D image was created via adding
voltages with the appropriate time offset. Simulation results
show that our DCT-based scheme works much better than the
existing approach, and our RSN and DCT-based approach can
be used for target detection successfully while even the ideal
case fails to do it.

I. INTRODUCTION AND MOTIVATION

Forests and buildings favor asymmetric threats because
the warfighter has a limited sensing capability. Forest and
buildings provide excellent concealment from observation,
ambush, and escape, as well as provide secure bases for en-
emy Command & Control (C2), weapons caches, and Impro-
vised Explosive Device (IED)/ Weapon of Mass Destruction
(WMD) assembly. These have become “the high ground” in
fourth-generation warfare, providing a significant strategic
advantage. We believe that solving the sense-through-foliage
target detection will significantly benefit sense-through-wall
and other subsurface sensing problems. The objective of this
paper is to develop measurable advances in improving the
understanding of intelligence for the forest conflict using
UWB radar. The key focus of this study is to develop
advanced technologies that make foliage transparent, thereby
eliminating the safe harbor that forest provides to hostile
forces and their malicious activities. Sense-through-foliage
target detection resulting from this research will benefit
emerging Department of Defense (DoD) net-centric warfare
programs.

In this paper, we will apply our expertise in signal pro-
cessing, data fusion, sensor networks, etc to achieve effec-
tive sense-through-foliage technology using ultra-wideband
(UWB) radar. UWB radar emissions are at a relatively
low frequency-typically between 100 MHz and 3 GHz.
Additionally, the fractional bandwidth of the signal is very

large (greater than 0.2). Such radar sensor has exceptional
range resolution that also has an ability to penetrate many
common materials (e.g., walls). Law enforcement personnel
have used UWB ground penetrating radars (GPRs) for at
least a decade. Like the GPR, sense-through-foliage radar
takes advantage of UWB’s very fine resolution (time gating)
and low frequency of operation. In the existing works on
UWB radar/sensor based target detection, Time Domain Inc
has invented UWB radars, and some algorithms for target
detection were overviewed in [5]; these are mainly based on
target response signal strength (1-D) and different copies of
signals to construct 2-D features. The Adaptive Polarization-
Difference Imaging (APDI) algorithm and PDI technique
[3][4] were originally developed for optical imaging and
in many situations can provide significant enhancements
in target detection and feature extraction over conventional
methods. The rest of this paper is organized as follows. In
Section II, we summarize the measurement and collection
of data we used in this paper. In Section III, we propose a
discrete-cosine-transform (DCT) based approach for sense-
through-foliage target detection with good signal quality.
In Section IV, we propose a radar sensor network (RSN)
and DCT-based approach for sense-through-foliage target
detection when the signal quality is poor. We conclude this
paper and discuss some future research topics in Section V.

II. SENSE-THROUGH-FOLIAGE DATA MEASUREMENT

AND COLLECTION

Our work is based on the sense-through-foliage data from
Air Force Research Lab. The foliage penetration measure-
ment effort began in August 2005 and continued through
December 2005. Working in August through the fall of 2005,
the foliage measured included late summer foliage and fall
and early winter foliage. Late summer foliage, because of
the limited rainfall, involved foliage with decreased water
content. Late fall and winter measurements involved largely
defoliated but dense forest.

The foliage experiment was constructed on a seven-ton
man lift, which had a total lifting capacity of 450 kg.
The limit of the lifting capacity was reached during the
experiment as essentially the entire measuring apparatus
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978-1-4244-2075-9/08/$25.00 ©2008 IEEE 2228

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:40 from IEEE Xplore.  Restrictions apply. 

670 of 816



was placed on the lift. The principle pieces of equipment
secured on the lift are: Barth pulser, Tektronix model 7704
B oscilloscope, dual antenna mounting stand, two antennas,
rack system, IBM laptop, HP signal Generator, Custom RF
switch and power supply and Weather shield (small hut). The
target is a trihedral reflector (as shown in Fig. 1). Throughout
this work, a Barth pulse source (Barth Electronics, Inc.
model 732 GL) was used. The pulse generator uses a coaxial
reed switch to discharge a charge line for a very fast rise
time pulse outputs. The model 732 pulse generator provides
pulses of less than 50 picoseconds (ps) rise time, with
amplitude from 150 V to greater than 2 KV into any load
impedance through a 50 ohm coaxial line. The generator is
capable of producing pulses with a minimum width of 750 ps
and a maximum of 1 microsecond. This output pulse width
is determined by charge line length for rectangular pulses,
or by capacitors for 1/e decay pulses.

 

Fig. 1. The target (a trihedral reflector) is shown on the stand at 300 feet
from the lift.

For the data we used in this paper, each sample is
spaced at 50 picosecond interval, and 16,000 samples were
collected for each collection for a total time duration of
0.8 microseconds at a rate of approximately 20 Hz. We
considered two sets of data from this experiment. Initially,
the Barth pulse source was operated at low amplitude and
35 pulses reflected signal were averaged for each collection.
Significant pulse-to-pulse variability was noted for these
collections. The scheme for the sense-through-foliage target
detection with “poor” signal quality will be presented in
Section IV. Later, good signal quality data were collected
using higher amplitude pulses and 100 pulses reflected
signals were averaged for each collection. The scheme for
target detection with “good” signal quality will be presented
in Section III.

III. SENSE-THROUGH-FOLIAGE TARGET DETECTION

WITH GOOD SIGNAL QUALITY: A DCT-BASED

APPROACH

In Fig. 2, we plot two collections with good signal quality,
one without target on range (Fig. 2a) and the other one
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Fig. 2. Measurement with very good signal quality and 100 pulses average.
(a) No target on range, (b) with target on range (target appears at around
sample 14,000).

with target on range (Fig. 2b and target appears at around
sample 14,000). To make it more clear to the readers, we
provide expanded views of traces (with target) from sample
13,001 to 15,000 for the above two collections in Figs. 3a
and 3b. Since there is no target in Fig. 3a, it can be treated
as the response of foliage clutter. It’s quite straightfoward
that the target response will be the echo difference between
Fig. 3b and Fig. 3a, which is plotted in Fig. 3c. However,
it’s impossible to obtain Fig. 3a (clutter echo) in practical
situation if there is target on range. The challenge is how to
make target detection based on Fig. 3b (with target) or Fig.
3a (no target) only?

Observe Fig. 3b, for samples where target appears (around
sample 14,000), the sample strength changes much abruptly
than that in Fig. 3a, which means echo from target contains
more AC values than that without target. Motivated by this,
we applied Discrete Cosine Transform (DCT) to the echos
x(iM + n) (n = 0, 1, 2, · · · , N − 1) where N is the DCT
window length, M is the step size of each DCT window,

and i is the window index. Let x(n, i)
�
= x(iM + n)

X(K, i) =
N−1∑
n=0

x(n, i) cos(
2π
N
nK) (1)
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then we cumulate the power of AC values (for K > 2)

P (i) =
N−1∑
K=3

X(K, i)2 (2)

For N = 100 and M = 10, we plot the power of AC values
P (i) versus iM (time domain sample index) in Figs. 4a and
4b for the above data sets in Figs. 3a and 3b respectively.
Observe that in Fig. 4b, the power of AC values (around
sample 14,000) where the target is located is non-fluctuating
(monotonically increase then decrease). Although some other
samples also have very high AC power values, it is very clear
that they are quite fluctuating and the power of AC values
behave like random noise because generally the clutter has
Gaussian distribution in the frequency domain [2].

We compared our DCT-based approach to the scheme
proposed in [5]. In [5], 2-D image was created via adding
voltages with the appropriate time offset. In Figs. 5a and
5b, we plot the 2-D image created based on the above two
data sets (from samples 13,800 to 14,200). However, it’s not
clear which image shows there is target on range.

IV. SENSE-THROUGH-FOLIAGE TARGET DETECTION

WITH POOR SIGNAL QUALITY: A SENSOR NETWORK

AND DCT-BASED APPROACH

As mentioned in Section II, when the Barth pulse source
was operated at low amplitude and the sample values are
not obtained based on sufficient pulse response averaging
(averaged over 35 pulses for each collection), significant
pulse-to-pulse variability was noted and the return signal
quality is poor. In Figs. 6a and 6b, we plot two collections
with poor signal quality. Fig. 6a has no target on range, and
Fig. 6b has target at samples around 14,000. We plot the echo
differences between Figs. 6a and 6b in Fig. 6c. However,
it is impossible to identify whether there is any target and
where there is target based on Fig. 6c. We observed the
DCT-based approach failed to detect target based on one
collection. Since significant pulse-to-pulse variability exists
in the echos, this motivate us to explore the spatial and time
diversity using Radar Sensor Networks (RSN).

In RSN, each radar can provide their pulse parameters
such as timing to their clusterhead radar, and the clusterhead
radar can combine the echos (RF returns) from the target
and clutter. In this paper, we propose a RAKE structure for
combining echos, as illustrated by Fig. 7. The integration
means time-average for a sample duration T and it’s for
general case when the echos are not in discrete values. It
is quite often assumed that the radar sensor platform will
have access to Global Positioning Service (GPS) and Inertial
Navigation Unit (INU) timing and navigation data [1]. In this
paper, we assume the radar sensors are synchronized in RSN.
In Fig. 7, the echo, i.e., RF response by the pulse of each
cluster-member sensor, will be combined by the clusterhead
using a weighted average, and the weight wi is determined

by the power of each echo xi(n) (n is the sample index),

wi =
Ei∑M
i=1Ei

(3)

and
Ei = var(xi(n)) + [mean(xi(n))]2 (4)

We ran simulations for M = 30, and plot the power of
AC values in Figs. 8a and 8b for the two cases (with target
and without target) respectively. Observe that in Fig. 4b,
the power of AC values (around sample 14,000) where the
target is located is non-fluctuating (monotonically increase
then decrease). Although some other samples also have very
high AC power values, it is very clear that they are quite
fluctuating and the power of AC values behaves like random
noise because generally the clutter has Gaussian distribution
in the frequency domain.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a DCT-based approach for
sense-through-foliage target detection when the echo signal
quality is good, and a sensor network and DCT-based
approach when the echo signal quality is poor. A RAKE
structure which can combine the echos from different cluster-
members is proposed for clusterhead in the RSN. We com-
pared our approach with ideal case when both echos are
available, i.e., echos with target and without target. We also
compared our approach against the scheme in which 2-D
image was created via adding voltages with the appropriate
time offset. Simulation results show that our DCT-based
scheme works much better than the existing approach, and
our RSN and DCT-based approach can be used for target
detection successfully while the ideal case fails to do it.
For future works, we will collect more data with different
targets and perform automatic target recognition besides
target detection.
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Fig. 3. Measurement with very good signal quality and 100 pulses average.
(a) Expanded view of traces (with target) from samples 13,001 to 15,000.
(b) Expanded view of traces (without target) from samples 13,001 to 15,000.
(c) The differences between (a) and (b).
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Fig. 4. The power of AC values versus sample index. (a) No target (b)
With target in the field.
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Fig. 5. 2-D image created via adding voltages with the appropriate time
offset. (a) No target (b) With target in the field.
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Fig. 6. Measurement with poor signal quality and 35 pulses average. (a)
Expanded view of traces (no target) from sample 13,001 to 15,000. (b)
Expanded view of traces (with target) from sample 13,001 to 15,000. (c)
The differences between (a) and (b).

Fig. 7. Echo combining by clusterhead in RSN.
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Fig. 8. Power of AC values based on UWB radar sensor networks and
DCT based approach. (a) No target (b) With target in the field.
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Abstract— In this paper, the foliage penetration measurement
data is provided by Air Force Office of Scientific Research
(AFOSR). When radar echoes are in good quality, the detection
of target can be achieved by applying our differential based tech-
nology on received single UWB radar waveform. We compared
our approach in case of no target as well as with target against the
scheme in which 2-D image was created via adding voltages with
the appropriate time offset. Results show that our approach can
work much better. When radar echoes are in poor condition and
single radar is unable to carry out the detection, we employ both
Radar Sensor Networks (RSN) and RAKE structure to combine
the echoes from different radar members and successfully detect
the target.

I. INTRODUCTION

Detection and identification of military equipment in a
strong clutter background, such as foliage, soil cover or
building leads has been a long-standing subject of intensive
study. It is believed that solving the target detection through
foliage will significantly benefit sense-through-wall and many
other subsurface sensing problems. However, to this date, the
detection of foliage-covered military targets, such as artillery,
tanks, trucks and other weapons with the required probability
of detection and false alarm still remains a challenging issue.
This is due to the following facts:

1) Given certain low radar cross section(RCS), scattering
from tree trunk and ground reflectivity may overwhelm
the returned target signals of interest.

2) Very high multiple fading severely corrupt the amplitude
and phase of the echoes.

3) Even if target is stationery, tree leaves and branches are
likely to swing in result of gust, which will result in
doppler shift of clutter and difficulty of target detection.

Therefore, our main goal is to account for the above effects
and better analyze the “defoliated” signal and thus improve
the probability of target detection.

Over the past two decades, following 3 types of signals have
been mainly studied to examine the performance on target
detection in foliage:

1) Traditional sinusoidal waveforms at VHF through UHF
bands [1], as the lower the radar frequency, the lower the

attenuation and scattering from branches and trees, and
thus better penetration through foliage. However, these
approaches result in low resolution and low RCS.

2) Millimeter-Wave (MMW) radars are used in [2] [3]
and [4]. Results demonstrate the potential for satisfying
performance but need further investigation.

3) Relatively low frequency Ultra-wide band (UWB) radars
between 100 MHZ and 3 GHz are frequently employed
in recent years owning to the characteristics provided by
their high resolutions as well as the very good ability of
penetration, such as penetrating walls [5] [6]. Despite
comparatively short detection range, UWB signal would
have advantages over a narrowband signal with limited
frequency content.

In this paper, we will apply our expertise in signal
processing, data fusion, radar sensor networks (RSN) etc.
to achieve effective through-foliage technology using ultra-
wideband (UWB) radar and extracting as much information
as possible to improve the probability of target detection.

The remainder of this paper is organized as follows. In
Section II, we summarize the measurement and collection
of data we used in this paper. In Section III, we propose a
differential based approach for through-foliage target detection
when the signal quality is good. In Section IV, we propose
RSN and RAKE structure for through-foliage target detection
when the signal quality is poor. We conclude this paper and
discuss some future research topics in Section V.

II. SENSE-THROUGH-FOLIAGE DATA MEASUREMENT AND

COLLECTION

Our work is based on the sense-through-foliage data from
Air Force Research Lab [7]. The foliage penetration mea-
surement effort began in August 2005 and continued through
December 2005. Working in August through the fall of 2005,
the foliage measured included late summer foliage and fall
and early winter foliage. Late summer foliage, because of the
limited rainfall, involved foliage with decreased water content.
Late fall and winter measurements involved largely defoliated
but dense forest.
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The foliage experiment was constructed on a seven-ton man
lift, which had a total lifting capacity of 450 kg. The limit
of the lifting capacity was reached during the experiment
as essentially the entire measuring apparatus was placed on
the lift. The principle pieces of equipment secured on the
lift are: Barth pulser, Tektronix model 7704 B oscilloscope,
dual antenna mounting stand, two antennas, rack system, IBM
laptop, HP signal Generator, Custom RF switch and power
supply and Weather shield (small hut). The target is a trihedral
reflector (as shown in Fig. 1). Throughout this work, a Barth
pulse source (Barth Electronics, Inc. model 732 GL) was used.
The pulse generator uses a coaxial reed switch to discharge
a charge line for a very fast rise time pulse outputs. The
model 732 pulse generator provides pulses of less than 50
picoseconds (ps) rise time, with amplitude from 150 V to
greater than 2 KV into any load impedance through a 50 ohm
coaxial line. The generator is capable of producing pulses with
a minimum width of 750 ps and a maximum of 1 microsecond.
This output pulse width is determined by charge line length
for rectangular pulses, or by capacitors for 1/e decay pulses.

 

Fig. 1. The target (a trihedral reflector) is shown on the stand at 300 feet
from the lift.

For the data we used in this paper, each sample is spaced at
50 picosecond interval, and 16,000 samples were collected for
each collection for a total time duration of 0.8 microseconds
at a rate of approximately 20 Hz. We considered two sets of
data from this experiment. Initially, the Barth pulse source was
operated at low amplitude and 35 pulses reflected signal were
averaged for each collection. these collectionsThe scheme for
the sense-through-foliage target detection with “poor” signal
quality will be presented in Section IV. Later, good signal
quality data were collected using higher amplitude pulses and
100 pulses reflected signals were averaged for each collection.
The scheme for target detection with “good” signal quality will
be presented in Section III.

III. TARGET DETECTION WITH GOOD SIGNAL QUALITY:
A DIFFERENTIAL-BASED APPROACH

In Fig. 2, we plot two collections with good signal quality,
one without a target on range (Fig. 2a) and the other one with

a target on range (Fig. 2b and target appears at around sample
14,000). To make it more clear to the readers, we provide
expanded views of traces (with target) from sample 13,001
to 15,000 for the above two collections in Figs. 3a and 3b.
Since there is no target in Fig. 3a, it can be treated as the
response of foliage clutter. It’s quite straightforward that the
target response will be the echo difference between Fig. 3b
and Fig. 3a, which is plotted in Fig. 3c. However, in practical
situation we either obtain Fig. 3a (clutter echo without target)
or Fig. 3b (target on range) without the knowledge about the
presence of a target. The challenge is how can certain artificial
intelligence make target detection only based on Fig. 3b (with
target) or Fig. 3a (no target)?
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Fig. 2. Measurement with very good signal quality and 100 pulses average.
(a) no target on range (b) with target on range (target appears at around sample
14000)

To solve this problem, a scheme is previously proposed in
[8], where 2-D image was created via adding voltages with the
appropriate time offset. In Figs. 4(a) and 4(b), we plot the 2-D
image created based on the above two data sets (from samples
13,800 to 14,200) using the approach in [8]. However, from
these two figures, we can not clearly tell which image shows
there is target on range.

The block diagram of our approach is generalized in Fig.5.
Actually, the waveforms in Fig. 2a and 2b result from the

synthesized effect of large-scale path loss and small-scale
fading. We believe if UWB propagation channel at foliage
can be accurately estimated based on transmitted signals and
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Fig. 3. Measurement with good signal quality and 100 pulses integration
(a) Expanded view of traces (no target) from samples 13001 to 15000 (b)
Expanded view of traces (with target) from samples 13001 to 15000 (c)
Expanded view of traces difference between with and without target
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Fig. 4. 2-D image created via adding voltages with the appropriate time
offset (a) no target (b) with target in the field
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Fig. 5. Block diagram of differential based approach for single radar

received echoes with good quality, we may compensate the
“foliage-based” UWB channel effect on received waveforms
and the target under foliage will be more detectable. However,
to this date, the outdoor channel model for UWB radars is still
an open problem.

According to UWB indoor multi-path channel model (IEEE
802.15.SG3a, 2003), the average power delay profile (PDP) is
characterized by an exponential decay of the amplitude of the
clusters [9]. Therefore, we may roughly consider the foliage
channel gain model as

ŷ =
{

Ae−Bx y > 0
−Ae−Bx otherwise

(1)

where ŷ is the amplitude of estimated clutter echo, x is sample
index and y is the amplitude of original measured data. A and
B are constants. These two parameters should be carefully
chosen so that ŷ is as close to y as possible. Here we use
A = 35000 and B = 0.00025. Although it deserves much
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further study on the estimation problem, we shall see later
that as the target appears at a tail part, this simple estimation
is applicable, therefore we get the processed signal:

S1 = y − ŷ (2)

Observe Fig. 3b, for samples where target appears (around
sample 14,000), the waveform changes much abruptly than
that in Fig. 3a. As differential value represents the changing
rate of a function, it is quite intuitively that the amplitude of
differential value at around sample 14,000 should be large.
Apply differentiator and power ordinally,

S2 =
dS1

dx
(3)

S3 = S2
2 (4)

We plot the power of clutter-accounted and differentiated
echoes in Fig. 6. It is quite straightforward to see there is no
target in Fig. 6a and there is target in Fig. 6b.
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Fig. 6. The power of processed waveforms (a) no target (b) with target in
the field

IV. TARGET DETECTION WITH POOR SIGNAL QUALITY:
RADAR SENSOR NETWORK AND DIFFERENTIAL-BASED

APPROACH

As mentioned in Section II, when the Barth pulse source
was operated at low amplitude and the sample values are

Fig. 7. Block diagram of differential based approach and diversity combi-
nation in RSN

not obtained based on sufficient pulse response averaging
(averaged over 35 pulses for each collection), significant pulse-
to-pulse variability was noted and the return signal quality is
poor. Fig. 8a illustrate the received echoes in this situation.
Even with the application of our proposed differential-based
scheme, we can not tell whether there is target or not in the
range based on Fig. 8b. Since pulse-to-pulse variability exists
in the echos at different time or different site, this motivate us
to explore the spatial and time diversity using Radar Sensor
Networks (RSN).

In nature, a network of multiple radar sensors can been uti-
lized to combat performance degradation of single radar [10].
These radar sensors are managed by an intelligent clusterhead
that combines waveform diversity in order to satisfy the com-
mon goals of the network other than each radar operate sub-
stantively. As radar sensors are environment dependent [11],
it may provide better signal quality if different neighboring
radars work collaboratively to perform data fusion. For exam-
ple, consider a system of two radars. When the signal of either
radar unfortunately experience a severe fading, if two radars
are spaced sufficiently far apart, it is not likely that both of
the radars experience deep fade at the same time. By selecting
better waveform from the two radar waveforms, the data is less
likely to be lost.

In this paper, we assume the radar sensors are synchronized
in RSN and we employed RAKE structure to combine received
information for RSN. The detailed process is shown in Fig.
7. The echo, i.e., RF response by the pulse of each cluster-
member radar sensor, will be combined by the clusterhead
using a weighted average, and the weight wi is determined by
the power of each echo xi(m) (m is the sample index),

wi =
Ei∑n
i=1 Ei

(5)

and
Ei = var(xi(m)) + [mean(xi(m))]2 (6)

We ran simulations for n = 35 and plot the power of combined
signal obtained through differential based approach in Fig. 8c.
Compare this figure with Fig. 8a and Fig. 8b, it is quite obvious
to see that there is a target around sample 14,000.
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Fig. 8. Measurement with poor signal quality (with target) and 35 pulses
integration (a) Expanded view of traces with target from samples 13001 to
15000 (b) Power of single radar after differential based approach (c) Power
after both differential based approach and echoes combination in RSN

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a differential-based signal process-
ing approach on received UWB Radar waveforms to improve
through-foliage target detection. The foliage penetration mea-
surements were taken in Holliston, Massachusetts. When radar
echoes are in good quality, the detection of target can be
achieved by applying differential-based technology to single
radar waveform. We compared our approach in case of no
target as well as with target against the scheme in which 2-D

image was created via adding voltages with the appropriate
time offset. Results show that our approach can work much
better. When radar echoes are in poor condition and single
radar is unable to carry out detection, we employe both Radar
Sensor Networks (RSN) and RAKE structure to combine the
echoes from different radar members and finally successfully
detect the target. For future works, we will collect more data
with different targets and perform automatic target recognition
besides target detection.
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Abstract— In this paper, we propose that the foliage clutter
follows log-logistic model using maximum likelihood (ML) para-
meter estimation as well as the root mean square error (RMSE)
on PDF curves between original clutter and statistical model
data. The measured clutter data is provided by Air Force Office
of Scientific Research (AFOSR). In addition to investigating
the log-logistic model, we also compare it with other popular
clutter models, namely log-normal, Weibull and Nakagami. We
show that the log-logistic model not only achieves the smallest
standard deviation (STD) error on estimated model parameters,
but also has the best goodness-of-fit and smallest RMSE. Further,
the performance of detection at presence of foliage clutter is
theoretically analyzed.

I. INTRODUCTION AND MOTIVATION

Clutter is a term used to define all unwanted echoes from
natural environment [1]. The nature of clutter may necessarily
vary on a basis of different applications and radar parameters.
Most previous studies have investigated land clutter and sea
clutter. As far as clutter modeling in forest is concerned,
it is still of great interest and is likely to take some time
to reach any agreement. A team of researchers from MIT
[2] and U. S. Army Research Laboratory (ARL) [3] [4]
have measured ultra-wideband (UWB) backscatter signals in
foliage for different polarizations and frequency ranges. The
measurements show that the foliage clutter is impulsively
corrupted with multipath fading, which leads to inaccuracy
of the K-distributions description [5]. The Air Force Office
of Scientific Research (AFOSR) has conducted field measure-
ment experiment concerning foliage penetration radar since
2004 and noted that metallic targets may be more easily
identified with wideband than with narrowband signals [6].

In this investigation, we will apply ultra-wide band (UWB)
radar to model the foliage clutter. UWB radar emissions are
at a relatively low frequency-typically between 100 MHz and
3 GHz. Additionally, the fractional bandwidth of the signal
is very large (greater than 0.2). Such radar sensors have
exceptional range resolution that also has an ability to pen-
etrate many common materials (e.g., walls). Law enforcement
personnel have used UWB ground penetrating radars (GPRs)
for at least a decade. Like the GPR, sense-through-foliage
radar takes advantage of UWB’s very fine resolution (time
gating) as well as low frequency of operation.

In our present work, we investigate the use of the log-
logistic distribution to model foliage clutter and illustrate
the goodness-of-fit to real UWB clutter data conducted by

AFOSR. Additionally, we compare the goodness-of-fit with
existing popular models namely log-normal, Weibull, and
Nakagami by means of maximum likelihood estimation (MLE)
and the root mean square error (RMSE). The result shows that
log-logistic model provides the best fit to the foliage clutter.

The rest of this paper is organized as follows. In Section
II we discuss the properties and applicability of log-logistic
as a statistical model for foliage clutter. The measurement and
collection of clutter data we used in this paper are summarized
in Section III. Section IV discusses the estimation of model
parameters and the goodness-of-fit. section V analyzes the
performance of radar detection at presence of foliage clutter.
Finally, section VI concludes this paper and describes some
future work.

II. LOG-LOGISTIC MODEL

Log-logistic has been applied recently in hydrological
analysis. In spite of its intensive application in precipitation
and stream-flow data, the log-logistic distribution (LLD) [7]
statistical model, to the best of our knowledge, has never been
applied to radar foliage clutter. The motivation for considering
log-logistic model is based on its higher kurtosis and longer
tails, as well as its shape similarity to log-normal and Weibull
distributions. Thus it is intended to be employed to estimate
how well the model matches our collected foliage clutter
statistics.

Here we employ the two-parameter distribution with para-
meters µ and σ. The PDF for this distribution is given by

f(x) =
e

ln x−µ
σ

σx(1 + e
ln x−µ

σ )2
, x > 0, σ > 0 (1)

where µ is scale parameter and σ is shape parameter.

III. EXPERIMENT SETUP AND DATA COLLECTION

Our work is based on the sense-through-foliage data from
Air Force Research Lab [6]. The foliage penetration mea-
surement effort began in August 2005 and continued through
December 2005. Working in August through the fall of 2005,
the foliage measured included late summer foliage and fall
and early winter foliage. Late summer foliage, because of the
limited rainfall, involved foliage with decreased water content.
Late fall and winter measurements involved largely defoliated
but dense forest.
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Fig. 1. This figure shows the lift with the experiment. The antennas are at
the far end of the lift from the viewer under the roof that was built to shield
the equipment from the elements. This picture was taken in September with
the foliage largely still present. The cables coming from the lift are a ground
cable to an earth ground and one of 4 tethers used in windy conditions.

The UWB radar-based experiment was constructed on a
seven-ton man lift, which had a total lifting capacity of 450
kg. The limit of the lifting capacity was reached during the
experiment as essentially the entire measuring apparatus was
placed on the lift (as shown in Fig. 1). The principle pieces
of equipment secured on the lift are: Barth pulser, Tektronix
model 7704 B oscilloscope, dual antenna mounting stand,
two antennas, rack system, IBM laptop, HP signal Generator,
Custom RF switch and power supply and Weather shield
(small hut). Throughout this work, a Barth pulse source (Barth
Electronics, Inc. model 732 GL) was used. The pulse generator
uses a coaxial reed switch to discharge a charge line for a very
fast rise time pulse outputs. The model 732 pulse generator
provides pulses of less than 50 picoseconds (ps) rise time,
with amplitude from 150 V to greater than 2 KV into any
load impedance through a 50 ohm coaxial line. The generator
is capable of producing pulses with a minimum width of 750
ps and a maximum of 1 microsecond. This output pulse width
is determined by charge line length for rectangular pulses, or
by capacitors for 1/e decay pulses.

For the data we used in this paper, each sample is spaced at
50 picoseconds interval, and 16,000 samples were collected for
each collection for a total time duration of 0.8 microseconds
at a rate of approximately 20 Hz. The Barth pulse source
was operated at low amplitude and 10 pulses reflected clutter
signal were obtained for each collection at the same site but
different time, one example of transmitted pulse and received
backscattering are shown in Fig. 2(a) and (b) respectively. To
make them clearer to readers, we provide expanded views of
received traces from sample 10,000 to 12,000 in (c).

IV. STATISTICAL ANALYSIS OF THE FOLIAGE CLUTTER

DATA

A. Maximum Likelihood Estimation

Using the collected clutter data mentioned above, we apply
Maximum Likelihood Estimation (MLE) approach to estimate
the parameters of the log-logistic, log-normal, Weibull, and
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Fig. 2. Clutter data (a)transmitted pulse before antenna amplification
(b)received echoes (c) Expanded view from clutter samples 10,000 to 12,000

Nakagami models. MLE is often used when the sample
data are known and parameters of the underlying probability
distribution are to be estimated [8] [9]. It is generalized as
follows:

Let y1, y2, · · · , yN be N independent samples drawn from a
random variable Y with m parameters θ1, θ2, · · · , θm, where
θi ∈ θ, then the likelihood function expressed as a function of
θ conditional on Y is

LN (Y|θ) =
N∏

k=1

fY |θ(yk|θ1, θ2, · · · , θm) (2)

The maximum likelihood estimate of θ1, θ2, · · · , θm is the set
of values θ̂1, θ̂2, · · · , θ̂m that maximize the likelihood function
LN (Y|θ).

As the logarithmic function is monotonically increas-
ing, maximizing LN (Y|θ) is equivalent to maximizing
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ln(LN (Y|θ)). Hence, it can be shown that a necessary but not
sufficient condition to obtain the ML estimate θ̂ is to solve the
likelihood equation

∂

∂θ
ln(LN (Y|θ)) = 0 (3)

Using the collected clutter radar mentioned above, we apply
MLE to obtain µ̂ and σ̂ for log-logistic, µ̂ and σ̂ for the
log-normal, â and b̂ for the Weibull, and µ̂ and ω̂ for the
Nakagami. The results are shown in Table I. We also explore
the standard deviation (STD) error of each parameter. These
descriptions are shown in table I in the form of εx, where x
denotes different parameter for each model. As there are 10
data sets for poor clutter signal, we also calculate the average
values of estimated parameters and their STD error.

From Table II, we can see STD error for log-logistic and
log-normal parameters are less than 0.02 and their estimated
parameters vary little from data to data compared to Weibull
and Nakagami. It is obvious that log-logistic model provides
the smallest STD error and Nakagami the largest. Therefore,
in the view of statistics, log-logistic model fits the collected
data best compared to log-normal, Weibull, and Nakagami.

B. Goodness-of-fit in curve and RMSE

We may also observe the extend to which the PDF curve of
the statistic model matches that of clutter data by calculating
the root mean square error (RMSE). Let i (i=1, 2, · · · , n) be
the sample index of clutter amplitude, ci is the corresponding
PDF value whereas ĉi is the PDF value of the statistical model
with estimated parameters by means of MSE. The RMSE is
obtained through following equation:

RMSE =

√√√√ 1
n

n∑
i=1

(ci − ĉi)2 (4)

Here we apply n=101 for each model.
The goodness-of-fit in curve and the RMSE of each model

are illustrated in Fig. 3. The PDF of absolute amplitude
of one-time poor data is presented by means of histogram
bars. In Fig. 3, it can be seen obviously that log-logistic
model with MLE parameters provides the best goodness-of-
fit compared to the other models, since it provides the most
suitable kurtosis, slope and tail. As for the maximum PDF
value, the log-logistic is about 1 × 10−3, while that of other
models are over 1.2×10−3. For the slope part, which connects
the kurtosis and the tail and which is in the range from
0.1 × 104 to 0.5 × 104 in view of x axes, the log-logistic
provides the smallest skewness whereas Nakagami provides
the largest. Examination of the tails show that log-logistic and
log-normal provide very close-valued tails, while tails of the
Weibull and the Nakagami are lager than the collected data.
Meanwhile, we obtain that RMSElog−logistic = 2.5425×10−5,
RMSElog−normal = 3.2704 × 10−5, RMSEweibull = 3.7234 ×
10−5, RMSEnakagami = 5.4326 × 10−5. This shows that
the log-logistic model is more accurate than the other three
models.
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Fig. 3. Clutter model comparison (a) log-logistic vs. log-normal, and (b)
log-logistic vs. weibull (c) log-logistic vs. nakagami. RMSElog−logistic =
2.5425 × 10−5, RMSElog−normal = 3.2704 × 10−5, RMSEweibull =
3.7234 × 10−5, RMSEnakagami = 5.4326 × 10−5.

V. TARGET DETECTION PERFORMANCE

One of the primary goal to be carried out by a radar is target
detection. On a basis of the clutter model that have been just
studied, we may apply a special case of the Bayesian criterion
named Neyman-Person criterion to analyze the target detection
performance in the foliage environment.

If the received sample signal to be tested is R, then the two
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hypotheses are shown as follows:

H0 : R = C + n
H1 : R = S + C + n

(5)

where C and n represent the random variable of clutter
and noise respectively. C follows log-logistic model with both
parameters µ and σ, and n is gaussian noise with zero mean
and variance ν2. S is the target signal, which assumes to be
a constant for simplicity.

Therefore f(R|H0) means PDF of R given that a target
was not present while f(R|H1) means PDF of R given that
a target was present.

They can be denoted as follows:

f(R|H0) =
∫ ∞

0

e
lnr−µ

σ

σr(1 + e
lnr−µ

σ )2
× 1√

2πν
e−

(R−r)2

2ν2 dr (6)

f(R|H1) =
∫ ∞

0

e
ln(r−s)−µ

σ

σ(r − s)(1 + e
ln(r−s)−µ

σ )2
× 1√

2πν
e−

(R−s−r)2

2ν2 dr

(7)
If the probability that a target was not present is P (H0)

whereas that of a target was present is P (H1), then PDF of
R is

f(R) = P (H0)f(R|H0) + P (H1)f(R|H1) (8)

To decide whether there is a target or not, Neyman-Pearson
detection rule is shown as

f(R|H0)
f(R|H1)

H0
>
<

H1

P (H1)
P (H0)

(9)

In case of P (H1) = P (H0), (26) is simplified as

f(R|H0)
H0
>
<

H1

f(R|H1) (10)

which actually is

e[
s2−2s(R−r)

2ν2 +
ln( r

r−s
)

σ ]

r
r−s [ 1+e

lnr−µ
σ

1+e
ln(r−s)−µ

σ

]2

H0
>
<

H1

1 (11)

It is easy to obtain the decision threshold T in terms of the
above function

T = −ν
2

s
ln[

1 + e
lnr−µ

σ

1 + e
ln(r−s)−µ

σ

]2 +
ν2[ln( r

r−s ) − σ]
sσ

+
s

2
+ r

(12)
Under hypothesis H0, a false alarm occurs anytime R > T ,
therefore the probability of false alarm is

PFA =
∫ ∞

T

f(R|H0)dR

=

∫∞
T

∫∞
0

e
[− (R−r)2

2ν2 + lnr−µ
σ

]

(1+e
lnr−µ

σ )2r
drdR

√
2πσν

(13)

Similarly, Under hypothesis H1, when R > T , the target is
detectable. Therefore the probability of detection is

PD =
∫ ∞

T

f(R|H1)dR

=

∫∞
T

∫∞
0

e
[− (R−r−s)2

2ν2 + ln(r−s)−µ
σ

]

(1+e
ln(r−s)−µ

σ )2(r−s)
drdR

√
2πσν

(14)

As mentioned in section IV, µ ≈ 7.1 and σ ≈ 1.1 by means
of MLE. If ν = 1, then (13) and (14) become

PFA = 0.362675
∫ ∞

T

∫ ∞

0

e−0.5(R−r)2+0.91(lnr−7.1)

[1 + e0.91(lnr−7.1)]2r
drdR

(15)

PD = 0.362675
∫ ∞

T

∫ ∞

0

e−0.5(R−r−s)2+0.91[ln(r−s)−7.1]

{1 + e0.91[ln(r−s)−7.1]}2(r − s)
drdR

(16)

VI. CONCLUSION

On a basis of foliage clutter data measured by the UWB
radar, we show that it is more accurate to describe foliage
clutter using log-logistic statistic model rather than log-normal,
Weibull, or Nakagami. Future research will investigate the
characteristics of target to better achieve the target detection,
tracking and imaging.
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TABLE I

ESTIMATED PARAMETERS AND STD ERROR

PDF Log-Logistic Log-normal Weibull Nakagami

data 1

µ̂ = 7.24161
σ̂ = 1.06483

εµ = 0.0141212
εσ = 0.00724181

µ̂ = 7.0455
σ̂ = 2.20761

εµ = 0.0174527
εσ = 0.0123415

â = 2975.33

b̂ = 0.594979
εa = 41.6157

εb = 0.00356925

µ̂ = 0.177062
ω̂ = 9.09663e + 007

εµ = 0.00150615
εω = 1.70907e + 006

data 2

µ̂ = 6.9716
σ̂ = 1.2126

εµ = 0.014747
εσ = 0.00773723

µ̂ = 6.72573
σ̂ = 2.33617

εµ = 0.0184691
εσ = 0.0130602

â = 2285.13

b̂ = 0.563747
εa = 33.7127

εb = 0.00337485

µ̂ = 0.162375
ω̂ = 7.4776e + 007
εµ = 0.00137422

εω = 1.46679e + 006

data 3

µ̂ = 7.00554
σ̂ = 1.10741

εµ = 0.0145728
εσ = 0.0076303

µ̂ = 6.76262
σ̂ = 2.31258

εµ = 0.0182825
εσ = 0.0129283

â = 2341.52

b̂ = 0.57073
εa = 34.1207

εb = 0.00341448

µ̂ = 0.164695
ω̂ = 7.46366e + 007

εµ = 0.001395
εω = 1.45459e + 006

data 4

µ̂ = 7.03055
σ̂ = 1.07858

εµ = 0.0142027
εσ = 0.00741556

µ̂ = 6.80711
σ̂ = 2.25973

εµ = 0.0178647
εσ = 0.0126329

â = 2395.85

b̂ = 0.579381
εa = 34.4066

εb = 0.00345156

µ̂ = 0.167391
ω̂ = 7.4926e + 007

εµ = 0.0014916
εω = 1.44727e + 006

data 5

µ̂ = 7.16226
σ̂ = 1.10132

εµ = 0.014605
εσ = 0.00750067

µ̂ = 6.95712
σ̂ = 2.26592

εµ = 0.0179137
εσ = 0.0126675

â = 2806.76

b̂ = 0.577823
εa = 40.4226

εb = 0.00347389

µ̂ = 0.17112
ω̂ = 9.03298e + 007

εµ = 0.00145265
εω = 1.72749e + 006

data 6

µ̂ = 7.01527
σ̂ = 1.10123

εµ = 0.0144902
εσ = 0.00758568

µ̂ = 6.77515
σ̂ = 2.30286

εµ = 0.0182057
εσ = 0.012874

â = 2360.33

b̂ = 0.572749
εa = 34.2753

εb = 0.00342376

µ̂ = 0.165292
ω̂ = 7.50824e + 007

εµ = 0.00140035
εω = 1.46145e + 006

data 7

µ̂ = 7.14523
σ̂ = 1.09486

εµ = 0.0145132
εσ = 0.00745994

µ̂ = 6.94201
σ̂ = 2.25621

εµ = 0.0178369
εσ = 0.0126132

â = 2753.69

b̂ = 0.578948
εa = 39.585

εb = 0.00347442

µ̂ = 0.170964
ω̂ = 8.80474e + 007

εµ = 0.00145125
εω = 1.68382e + 006

data 8

µ̂ = 6.95411
σ̂ = 1.11486

εµ = 0.0146774
εσ = 0.00768003

µ̂ = 6.71591
σ̂ = 2.31898

εµ = 0.0183331
εσ = 0.0129641

â = 2250.66

b̂ = 0.564989
εa = 33.1387

εb = 0.0033763

µ̂ = 0.162448
ω̂ = 7.31436e + 007

εµ = 0.00137488
εω = 1.4338e + 006

data 9

µ̂ = 7.18561
σ̂ = 1.09854

εµ = 0.0145483
εσ = 0.00749265

µ̂ = 6.9715
σ̂ = 2.27088

εµ = 0.0179529
εσ = 0.0126952

â = 2840.72

b̂ = 0.581219
εa = 40.6593

εb = 0.0034984

µ̂ = 0.172324
ω̂ = 8.97304e + 007

εµ = 0.00146348
εω = 1.70923e + 006

data 10

µ̂ = 7.192
σ̂ = 1.0866

εµ = 0.0144166
εσ = 0.0073916

µ̂ = 6.99196
σ̂ = 2.23975

εµ = 0.0177067
εσ = 0.0125211

â = 2869.65

b̂ = 0.584803
εa = 40.837

εb = 0.00351294

µ̂ = 0.173572
ω̂ = 9.01631e + 007

εµ = 0.0014747
εω = 1.71142e + 006

TABLE II

AVERAGED ESTIMATED PARAMETERS

PDF Log-Logistic Log-normal Weibull Nakagami

average

µ̂ = 7.0904
σ̂ = 1.1061
εµ = 0.0145
εσ = 0.0075

µ̂ = 6.8695
σ̂ = 2.2771
εµ = 0.0180
εσ = 0.0127

â = 2588

b̂ = 0.5769
εa = 37.4316
εb = 0.0035

µ̂ = 0.1687
ω̂ = 8.218e + 007

εµ = 0.0014
εω = 1.4905e + 006
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ABSTRACT
In this paper, we present two practical algorithms to se-
lect a subset of channels in virtual MIMO wireless sensor
networks (WSN). One is the Singular-Value Decomposition-
QR with Threshold (SVD-QR-T) approach that selects the
best subset of transmitters while keeping all receivers ac-
tive. The threshold is adaptive by means of Fuzzy C-Mean
(FCM). The other is the Maximum Spanning Tree Searching
(MASTS) algorithm on a basis of graph theory in respect of
cross-layer design, which potentially provides a path con-
necting all sensors that benefits routing and QoS of net-
works. The MASTS algorithm keeps all sensors active but
selects Mt + Mr − 1 subchannels, where Mt and Mr are the
number of transmitters and receivers, respectively. These
two approaches are compared against the case without chan-
nel selection in terms of capacity, bit error rate (BER), and
multiplexing gain in the presence of water-filling as well as
the circumstance of without water-filling under the same to-
tal transmission power constraint. Despite less multiplex-
ing gain, when water-filling is applied, MASTS achieves
higher capacity and lower BER than that of virtual MIMO
without channel selection at moderate to high SNR while
SVD-QR-T FCM provides the lowest BER at high SNR; in
case of no water-filling and equal transmission power allo-
cation, MASTS still offers the highest capacity at moder-
ate to high SNR but SVD-QR-T FCM achieves the lowest
BER. Both algorithms provide satisfying performances with
reduced cost and resources compared to the case without
channel selection.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HeterSANET’08, May 30, 2008, Hong Kong SAR, China.
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1. INTRODUCTION AND MOTIVATION

1.1 Channel selection in virtual MIMO
Virtual multiple-input-multiple-output (MIMO) has been

studied intensively in recent years in order to improve the
energy-efficiency in wireless sensor networks (WSN) [1][2][3].
Constrained by its physical size and limited battery, an in-
dividual sensor is allowed to contain only one antenna. Nu-
merical results show that if these individual sensors jointly
form a MIMO system, tremendous energy will be saved while
satisfying the required performance. However, a natural
drawback of the virtual MIMO is the increased complexity
and the cost of multiple radio frequency (RF) chains. One
technique to reduce the complexity and cost while providing
similar capacity and performance is channel selection.

The knowledge of channels can be obtained by various
channel estimation techniques such as the reciprocity prin-
ciple and feedback channel [4]. When channel side informa-
tion (CSI) is known to transmitters or receivers, antenna
selection can be applied through subset selection algorithms
by switches either at transmitters or receivers, or jointly
working at both ends. Therefore the best set of channels
are selected to be active while remaining ones are not em-
ployed. These switches typically cost much less than RF
chains so that low-cost and low-complexity can be achieved
with the benefits of multiple antennas [5] [6]. This system
is illustrated in Fig. 1.
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Figure 1: System diagram for virtual MIMO channel
selection

Recent years have seen an explosion of interest in MIMO
antenna selection and various criteria have been used:

1. Capacity Maximization: In the previous work of [7],
channel capacity is used as the optimality criterion,
i.e., antennas that achieve the largest capacity are ac-
tive. [7] demonstrated that in case of no CSI at trans-
mitters (CSIT) but receivers (CSIR), similar capacity
to that of the MIMO system can be achieved as far
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as the number of selected receivers is no less than the
number of transmitters.

2. Minimum Error Rate: Apart from maximization of
capacity based on Shannon theory, [8] derived another
criteria from the respect of minimum error rate when
coherent receivers, either maximum likelihood (ML),
zero-forcing (ZF), or the minimum mean-square error
(MMSE) linear receiver is employed.

3. SNR Maximization: In [9], antenna selection is per-
formed only at the receiver on a basis of largest in-
stantaneous SNR using space-time coding. It is ana-
lytically shown that full diversity advantage promised
by MIMO can be fully exploited using this criteria as
long as the space-time code employed has full spatial
diversity.

4. Cross-layer Optimal Scheduling: Besides physical layer,
some related works have adopted graph theory ap-
proach to consider cross-layer design. [10] performed
the optimal antenna assignment for spatial multiplex-
ing by Hungarian algorithm using weighted bipartite
matching graph, and [11] took into account users’ QoS
requirement with clique-searching algorithm for an-
tenna selection.

Although there have been dazzling mathematical studies
on antenna selection criteria, practical algorithms of joint
transmit and receive antenna selection, i.e., channel selec-
tion is still open and the problem of corresponding perfor-
mance analysis requires more investigations.

1.2 Contributions and Organization of Paper
In this paper, under the assumption of the quasi-static

Rayleigh fading, we propose two practical algorithms to per-
form channel selection. One is the singular-value decomposition-
QR with threshold (SVD-QR-T) employing Fuzzy C-Mean
(FCM) to virtually provide adaptive threshold ; the other
approach is the Maximum Spanning Tree Searching (MASTS)
algorithm on a basis of Kruskal’s theory [12] in respect of
graph theory, which potentially offers route connectivity of
all sensors for network layer. The former is pure physi-
cal layer design, which selects rt (see Section 3) best sub-
set of transmitters while keeping all receivers active. The
latter is a cross-layer method, which selects Mt + Mr − 1
subsets of channels while keeping all transmitters and re-
ceivers active. Examples are presented to illustrate each
step. Their performances are estimated in terms of capac-
ity, BER, and multiplexing gain by means of Monte Carlo
simulations, which is an efficient approach to illustrate the
tendency of practical results. In general, it is shown that in
spite of less multiplexing gain, when water-filling is applied,
MASTS achieves higher capacity and lower BER than vir-
tual MIMO without channel selection at moderate to high
SNR while SVD-QR-T FCM provides the lowest BER at
high SNR; in case of no water-filling and equal transmission
power allocation, MASTS still offers the highest capacity
at moderate to high SNR but SVD-QR-T FCM achieves
the lowest BER. Both algorithms provide satisfying perfor-
mances with reduced cost and resource compared to the case
without channel selection .

We organize the remainder of this paper as follows. In
Section 2, we introduce the virtual MIMO channel model in
respect of matrix as well as graph theory. Section 3 and 4

propose SVD-QR-T FCM and MASTS algorithms respec-
tively. Section 5 compares the performance of these two
algorithms with virtual MIMO and Section 6 draws the con-
clusion and presents future work.

2. CHANNEL MODEL
Virtual MIMO channel model with Mt transmitters and

Mr receivers (Mt+Mr sensors) is illustrated in Fig. 2, where
each receiver observes a superposition of the Mt transmit-
ted signals corrupted by the Rayleigh flat fading and addi-
tive white gaussian noise. Each hij , i = 1, 2, · · · , Mr and
j = 1, 2, · · · , Mt represents the channel gain from transmit-
ter j to receiver i [13], which is assumed to be Rayleigh in-
dependent and identically distributed (i.i.d.). The additive
noise also has i.i.d entries nj ∼ CN (0, σ2).

We may denote this virtual MIMO channel graph with a
discrete time model:
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+
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The above equation can be simplified as Y = HX + n,
where H is a Mr×Mt independent Rayleigh random matrix
and n denotes the random noise.

From the respect of graph theory, Fig. 2 is a connected
graph [14], i.e., there is a path connecting any two sensors
with antennas and channels making up vertex set and edge
set respectively. hij denotes its edge weight. This gives rise
to the graph theoretical approach on virtual MIMO study.
However, integration of graph theory into wireless commu-
nication systems is still neonatal and deserves much more
attention and development.
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Figure 2: Graphic channel model for virtual MIMO

3. SINGULAR-VALUE DECOMPOSITION-
QR WITH THRESHOLD (SVD-QR-T)

3.1 SVD-QR-T in channel selection
SVD has been applied to MIMO channel decomposition

in [13], [15], and sensor node selection in [16]. However,
these studies are theoretical analysis only and no algorithm
has been proposed about which channels will be physically
selected in practice.

We propose SVD-QR-T as follows:
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1. Given the channel gain matrix H ∈ RMr×Mt and r =
rank(H) ≤ min(Mt, Mr), determine a numerical esti-
mate rt of the rank r by calculating the singular value
decomposition

H = UΣVT , (2)

where U is an Mr × Mr matrix of orthonormalized
eigenvectors of HHT , V is an Mt×Mt matrix of or-
thonormalized eigenvectors of HT H , and Σ is the di-
agonal matrix Σ = diag(σ1, σ2, . . . , σi, . . . , σr), where
σi =

√
λi. λi is the ith eigenvalue of HHT while σi is

the singular value of H and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
In many practical cases, σ1, σ1, · · · , σrt are much
larger than σrt+1, · · · , σr; thus we may set threshold
to pick up valuable σi, i = 1, 2, · · · , σrt and discard
those trivial singular values in order to save resource
but maintain satisfying performance. Sometimes rt
can be much smaller than the rank r, e.g., even 1. In
this paper, we propose to use fuzzy c-means (FCM) to
determine rt. Details will be discussed in section 3.2.

2. Partition

V =

�
V11 V12

V21 V22

�
(3)

where V11 ∈ Rrt×rt, V12 ∈ Rrt×(Mt−rt), V21 ∈ R(Mt−rt)×rt,
and V22 ∈ R(Mt−rt)×(Mt−rt).

3. Using QR decomposition with column pivoting, deter-
mine E such that

[VT
11,V

T
21]E = QR, (4)

where Q is a unitary matrix, and R ∈ Rrt×Mt forms
an upper triangular matrix with decreasing diagonal
elements; and E is the permutation matrix. The po-
sitions of 1 in the first rt columns of E correspond to
the rt ordered most-significant transmitters.

3.2 Fuzzy C-Means – Unsupervised
Clustering for Adaptive Threshold

In order to keep the balance between performances and
cost, we propose FCM clustering approach to divide singular
values (σ1, σ2, . . . , σr) into two clusters, and thus provides
virtual adaptive threshold, so the cluster with higher center
would remain for active channels.

FCM clustering is a data clustering technique where each
data point belongs to a cluster to certain degree specified
by a membership grade. This technique was originally in-
troduced by Bezdek [17] as an improvement on earlier clus-
tering methods. Here we briefly summarize it.

Definition 1 (Fuzzy c-Partition). Let X = x1, x2, · · · , xn

be any finite set, Vcn be the set of real c×n matrices, and c
be an integer, where 2 ≤ c < n. The Fuzzy c-partition space
for X is the set

Mfc = U ∈ Vcn|uik ∈ [0, 1] ∀i, k; (5)

where
Pc

i=1 uik = 1 ∀k and 0 <
Pn

k=1 uik < n ∀i. The row
i of matrix U ∈ Mfc contains values of the ith membership
function, ui, in the fuzzy c-partition U of X.

Definition 2 (Fuzzy c-Means Functionals). [17]
Let Jm : Mfc ×Rcp →R+ be

Jm(U,v) =

nX

k=1

cX
i=1

(uik)m(dik)2 (6)

where U ∈ Mfc is a fuzzy c-partition of X; v = (v1,v2, · · · ,vc) ∈
Rcp, where vi ∈ Rp, is the cluster center of prototype ui,
1 ≤ i ≤ c;

(dik)2 = ||xk − vi||2 (7)

where ||·|| is any inner product induced norm on Rp; weight-
ing exponential m ∈ [1,∞); and, uik is the membership of xk

in fuzzy cluster ui. Jm(U,v) represents the distance from
any given data point to a cluster weighted by that point’s
membership grade.

The solutions of

min
U∈Mfc,v∈Rcp

Jm(U,v) (8)

are least-squared error stationary points of Jm. An infi-
nite family of fuzzy clustering algorithms — one for each
m ∈ (1,∞) — is obtained using the necessary conditions for
solutions of (8), as summarized in the following:

Theorem 1. [17] Assume || · || to be an inner product
induced norm: fix m ∈ (1,∞), let X have at least c < n
distinct points, and define the sets (∀k)

Ik = {i|1 ≤ i ≤ c; dik = ||xk − vi|| = 0} (9)

Ĩk = {1, 2, · · · , c} − Ik (10)

Then (U,v) ∈ Mfc×Rcp is globally minimal for Jm only if
(φ denotes an empty set)

Ik = φ ⇒ uik = 1
.

[

cX
j=1

(
dik

djk
)2/(m−1)] (11)

or

Ik 6= φ ⇒ uik = 0 ∀i ∈ Ĩk and
X
i∈Ik

uik = 1, (12)

and

vi =

nX

k=1

(uik)mxk

. nX

k=1

(uik)m ∀i (13)

Bezdek proposed the following iterative method [17] to
minimize Jm(U,v):

1. Fix c, 2 ≤ c < n; choose any inner product norm
metric for Rp; and fix m, 1 ≤ m < ∞. Initialize
U(0) ∈ Mfc (e.g., choose its elements randomly from
the values between 0 and 1). Then at step l (l =
1, 2, · · · ):

2. Calculate the c fuzzy cluster centers v
(l)
i using (13)

and U(l).

3. Update U(l) using (11) or (12).

4. Compare U(l) to U(l−1) using a convenient matrix
norm, i.e., if ||U(l) − U(l−1)|| ≤ εL stop; otherwise,
return to step 2.

3.3 An Example of SVD-QR-T with FCM in
virtual MIMO channel selection

We use the following example to illustrate the SVD-QR-T
with FCM application in MIMO-WSN channel selection.
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1. Step 1. Assume the estimated channel gain is

H =

2
6664

0.6211 0.7536 0.6595
0.5602 0.6596 0.1834
0.2440 0.2141 0.6365
0.8220 0.6021 0.1703
0.2632 0.6049 0.5396

3
7775

By matrix computation, we get:

V =

2
4
−0.5856 −0.5075 −0.6321
−0.6574 −0.1589 0.7366
−0.4743 0.8469 −0.2406

3
5

diag(Σ) = (2.0017, 0.6347, 0.2572). Use FCM to divide
diag(Σ) into 2 clusters, we get

v =

�
2.0010
0.4445

�

U =

�
1.0000 0.0190 0.0114
0.0000 0.9810 0.9886

�

The entry 1.0000 at U means that the membership
degree of 2.0017 belonging to the cluster with center
2.0010 is 1.0000. Therefore, the cluster with higher
center is composed of only 2.0017, then 2.0017 is cho-
sen and rt = 1.

2. Step 2. Obtain V11 and V21 from V:

V11 = −0.5856

V21 =

� −0.6574
−0.4743

�

Based on [VT
11V

T
21] get E by QR:

E =

2
4

0 1 0
1 0 0
0 0 1

3
5

As rt = 1, choose the first column of E

E(:, rt) =

2
4

0
1
0

3
5

3. Step 3. Analyze E(:, rt), 1 appears on the 2nd row,
and thus the 2nd column of H is selected to construct
Hs, which is:

Hs =

2
6664

0 0.7536 0
0 0.6596 0
0 0.2141 0
0 0.6021 0
0 0.6049 0

3
7775

This implies that the channel to be selected are those
that connect the 2nd transmitter and all receivers, i.e.,
transmitter 2 and all the receivers are selected to be
active while other transmitters are not employed to
save their battery.

As we may see, the row index in which 1 appears in E(:, rt)
particularly determines which transmitters to be selected, so
with regard to SVD-QR-T, rt×Mr channels are selected to
be active.

4. THE MAXIMUM SPANNING TREE
SEARCHING (MASTS)

4.1 Introduction of MASTS
As mentioned in Section 2, we may use a graph of ver-

tices and edges to represent the virtual MIMO communica-
tion scenario. From this aspect, essentially channel selec-
tion is to remove some edges while keep those remaining.
However, global connectivity is usually required for WSN
[18][19]. Spanning tree [14] suggests such an algorithm that
in an arbitrary graph, all the vertices are connected with the
minimum necessary edges, i.e., there is no isolated vertice
under the condition of the least possible edge number. For
example, when Mt = 3 and Mr = 5, some of the possible
spanning trees are drawn in Fig. 3.

Note that for an arbitrary graph of n vertices, its spanning
tree is of n vertices and n − 1 edges [14]. Since there are
Mt + Mr vertices, the number of edges to be selected by
MASTS algorithm is a fixed Mt + Mr − 1, which means
MASTS always chooses Mt + Mr − 1 channels.

Given Mt and Mr, the ways to construct a spanning tree
(not necessarily with maximum sum of weight) is MtMr−1×
MrMt−1. We prove this conclusion by Matrix Tree Theorem
[14] as follows:

1. The adjacency matrix of the virtual MIMO graph shown
in Fig. 2 is

X1 X2 · · · XMt Y1 Y2 · · · YMr

X1

X2

...
XMt

Y1

Y2

...
YMr

2
6666666666664

0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 1 1 · · · 1
...

...
...

...
...

...
...

...
0 0 · · · 0 1 1 · · · 1
1 1 · · · 1 0 0 · · · 0
1 1 · · · 1 0 0 · · · 0
...

...
...

...
...

...
...

...
1 1 · · · 1 0 0 · · · 0

3
7777777777775

2. The degree matrix of the above MIMO graph is:

X1 X2 · · · XMt Y1 Y2 · · · YMr

X1

X2

...
XMt

Y1

Y2

...
YMr

2
6666666666664

Mr 0 · · · 0 0 0 · · · 0
0 Mr · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · ·Mr 0 0 · · · 0
0 0 · · · 0 Mt 0 · · · 0
0 0 · · · 0 0 Mt · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · Mt

3
7777777777775

3. The degree matrix minus the adjacency matrix, we get
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the matrix D which is:

D =

2
6666666666664

Mr 0 · · · 0 −1 −1 · · · −1
0 Mr · · · 0 −1 −1 · · · −1
...

...
...

...
...

...
...

0 0 · · ·Mr −1 −1 · · · −1
−1 −1 · · · − 1 Mt 0 · · · 0
−1 −1 · · · − 1 0 Mt · · · 0
...

...
...

...
...

...
...

−1 −1 · · · − 1 0 0 · · · Mt

3
7777777777775

(14)

4. Delete both an arbitrary row and an arbitrary column
of D and take the determinant of remaining matrix,
the result comes to MtMr−1 ×MrMt−1, which is the
number of ways to form a spanning tree on a basis of
a MIMO graph.

In general, MASTS algorithm is to compute a spanning
tree with the maximum sum of weight of edge, i.e., to select
the maximum sum of channel gain while realizing the con-
nectivity of all the sensors. Our contributions mainly lie in
applying the graph theoretical concept on maximum span-
ning tree into virtual MIMO channel selection and program
the algorithm.

The MASTS algorithm is:

1. Step 1 : Select 3 edges with the highest weight includ-
ing their vertices at first.

2. Step 2 : Enlarge the subgraph by edges with high weight
in decreasing manner and make sure no cycles are
formed.

3. Step 3 : Continue step 2 until the edge number of en-
larged subgraph is equal to Mt + Mr − 1. This final
subgraph is the spanning tree with the maximum sum
of weight.

Figure 3: Examples of spanning trees for 3×5 MIMO

4.2 An Example of MASTS in virtual MIMO
channel selection

As a virtual MIMO graph contains the same information
as that of channel gain matrix H, we illustrate MASTS al-
gorithm by matrix entry selection procedure using Fig. 4
and matrix Hb Hc Hd He Hg.

Fig. 4 (a) is the original virtual MIMO graph. Here we
assume H is the same as that in SVD-QR example. Fig. 4
(b) shows the subgraph with 3 highest weight. These edges
are denoted by 〈〉 in matrix Hb. This is the step 1.

Hb =

2
6664

0.6211 〈0.7536〉 0.6595
0.5602 〈0.6596〉 0.1834
0.2440 0.2141 0.6365
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

3
7775

(a) (b) (c)

(d) (e) (f)

1X

2X

3X

3Y

2Y

1Y

4Y

5Y

Figure 4: The MASTS algorithm

Note that among the selected 3 entries, 0.8220 has the
different row index either with that of 0.7536 or 0.6595, so
enlarging this subgraph with any of the remaining edges will
absolutely not form a cycle.

Thus, the second step starts with selecting the edge with
the fourth highest weight, which is shown in Fig. 4 (c) and
Matrix Hc.

Hc =

2
6664

0.6211 〈0.7536〉 〈0.6595〉
0.5602 〈0.6596〉 0.1834×
0.2440 0.2141 0.6365
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

3
7775

Note that after the selection of entry 0.6595, the entry
0.1834 will no longer be selected, or there is going to form
a cycle X2Y1X3Y2, so we note the entry 0.1834 with “×”
and use a dash line to represent the unavailability of the
corresponding edge in Fig. 4(c). This implies the following
criteria:
Criteria Any four entries with index (i,j) (i,q) (p,j) (p,q),
where i, p ≤ Mr, i 6= p; j, q ≤ Mt, j 6= q form a cycle. If
any three have been selected, the remaining one should be
eliminated.

Based on this condition, we continually select entries as
shown in Fig. 4 (d) (e) (f) and matrix Hd He Hf . As
we only have to select 3 + 5 − 1 = 7 edges, edges in graph
(f) represented by none-zero entries in matrix Hg are the
channels finally selected.

Hd =

2
6664

0.6211 〈0.7536〉 〈0.6595〉
0.5602 〈0.6596〉 0
0.2440 0.2141× 〈0.6365〉
〈0.8220〉 0.6021 0.1703
0.2632 0.6049 0.5396

3
7775

He =

2
6664

〈0.6211〉 〈0.7536〉 〈0.6595〉
0.5602× 〈0.6596〉 0
0.2440× 0 〈0.6365〉
〈0.8220〉 0.6021× 0.1703×
0.2632 0.6049 0.5396

3
7775

Hg =

2
6664

0.6211 0.7536 0.6595
0 0.6596 0
0 0 0.6365

0.8220 0 0
0 0.6049 0

3
7775

It is worth mentioning that Hg obtained through MASTS
is different from Hs derived by SVD-QR-T.
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5. PERFORMANCE ANALYSIS
Due to the randomness of the channel gain matrix, we em-

ploy Monte Carlo simulations to analyze the performances
of our algorithms in terms of capacity, multiplexing gain and
bit error rate (BER). Following steps are applied:

1. Use Jake’s Model [20] to randomly generate indepen-
dent a Mt ×Mr Rayleigh channel model.

2. Follow the SVD-QR-T FCM and MASTS channel se-
lection algorithms respectively to select channels.

3. Obtain eigenvalue λis and its rank rs for Hs. Note
that λis is totally different from λi of H. Similarly, we
can obtain λig, rg for Hg.

4. Here we assume B = 1Hz. Through 10,000 times
Monte Carlo simulations to obtain capacity, BER for
QPSK modulation, and multiplexing gain with and
without water-filling.

5.1 Channel Known At the Transmitter:
Water-Filling

When both of CSIT and CSIR are known, the water-filling
technique can be utilized to optimally allocate power Pi at
the independent parallel channel i. The sum of capacities on
each of these independent parallel channels is the maximal
capacity of the virtual MIMO [13]. This capacity can be
expressed as

C = maxP
Pi≤P

rX
i=1

B log2(1 +
Pi

σ2
λi) (15)

where P is the total power constraint for transmitters, r is
the rank of H and λi is the eigenvalue of HHT . Since the
SNR at the ith channel at full power is SNRi = λiP/σ2,
the capacity (15) can also be given in terms of the power
allocation Pi as

C = maxP
Pi≤P

rX
i=1

B log2(1 +
Pi

P
SNRi) (16)

where

Pi

P
=

�
1/SNR0 − 1/SNRi SNRi ≥ SNR0

0 SNRi < SNR0
(17)

for some cutoff value SNR0. The final capacity is given as

C =
X

SNRi≥SNR0

B log2(
SNRi

SNR0
) (18)

The value of SNR0 must be found numerically, owning
to that there is no existence of closed-form solution for con-
tinuous distributions of SNR [21]. This results in Monte
Carlo simulations to analyze the capacity performances on
SVD-QR-T FCM and MASTS virtual MIMO, which is illus-
trated in Fig. 5. When SNR is lower than 5dB, SVD-QR-T
FCM provides a larger capacity than that of MASTS. How-
ever, MASTS grows larger than a virtual MIMO when SNR
reaches around 8.5 dB. It clearly shows that MASTS can
offer the largest capacity at high SNR, due to the feature on
singular value of Hg. We shall illustrate this using following
example:

Suppose

0 5 10 15 20
2

4

6

8

10

12

14

16

18

20

22

SNR (dB)

C
ap

ac
ity

 (b
ps

/H
z)

4x4 virtual MIMO
SVD−QR−T FCM
MASTS

Figure 5: Capacity of SVD-QR-T FCM / MASTS /
virtual MIMO with water-filling

H =

2
664

0.7733 1.3614 1.2254 0.3695
0.6867 0.2879 1.2014 1.7755
1.2381 0.5776 1.5719 0.2469
0.6749 1.4501 0.4248 0.6060

3
775

We can get λ = [13.4770 2.0235 1.1696 0.0743]; λg =
[7.7490 3.7149 2.3701 0.2236]; λs = [10.6485 2.0002 1.0406].
With the increase of P/σ2, MASTS capacity in (18) will in-
crease faster then that of the virtual MIMO without channel
selection.

Although SVD-QR-T FCM does not seem to provide any
advantage in the above figure, it offers lower BER than vir-
tual MIMO without channel selection when SNR is higher
than about 7dB as well as lowest BER after SNR grows to
13dB, which is shown in Fig. 6. This is because SVD-QR-T
FCM chooses the best subset of equivalent parallel channels
so that SNR allocated at each parallel is larger than that of
MASTS and virtual MIMO as P/σ2 grows larger. Here we
employ QPSK modulation with multiplexing but no space-
time coding (STC) is adopted. Since no diversity gain is
obtained, maximal multiplexing does exist.

0 5 10 15 20
10−3

10−2

10−1

SNR (dB)

B
E

R

4x4 virtual MIMO
SVD−QR−T FCM
MASTS

Figure 6: BER of SVD-QR-T / MASTS / 4× 4 vir-
tual MIMO with water-filling

Maximal multiplexing gain is the number of equivalent
multiple parallel spatial channels [22]. It is also referred to
as degrees of freedom to communicate [23], which is related
to the row and column numbers of H, Hs and Hg . It
has been derived in [23] that the maximal multiplexing gain
provided by Mr × Mt MIMO is min(Mt, Mr). However,
the accurate multiplexing gain is r = rank(H) since it is
possible that H is not full rank. As SVD-QR-T FCM selects
rt transmitters and all receivers, the maximal multiplexing
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gain offered by SVD-QR-T FCM is min(rt, Mr). Note that
rt ≤ r ≤ Mr, therefore the accurate multiplexing gain for
SVD-QR-T FCM is rt. Concerning MASTS, all transmitters
and receivers are active and the maximal multiplexing gain
is rank(Hg). If water-filling are applied, less multiplexing
gain will be offered as some singular values with SNR lower
than SNR0 will be cut off.

Under the premise that H is full rank, we obtain the mul-
tiplexing gain on SVD-QR-T FCM and MASTS in Fig. 7
and Fig. 8 respectively. When Mt = Mr = 10, multiplex-
ing gain for SVD-QR-T FCM and MASTS are 3.5 and 4
respectively if SNR is 0dB while they grow to 5 and 8.2 if
SNR becomes 20dB. Note that although along the increase of
SNR, the multiplexing gain of both algorithms grow larger,
this characteristic is more obvious for MASTS.
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Figure 7: Multiplexing gain of SVD-QR-T FCM/
MASTS / virtual MIMO with water-filling at
SNR=0dB

3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Mt =Mr

M
ul

tip
le

xi
ng

 G
ai

n 
at

 2
0 

dB

virtual MIMO
SVD−QR−T FCM
MASTS

Figure 8: Multiplexing gain of SVD-QR-T FCM/
MASTS / virtual MIMO with water-filling at
SNR=20dB

Figs. 5∼8 imply that MASTS generally outweighs SVD-
QR-T FCM on performances under the circumstances of
water-filling, nevertheless it is worth mentioning that less
multiplexing gain implies less transmitters are applied for
SVD-QR-T FCM, so less resources are consumed. As for
MASTS, it always employs all transmitters and receivers,
which costs more resources than those of SVD-QR-T FCM.

5.2 Channel Unknown At Transmitter:
Uniform Power Allocation

it is not always the case that both CSIT and CSIR are
known. In the case of only CSIR, water-filling power opti-

mization can not be applied and people simply allocate equal
power to each transmitters, therefore its capacity becomes

C =

rX
i=1

B log2(1 +
SNRi

Mt
) (19)

Here we also apply 10,000 times of Monte Carlo simulations
to obtain the expectation of capacity for SVD-QR-T FCM
/ MASTS and a 4 × 4 virtual MIMO at a different SNR in
Fig. 9.
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Figure 9: Capacity of SVD-QR-T FCM / MASTS /
virtual MIMO without water-filling

It is shown that SVD-QR-T FCM provides a higher capac-
ity than that of a virtual MIMO without channel selection
if SNR is less than 10dB and a higher capacity than that of
MASTS if SNR is less than 2.5dB. MASTS outweighs virtual
MIMO without channel selection in capacity from 0dB and
this advantage is more obvious along the increase of SNR.

However, MASTS can not provide better performance in
BER while SVD-QR-T FCM performs best, which is illus-
trated in Fig. 10. This is because SNR allocated at each
equivalent parallel channel by means of SVD-QR-T FCM is
larger than that of MASTS and virtual MIMO from 0dB.
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Figure 10: BER of SVD-QR-T / MASTS / 4 × 4
virtual MIMO without water-filling

In the mean time, Fig. 11 illustrates that MASTS can
achieve larger multiplexing gain than that of SVD-QR-T
FCM but that means more resource consumption, which is
the same situation as in the case of water-filling. When no-
water-filling is used, multiplexing gain is not associate with
SNR.
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Figure 11: Multiplexing gain of SVD-QR-T FCM/
MASTS / virtual MIMO without water-filling

6. CONCLUSION
This paper is a preliminary work on the virtual MIMO

channel selection problem in practice. Two approaches with
concrete examples are proposed from respect of pure phys-
ical design and cross-layer consideration respectively. We
not only present the channel selection algorithms, but also
provide the detailed approach on performance analysis with
Monte Carlo simulations. We demonstrate that with the
same total transmission power constraint, the MASTS can
offer the highest capacity ( either with water-filling or with-
out ) than that of virtual MIMO while SVD-QR-T FCM can
provide the best BER performance. Future research tracks
might concern the extension of the proposed algorithm to
integrate with space time coding (STC) so as to further op-
timize the system performances.
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Abstract— Owning to Rician fading and white gaussian noise,
the scattered back image signal of radar sensors would be
distorted to some extend. In this paper, we apply two schemes
named Equal Gain Combination (EGC) and Maximal Ration
Combination (MRC) respectively for RSN image fusion. Simula-
tion results show that image fusion by means of MRC can provide
much better image quality based on both minimum mean squared
error (MMSE) and the mean of structural similarity (MSSIM)
index if the channel estimation offers satisfying channel side
information at receiver (CSIR). However, EGC itself does not
require any channel estimation scheme and thus more simple to
implement.

I. INTRODUCTION

Enhancing homeland security demands challenging accu-
racy to detect unauthorized intrusion. For some applications,
information provided by single radar may be imprecise or
incomplete [1] [2]. A network of multiple radar sensors can
been utilized to combat performance degradation of single
radar [3]. By employing Radar Sensor Networks (RSN), we
are able to protect critical infrastructure from terrorist activities
[4].

Image fusion on RSN is that radars are managed by an
intelligent clusterhead which combines image diversity in
order to satisfy the common goals of the network other than
each radar operates independently.

There have been intensive study on radar image fusion,
which can be mainly categorized into 3 applications. The
first application uses a pair of antennas to obtain an elevation
map of the observed scene to resolve the problem of Syn-
thetic Aperture Radar (SAR) Interferometry [5]; the second
considers fusion of multisensor images of the same site at
different time by means of neural networks [6] [7]; the third
refers to a processor to fuse multifrequency, multipolarization
and multiresolution images on a basis of wavelet transform
and multiscale Kalman filter [8] [9]. However, to this date,
the concept of RSN have rarely been employed during the
exiting research on radar image fusion. Instead, attention has
been mainly given to image fusion on the same single radar.
Furthermore, in the previous studies, image processing and
physical layer characteristics are usually studied mutually
independently to each other. The joint study on both fields
demands further exploration besides joint source-channel cod-
ing [10] [11].

In this paper, we apply two schemes named Equal Gain
Combination (EGC) and Maximal Ration Combination (MRC)
respectively for RSN image fusion. Simulation results show
that image fusion by means of MRC can provide much
better image quality based on both minimum mean squared
error (MMSE) and the mean of structural similarity (MSSIM)
index if the channel estimation offers satisfying channel side
information at receiver (CSIR). However, EGC itself does not
require any channel estimation scheme and thus more simple
to implement.

The remainder of this paper will be organized as follows:
Section II describes EGC and MRC image fusion schemes
respectively. Section III shows image fusion result and Section
IV draws conclusion and future work.

II. THEORY OF OPERATION

Radar operates by radiating energy into space and detecting
echo signals reflected back from a target [12]. When the
non-fluctuating target is constructed from many independently
positioned scatterers, the probability density function (PDF)
of its radar cross section (RCS) can usually be described by
Rician PDF [13] and thus the channel through which the signal
is scattered back is usually described by corruption of Rician
fading.

As radar sensors are environment dependent [14], it may
provide better image quality if different neighboring radars
work collaboratively to perform image fusion. For example,
consider a system of two radars. When the signal of either
radar unfortunately experience a severe fading, if two radars
are spaced sufficiently far apart, it is not likely that both of
the radars experience deep fade at the same time. By selecting
better image pixel from the two radar image candidates, it is
unlikely that the image information will be lost as much as that
of single radar image. Fig.1 illustrates this scenario. The solid
line represents the transmitted signal of radar member while
the dash line represents the echo signal which is corrupted
with Rician fading and noise.

Fig. 2 shows the diagram of image fusion we have ap-
plied to RSN. As the fine details that accurately describes
target is critical for reliable detection and classification of
targets, before image fusion, the processing for resolution
enhancement is required [15]. R1, R2, · · · , Rn represent pixel
matrices of images obtained from radar sensor 1, radar sensor
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2, · · · , sensor n respectively. a1, a2, · · · , an is pixel weighting
employed by image fusion. The main purpose of EGC and
MRC image fusion schemes is to coherently combine the
independent faded images so that the effects of fading and
noise are mitigated.

radar 1 radar N

target

radar i

Fig. 1. Radar Sensor Network (RSN)

Fig. 2. Diagram of Image Fusion for RSN

EGC is a simple technique which co-phases the image
signals on each radar sensor and then combines them using
equal weighting, therefore each a1, a2, · · · , an equals to the
same 1. The pixel matrix after EGC image fusion is

Rf = (R1 + R2 + · · ·+ Rn)/n (1)

In this case, the output equals to the average of each radar
image.

In MRC, the output image is a weighted sum of all radars,
the pixel matrix after MRC image fusion is

Rf =
(
∑n

i=1 aiRi)2∑n
i=1 a2

i

(2)

We can find ai that maximize Rf by taking partial deriv-
atives of (2) or employing the Cauchy-Schwartz inequality
[16]. The optimal weights yields a2

i = Ri
2. This implies that

radar with good image quality should be weighted more. MRC

requires knowledge of time-varying Rician channel fading on
each radar, i.e., channel side information at receiver (CSIR)
is necessary. CSIR can be obtained through various channel
estimation techniques, which are out of the scope of this paper.
However, EGC does not have this requirement and thus is more
simple to be implemented.

III. SIMULATION

(a) Original Object

(c) Only after noise

(b) Only after Rician fading 

(d) After Rician fading and noise

Fig. 3. radar images illustration: (a) Original Object, (b) Only corrupted
by Rician fading without noise, (c) Only corrupted by noise without Rician
fading, (d) Corrupted by both Rician fading and noise

Original Object Image of radar1

Image of radar2 After EGC

Fig. 4. EGC image fusion: (a) Original Object, (b) image obtained by radar
sensor 1, (c) image obtained by radar sensor 2, (d) image obtained by means
of EGC

For simplicity, we assume the RSN consist of 2 radars. Of
course, the situation of larger number of radar members can
be easily extended from this simple case. Jake’s Model [17] is
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Original Object Image of radar1

Image of radar2 After MRC

Fig. 5. MRC image fusion: (a) Original Object, (b) image obtained by radar
sensor 1, (c)image obtained by radar sensor 2, (d) image obtained by means
of MRC with poorer channel estimation

applied to generate Rician fading channel by means of Matlab.
As mentioned before, EGC is simply average all images, so no
channel estimation technique is required by EGC. However,
MRC is on a basis of CSI and thus different channel estimation
performance would result in different quality of image fusion.
we employ block phase estimation (BPE) raised by Viterbi
[18] to estimate Rician channel. This estimation is only used
in MRC simulation.

Fig. 3 illustrate image distortion result from Rician fading
and white gaussian noise. Fig. (a) is the image of the original
object. Fig. (b) is the image corrupted only by Rician fading
channels without white gaussian noise. Fig. (c) is the image
corrupted only by noise without rician fading. (d) is the image
corrupted by both Rician fading and noise, which is practical,
as in the real world, fading and noise always coexist. Note
that if fading and noise become more inclement, the quality
of image can be drastically reduced.

Fig. 4 illustrates the EGC image fusion result compared
with the original object and images obtained by independent
sensors. Fig (b) and (c) are images obtained by radar sensor 1
and sensor 2 respectively, both are corrupted by white gaussian
noise and Rician fading with different fading factor K = 10
and K = 5, doppler shift fd = 100Hz and fd = 200Hz and
variance of noise = 0.04 (double size). It is shown that quality
of EGC infused image (d) is better than both (b) and (c), this
can be particularly analyzed through the jacket of cameraman.
However, the improvement on background is not easy to tell
by human eyes. The Minimum Mean Squared Error (MMSE)
of image (b) and (c) are 0.0541 and 0.0706 respectively, while
the MMSE of EGC fused image is 0.0316. Besides MMSE,
we also calculate the mean of structural similarity (MSSIM)
index [19] by comparing (b)(c)(d) with (a) respectively and get

Original Object Image of radar1

Image of radar2 After EGC

Fig. 6. EGC image fusion: (a) Original Object, (b) image obtained by radar
sensor 1, (c) image obtained by radar sensor 2, (d) image obtained by means
of EGC

Original Object Image of radar1

Image of radar2 After MRC

Fig. 7. MRC image fusion: (a) Original Object, (b) image obtained by radar
sensor 1, (c)image obtained by radar sensor 2, (d) image obtained by means
of MRC with better channel estimation

0.9979, 0.9972 and 0.9988. All MMSE and MSSIM employ
“double” size. Both MMSE and MSSIM illustrate that the
image obtained through EGC offers better quality then that
obtained by independent member.

Similarly, MRC image fusion result is shown in Fig. 5. Fig
(b) and (c) are the same images in Fig. 4 (b) and (c). Fig. 5
(d) is the fused image obtained by means of MRC when the
performance of channel estimation is bad. Due to the large
error in the channel knowledge, we can see that MRC could
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not provide good quality of fused image, even the fused image
look worse than (b) and (c) to some extend in this case. The
MMSE and MSSIM of (d) is 0.0406 and 0.9984 respectively,
compared to 0.0316 and 0.9988 of EGC.

Under the condition that the performance of channel es-
timation is good, we obtain a new group of images in Fig.
6 and 7 with the same fading factor, doppler shift and
variance of noise. Note that Fig. 6 is different with Fig. 4.
Although channel estimation would not result in the difference
between performances of EGC, as EGC itself does not require
any knowledge of channel, for better comparison, Fig. 6 is
generated in the way that (b) an (c) are the same as those
in Fig. 7 with MMSE 0.0510 and 0.0691, MSSIM 0.998 and
0.9973. MMSE of Fig. 6 (d) and Fig. 7 (d) are 0.0298 and
0.0153 respectively while their MSSIM are 0.9988 and 0.9994.
These values further illustrate that MRC under good channel
estimation can definitely offer better quality of fused image
than that of EGC.

IV. CONCLUSION AND FUTURE WORKS

This paper is a preliminary work on image fusion on RSN.
We applied EGC and MRC to fuse images and the result shows
that both EGC and MRC are capable of offering better image
quality than that of single radar.
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Abstract— Network-enabled Electronic Warfare (NEW) is
to develop modeling and simulation efforts to explore the
advantages and limitations of network-enabled electronic
warfare concepts. The advantages of linking multiple elec-
tronic support measures (ESM) and electronic attack (EA)
assets to achieve improved capabilities across a networked
battleforce have yet to be quantified. In this paper, we will
use radar sensors as ESM and EA assets to demonstrate
the advantages of NEW in Collaborative Automatic Target
Recognition (CATR). We apply the NEW to CATR via
waveform diversity combining and and propose maximum-
likehood (ML)-ATR algorithms for nonfluctuating target
as well as fluctuating target. Simulation results show that
our NEW-CATR performs much better than single sensor-
based ATR algorithm for nonfluctuating targets or fluctuating
targets. Conclusions are drawn based on our analysis and
simulations and future research works on this research topic
are discussed.1

Index Terms : Network-enabled electronic warfare, radar
sensor networks, waveform diversity, collaborative automatic
target recognition, maximum-likelihood, interferences.

I. INTRODUCTION AND MOTIVATION

In current and future military operational environments,
such as Global War on Terrorism (GWOT) and Maritime
Domain Awareness (MDA), warfighters require technolo-
gies evolved to support information needs regardless of
location and consistent with the users level of command
or responsibility and operational situation. To support
this need, the U.S. Department of Defense (DoD) has
developed the concept of Network Centric Warfare (NCW),
defined as “military operations that exploit state-of-the-
art information and networking technology to integrate
widely dispersed human decision makers, situational and
targeting sensors, and forces and weapons into a highly
adaptive, comprehensive system to achieve unprecedented
mission effectiveness” [1]. The goal of electronic warfare
is to control the electromagnetic (EM) spectrum by ex-
ploiting, disrupting, or denying enemy use of the spectrum
while ensuring its use by friendly forces [2].

11-4244-1513-06/07/$25.00 c©2007 IEEE

Network-enabled Electronic Warfare (NEW) is to de-
velop modeling and simulation efforts to explore the advan-
tages and limitations of network-enabled electronic warfare
concepts. The advantages of linking multiple electronic
support measures (ESM) and electronic attack (EA) assets
to achieve improved capabilities across a networked bat-
tleforce have yet to be quantified [2]. In this paper, we will
use radar sensors as ESM and EA assets to demonstrate
the advantages of NEW in Collaborative Automatic Target
Recognition (CATR). The network of radar sensors should
operate with multiple goals managed by an intelligent
platform network that can manage the dynamics of each
radar to meet the common goals of the platform, rather than
each radar to operate as an independent system. Therefore,
it is significant to perform signal design and processing and
networking cooperatively within and between platforms of
radar sensors and their communication modules. This need
is also testified by recent solicitations from U.S. Office of
Naval Research [2][3]. For example, in [3], it is stated that
“Algorithms are sought for fused, and or, coherent cross-
platform Radio Frequency (RF) sensing. The focus of this
effort is to improve surveillance utilizing a network, not
fusion of disparate sensor products. The algorithms should
be capable of utilizing RF returns from multiple aspects in
a time-coordinated sensor network.” In this paper, we will
study waveform design and diversity algorithms for radar
sensor networks. Waveform diversity is the technology that
will allow one or more sensors on board a platform to
automatically change operating parameters, e.g., frequency,
gain pattern, and pulse repetition frequency (PRF) to meet
the varying environments. It has long been recognized that
judicious use of properly designed waveforms, coupled
with advanced receiver strategies, is fundamental to fully
utilizing the capacity of the electromagnetic spectrum.
However, it is only relatively recent advances in hard-
ware technology that are enabling a much wider range
of design freedoms to be explored. As a result, there are
emerging and compelling changes in system requirements
such as more efficient spectrum usage, higher sensitivities,
greater information content, improved robustness to errors,
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reduced interference emissions, etc. The combination of
these is fuelling a worldwide interest in the subject of
waveform design and the use of waveform diversity tech-
niques.

In the existing works on waveform design and selection,
Fitzgerald [8] demonstrated the inappropriateness of selec-
tion of waveform based on measurement quality alone:
the interaction between the measurement and the track
can be indirect, but must be accounted for. Bell [6] used
information theory to design radar waveform for the mea-
surement of extended radar targets exhibiting resonance
phenomena. In [5], singularity expansion method was used
to design some discriminant waveforms such as K-pulse,
E-pulse, and S-pulse. Sowelam and Tewfik [24] developed
a signal selection strategy for radar target classification,
and a sequential classification procedure was proposed to
minimize the average number of necessary signal trans-
missions. Intelligent waveform selection was studied in
[4][12], but the effect of doppler shift was not considered.
In [15], the performance of constant frequency (CF) and
linear frequency modulated (LFM) waveform fusion from
the standpoint of the whole system was studied, but the
effects of clutter was not considered. In [23], CF and
LFM waveforms were studied for sonar system, but it was
assumed that the sensor is nonintelligent (i.e., waveform
can’t be selected adaptively). All the above studies and
design methods were focused on the waveform design or
selection for a single active radar or sensor. In [21], cross-
correlation properties of two radars are briefly mentioned
and the binary coded pulses using simulated annealing
[7] are highlighted. However, the cross-correlation of two
binary sequences such as binary coded pulses (e.g. Barker
sequence) are much easier to study than that of two analog
radar waveforms. In this paper, we will focus on the
waveform diversity and design for radar sensor networks
using constant frequency (CF) pulse waveform.

The rest of this paper is organized as follows. In Section
II we propose a RAKE structure for waveform diversity
combining and propose maximum-likelihood (ML) algo-
rithms for CATR. In Section II we propose another RAKE
structure for UWB radar diversity combining. In Section
IV, we conclude this paper and provide some future works.

II. NEW FOR COLLABORATIVE AUTOMATIC TARGET

RECOGNITION

In NEW, the radar sensors are networked together in an
ad hoc fashion. They do not rely on a preexisting fixed
infrastructure, such as a wireline backbone network or
a base station. They are self-organizing entities that are
deployed on demand in support of various events surveil-
lance, battlefield, disaster relief, search and rescue, etc.
Scalability concern suggests a hierarchical organization of
radar sensor networks with the lowest level in the hierarchy

being a cluster. As argued in [14] [10] [9] [17], in addition
to helping with scalability and robustness, aggregating
sensor nodes into clusters has additional benefits:

1) conserving radio resources such as bandwidth;
2) promoting spatial code reuse and frequency reuse;
3) simplifying the topology, e.g., when a mobile radar

changes its location, it is sufficient for only the
nodes in attended clusters to update their topology
information;

4) reducing the generation and propagation of routing
information; and,

5) concealing the details of global network topology
from individual nodes.

In Radar Sensor Network (RSN), each radar can provide
their waveform parameters such as δi to their clusterhead
radar, and the clusterhead radar can combine the wave-
forms from its cluster members. In this paper, we propose
a RAKE structure for waveform diversity combining, as
illustrated by Fig. 1. According to this structure, the
received r1(u, t) is processed by a bank of matched filters.

Diversity

     

 Combining 
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M
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Fig. 1. Waveform diversity combining by clusterhead in RSN.

How to combine all the Zm’s (m = 1, 2, · · · ,M ) are
very similar to the diversity combining in communations to
combat channel fading, and the combination schemes may
be different for different applications. In this paper, we are
interested in applying RSN waveform diversity to CATR,
e.g., recognition that the echo on a radar display is that of
an aircraft, ship, motor vehicle, bird, person, rain, chaff,
clear-air turbulence, land clutter, sea clutter, bare montains,
forested areas, meteors, aurora, ionized media, or other nat-
ural phenomena via collaborations among different radars.
Early radars were “blob” detectors in that they detected
the presence of a target and gave its location in range and
angle, and radar began to be more than a blob detector
and could provide recognition of one type of target from
another[21]. It is known that small changes in the aspect
angle of complex (multiple scatter) targets can cause major
changes in the radar cross section (RCS). This has been
considered in the past as a means of target recognition,

2
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and is called fluctuation of radar cross section with aspect
angle, but it has not had much success[21]. In this paper,
we propose a maximum likelihood collaborative automatic
target recognition (ML-CATR) algorithm for RSN. We will
study non-fluctuating target as well as fluctuating target.

A. ML-CATR for Non-fluctuating Targets

In some sources, the non-fluctuating target is identified
as “Swerling 0” or “Swerling 5” model [22]. For non-
fluctuating target, the RCS αm(u) is just a constant α
for a given target. Noise n(u, τ) is a zero-mean Gaussian
random variable for given τ , so |Zm| follows Rician
distribution because signal Eα(u) is a positive constant

Eα for non-fluctuating target. Let ym
�
= |Zm|, then the

probability density function (pdf) of ym is

f(ym) =
2ym

σ2
exp[− (y2

m + λ2)
σ2

]I0(
2λym

σ2
) (1)

where
λ = Eα, (2)

σ2 is the noise power (with I and Q sub-channel power
σ2/2), and I0(·) is the zero-order modified Bessel function

of the first kind. Let y
�
= [y1, y2, · · · , yM ], then the pdf of

y is

f(y) =
M∏

m=1

f(ym) (3)

Our CATR is a multiple-category hypothesis testing
problem, i.e., to decide a target category (e.g. aircraft, ship,
motor vehicle, bird, etc) based on r1(u, t). Assume there
are totally N categories and category n target has RCS αn,
so the ML-CATR algorithm to decide a target category C
can be expressed as,

C = arg maxN
n=1f(y|λ = Eαn) (4)

= arg maxN
n=1

M∏
m=1

2ym

σ2
exp[− (y2

m + E2α2
n)

σ2
]

I0(
2Eαnym

σ2
) (5)

B. ML-CATR for Fluctuating Targets

Fluctuating target modeling is more realistic in which
the target RCS is drawn from either the Rayleigh or
chi-square of degree four pdf. The Rayleigh model de-
scribes the behavior of a complex target consisting of
many scatters, none of which is dominant. The fourth-
degree chi-square models targets having many scatters
of similar strength with one dominant scatter. Based on
different combinations of pdf and decorrelation character-
istics (scan-to-scan or pulse-to-pulse decorrelation), four
Swerling models are used[19]. In this paper, we will focus
on “Swerling 2” model which is Rayleigh distribution with

pulse-to-pulse decorrelation. The pulse-to-pulse decorre-
lation implies that each individual pulse results in an
independent value for RCS α.

For Swerling 2 model, the RCS |α(u)| follows Rayleigh
distribution and its I and Q subchannels follow zero-mean
Gaussian distributions with variance γ 2. Assume

α(u) = αI(u) + jαQ(u) (6)

and n(u) = nI(u) + jnQ(u) follows zero-mean complex
Gausian distribution with variance σ2 for the I and Q
subchannels. Zm is a zero-mean Gaussian random variable
with variance E2γ2 + σ2 for the I and Q subchannels,
which means ym

�
= |Zm| follows Rayleigh distribution

with parameter
√
E2γ2 + σ2,

f(ym) =
ym

E2γ2 + σ2
exp(− y2

m

E2γ2 + σ2
) (7)

The mean value of ym is
√

π(E2γ2+σ2)
2 , and variance is

(4−π)(E2γ2+σ2)
2 . The variance of signal is (4−π)E2γ2

2 and

the variance of noise is (4−π)σ2

2 .

Let y
�
= [y1, y2, · · · , yM ], then the pdf of y is

f(y) =
M∏

m=1

f(ym) (8)

Assume there are totally N categories and category n
target has RCS αn(u) (with variance γ2

n), so the ML-ATR
algorithm to decide a target category C can be expressed
as,

C = arg maxN
n=1f(y|γ = γn) (9)

= arg maxN
n=1

M∏
m=1

ym

E2γ2
n + σ2

exp(− y2
m

E2γ2
n + σ2

)

C. Simulations

Radar sensor networks will be required to detect a
broad range of target classes. Too often, the characteristics
of objects that are not of interest (e.g., bird) will be
similar to those of threat objects (e.g., missile). Therefore,
new techniques to discriminate threat against undesired
detections (e.g. birds, etc.) are needed. We applied our ML-
CATR to this important application, to recognize a target
from many target classes. We assume that the domain of
target classes is known a priori (N in Sections II-A and
II-B), and that the RSN is confined to work only on the
known domain.

For non-fluctuating target recognition, our targets have 5
classes with different RCS values, which are summarized
in Table I[21]. We applied the ML-CATR algorithms in
Section II-A (for nonfluctuating target case) to classify
an unknown target as one of these 5 target classes. At
each average SNR value, we ran Monte-Carlo simulations

3

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:46 from IEEE Xplore.  Restrictions apply. 

699 of 816



for 105 times for each target. The average SNR value
is based on the average power from all targets (signal
variance), so the actual SNRs for bird and missile are
much lower than the average SNR value. For exam-
ple, at the average SNR=16dB, the bird target SNR=-
33.1646dB, and missile target SNR=0.8149dB; and at
average SNR=20dB, the bird target SNR=-29.1646dB, and
missile target SNR=4.8149dB. In Fig. 2(a)(b), we plotted
the probability of ATR error in bird and missile recognition
when they are assumed as nonfluctuating targets. Observe
both figures, single radar system can’t perform well in both
recognitions, and their probability of ATR error is above
10%, which can’t be used for real-world ATR. However,
the 5-radar RSN and 10-radar RSN can maintain very low
ATR errors. In Fig. 2(c), we plotted the average probability
of ATR error for all 5 targets recognition. Since the other
3 targets (different aircrafts) have much higher SNRs,
so their ATR error is lower, which makes the average
probability of ATR error lower.

For fluctuating target recognition, we assume the fluc-
tuating targets follow “Swerling 2” model (Rayleigh with
pulse-to-pulse decorrelation), and assume the RCS value
listed in Table I to be the standard deviation (std) γn

of RCS αn(u) for target n. We applied the ML-CATR
algorithm in Section II-B (for fluctuating target case) for
target recognition within the 5 targets domain. Similarly we
ran Monte-Carlo simulations at each SNR value. In Fig.
3(a)(b)(c), we plot the ATR performance for fluctuating
targets and compared the performances of single radar
system, 5-radar RSN, and 10-radar RSN. Observe that
the two RSNs perform much better than the single radar
system. The ATR error for missile is higher than that of
bird because Rayleigh distribution of missile has lots of
overlap with its neighbor targets (aircrafts). Comparing
Fig. 2(a)(b)(c) to Fig. 3(a)(b)(c), it is clear that higher
SNRs are needed for fluctuating target recognition com-
paring to nonfluctuating target recognition. According to
Skolnik[21], radar performance with probability of recog-
nition error (pe) less than 10% is good enough. Our RSN
with waveform-diversity can have probability of ATR error
much less than 10% for each target ATR as well as the
average ATR for all targets. However, the single radar
system has probability of ATR error much higher than
10%. Observe Fig. 3(c), the average probability of ATR
error of single-radar is impossible to be less than 10% even
at extreme high SNR. Our RSN with waveform diversity
is very promising to be used for real-world ATR.

III. SENSE-THROUGH-FOLIAGE TARGET DETECTION

USING RADAR SENSOR NETWORK

In Figs. 4a and 4b, we plot two collections using
UWB radars. Fig. 4a has no target on range, and Fig. 4b
has target at samples around 14,000. We plot the echo

TABLE I

RCS VALUES AT MICROWAVE FREQUENCY FOR 5 TARGETS.

Index n Target RCS

1 Bird 0.01
2 Conventional unmanned winged missile 0.5
3 Small single-engine aircraft 1
4 Small flighter aircraft or 4 passenger jet 2
5 Large flighter aircraft 6

differences between Figs. 4a and 4b in Fig. 4c. However,
it is impossible to identify whether there is any target and
where there is target based on Fig. 4c. Since significant
pulse-to-pulse variability exists in the echos, this motivate
us to explore the spatial and time diversity using Radar
Sensor Networks (RSN).

In Fig. 5, the echo, i.e., RF response by the pulse
of each cluster-member sensor, will be combined by the
clusterhead using a weighted average, and the weight w i

is determined by the power of each echo x i(n) (n is the
sample index),

wi =
Ei∑M
i=1 Ei

(10)

and
Ei = var(xi(n)) + [mean(xi(n))]2 (11)

We ran simulations for M = 30, and plot the power of
AC values in Figs. 6a and 6b for the two cases (with target
and without target) respectively. Observe that in Fig. 6b,
the power of AC values (around sample 14,000) where the
target is located is non-fluctuating (monotonically increase
then decrease). Although some other samples also have
very high AC power values, it is very clear that they are
quite fluctuating and the power of AC values behaves like
random noise because generally the clutter has Gaussian
distribution in the frequency domain.

IV. CONCLUSIONS AND FUTURE WORKS

We have studied constant frequency pulse waveform
design and diversity in radar sensor networks. We proposed
a RAKE structure for waveform diversity combining in
RSN. As an application example, we applied the waveform
design and diversity to CATR in RSN and proposed ML-
CATR algorithms for nonfluctuating target as well as fluc-
tuating target. Simulation results show that RSN using our
waveform diversity-based ML-ATR algorithm performs
much better than single radar system for nonfluctuating
targets and fluctuating targets recognition.

In our future works, we will investigate the CATR when
multiple targets co-exist in RSN, and the number of targets
are time-varying. In this paper, we used spatial diversity
combining. For multi-target ATR, we will further inves-
tigate spatial-temporal-frequency combining for waveform
diversity in RSN.

4
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Fig. 2. Probability of ATR error for nonfluctuating targets at different
average SNR (dB) values. (a) bird, (b) missile, (c) the average probability
of ATR error for 5 targets.
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Fig. 3. Probability of ATR error for fluctuating targets at different
average SNR (dB) values. (a) bird, (b) missile, (c) the average probability
of ATR error for 5 targets.
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Fig. 4. Measurement with poor signal quality and 35 pulses average.
(a) Expanded view of traces (no target) from sample 13,001 to 15,000.
(b) Expanded view of traces (with target) from sample 13,001 to 15,000.
(c) The differences between (a) and (b).

Fig. 5. Echo combining by clusterhead in RSN.
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Fig. 6. Power of AC values based on UWB radar sensor networks and
DCT based approach. (a) No target (b) With target in the field.
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Abstract- In many military and civilian applications, esti-
mating the number of targets in a region of interest plays
a primary role in performing important tasks such as target
localization, classification, recognition, tracking, etc. Such an
estimation problem is however very challenging since the number
of targets is time-varying, targets' states are fluctuating, and
various kinds of targets might appear in the field of interest. In
this paper, we develop a framework for estimating the number
of targets in a sensing area using Radar Sensor Networks
(RSN): (1) the multi-target detection problem is formulated;
(2) signals, interference (e.g., clutter, jamming, and interference
between radars), and noise at radar sensors are modeled; and
(3) a Maximum Likelihood Multi-Target Detection (ML-MTD)
algorithm is proposed to combine received measurements and
estimate the number of targets present in the sensing area. We
evaluate multi-target detection performance using RSN in terms
of the probability of miss-detection PMD and the root mean
square error (RMSE). Simulation results show that multi-target
detection performance of the RSN is much better than that of
single radar systems.

I. INTRODUCTION AND MOTIVATIONS

Radar sensor networks (RSN) are networks of distributed
radar sensors which collaboratively operate and are deployed
ubiquitously on airborne, surface, and unmanned vehicles in
a large geographical area. Radar sensors have capabilities for
radar sensing, signal processing, and wireless communications.
In RSN, radar sensors are networked together in an ad-hoc
fashion, i.e., they do not depend on any preexisting infrastruc-
ture. In fact, they are self-organizing entities that are deployed
on demand to perform various tasks such as surveillance,
search and rescue, disaster relief, etc. RSN have advantages
compared to single radar systems in improving the system
sensitivity, reducing obscuration effects and vulnerability, and
increasing the detection performance [2], [3].
An RSN is organized into clusters, which are independently

controlled and dynamically reconfigured as sensors move, to
observe targets such as tactical weapons, missiles, aircraft,
ships, etc. in the surveillance area. In a cluster, sensors
receive the signals backscattered by targets in the presence
of interference (e.g., clutter, jamming, interference between
radar sensors), and noise. Then, the observed signals from all
radar sensors are forwarded to a clusterhead where received
data set will be combined to perform fundamental tasks such
as detection, localization, identification, classification, and

tracking. For target detection problem, there are two primary
levels: single target detection and multi-target detection. In the
single target scenario, we proposed a diversity scheme in [13]
to improve detection performance of RSN in the presence of
strong interference, especially clutters, and noise. We are now
interested in using RSN to estimate the number of targets
present in the surveillance area. In practice, multiple moving
targets might appear in the sensing area, the number of targets
is time-varying, and targets' states are fluctuating. Therefore,
the multi-target detection is more challenging and difficult to
solve than the single target detection.
Among the existing work on multi-target detection, Yung

and Mourad [ 16] used frequency diversity signaling to estimate
the number of moving targets while Kaveh et al. [20] applied
the information theoretic criteria to detect the number of
targets. However, both work only studied the performance of
their proposals for the case of two closely spaced targets. A
performance analysis for a general case was provided in [19]
and [18]. In [15], multiple target detection and estimation
by exploiting the amplitude modulation induced by antenna
scanning was proposed and a sequential hypothesis test was
examined to determine the number of targets. However, all
above work studied multi-target detection problem using a
single radar. For the sensor network scenario, Wang et al. [17]
applied Bayesian source number estimation to solve the dis-
tributed multiple target detection in sensor networks. Based on
their approach, each cluster computed the posterior probability
corresponding to each hypothesis on the number of sources
and a central processor fused posterior probabilities using
Bayes' theorem to select the best hypothesis. Their proposal
however did not consider Doppler shifts of the targets and was
not suitable for the multi-target detection in RSN.

In this paper, we develop a framework for estimating the
number of targets in the field of interest using RSNs. At the
ith sensor, we deploy a receiver with an K element-ULA
(Uniform Linear Array) whose spacing between elements is
di. During the observation time, P pulses are transmitted to
track targets. The useful signals backscattered from targets
include spatial-temporal snapshots of targets and parameters
representing radar cross section of targets. Then, a RSN-
clusterhead collects measurements from all radar sensors and
combines them to perform detection procedures. To fuse

1-4244-1513-06/07/$25.00 ©2007 IEEE
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received measurements and estimate the unknown number of
targets in the area of interest, at the RSN-clusterhead, we
propose a multi-target detection algorithm which is Maximum
Likelihood Multi-Target Detection (ML-MTD) algorithm. We
use the probability of miss-detection PMD and the root mean
square error (RMSE) as metrics to evaluate multi-target de-
tection performance using RSN. Simulation results show that
detection performance of the RSN is much better than that of
a single radar system.
The rest of this paper is organized as follows. In Section II,

we state our multi-target detection problem. In Section III,
we model signals, interference, and noise at radar sensors. In
Section IV, an ML-MTD algorithm to estimate the number
of targets present in the sensing field is proposed. Multi-target
detection performance of RSN is discussed in Section V while
conclusions and open directions are given in Section VI.

III. SIGNAL AND INTERFERENCE MODELS

A. Signal Models

At radar sensor i, we deploy a receiver with an K-element
ULA whose spacing between elements is di. If P pulses are
processed in a coherent pulse interval, the snapshot of target m
is a KP x 1 spatial-temporal steering vector with the following
form [1], [9]:

e(Oim,fim) = bt (fim) 8 as (Oim). (3)

where fim and 0im are the normalized Doppler shift and
normalized angle for the target m, respectively. The notation
X denotes the Kronecker product, bt (fim) is a P x 1 Doppler
steering vector, and a, (0im) is a K x 1 spatial steering vector.
bt(fim) and as(Oim) are defined as follows:

II. MULTI-TARGET DETECTION PROBLEM STATEMENT

In this paper, we address a realistic situation in which the
number of targets to be detected is generally unknown and has
to be estimated. To handle our problem, an RSN consisting of
N radar sensors is deployed. Radar sensors receive signals
embedded in interference and forward them to a central
processor, e.g., a clusterhead to perform detection tasks. At the
RSN-clusterhead, we propose a detection algorithm to estimate
the number of targets. To support the rest of the paper, we
make some assumptions as follows:

* Targets evolve along independent trajectories and do not
leave the surveillance area during the entire observation
time of P consecutive pulses.

* Targets are modeled as Swerling 11 target models whose
magnitudes fluctuate independently from pulse to pulse
according to a chi-square probability density function.

* The locations of targets are unknown. Besides, Doppler
frequencies when targets are moving relatively to radar
platforms are uncertain.

* Observation data or measurements from radar sensors, at
the RSN-clusterhead, are statistically independent. The
measurements furthermore either originate from true tar-
gets or clutters.

The estimated number of targets present in the surveillance
area is determined as

{Tl:T2,...TN} arg min A(T). (1)
T1,T2X.*TyN

where T~i is the estimated number of targets at sensor i' and
A(T) is an utility function derived in IV. Hence, the possible
number of targets M that RSN can detect is the average value
Of Ti, T~2,., and T~N, i.e.,

N

M F{ZTi1 (2)
i=l

bt (fim)
as (Oim)

[1 ej2wfim
[1 e-j27rim

ej2w(P-l)fijT
*je2(K-l)0i,jT

where T denotes the transpose operation. Let Oiq5 be an angle
that sensor i observes the mth target, fnax,m be the maximum
Doppler frequency for target m, and TP be the pulse duration.
The normalized angle 0im for target m and the normalized
Doppler shift fim when target m is moving relatively to sensor
platform i are computed as [9]

oim
di sin (i)im

Ai (6)
(7)Jim = 4fmax,mTpOim

We now assume that radar sensor i can detect Mi targets
during the observation time. The received signal vector zi (U, t)
at sensor i is the superposition of signals reflected from M,
targets, interference, and noise.

zi(u, t)
lvi

S e (Oim, fim)CXm(u)smi (t) + wi,
m=l

A(Oi, fi)si(u, t) +wi, i = 1,2, ...,~N.
(8)

where
* A(Oi,fi) = [e(Oi1,fi1),e(Oi2,fi2), ... e(OiM]v, fimw)] is

the PK x Mi target response matrix. e(Oim fim) iS
a spatial-temporal steering vector that models the mth
target return at angle Qim and Doppler shift fim.

* si(u, t) = [V1(U)sli (t), a2(U)S2i(t), ..., aMi (U)SMii(t)]'
is the Mi x 1 target signal vector with a random variable
am (u) that models the radar cross section (RCS) of
the target m and smi(t) is the waveform reflected from
target m.

* wi = wci + wji + wsi + ni represents the overall
interference and noise: a clutter vector wci, a jamming
vector wji, an interference vector between radar sensors
wsi, and thermal noise ni.

2
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Received signals from radar sensors are forwarded to a
central controller, e.g., clusterhead. Then, these received signal
vectors zi(u, t) are fused to make estimation operations. Since
zi (u, t) is a zero-mean Gaussian vector, the probability density
function of zi (u, t) can be presented as

f(zi(u, t)) 72)KP'nTl (9)

where R(T7) is the covariance matrix of zi(u, t), Ti is the rank
of Rz,i, and denotes the determinant of the matrix.

B. Interference and Noise Models

As pointed out, at the ith radar sensor, the interference vec-
tor wi is the sum of clutter wci, jamming wji, and interference
between sensors w,i. We apply the waveform design algorithm
proposed in [12] to have waveforms at sensors be orthogonal.
By doing so, interference between sensors is insignificant, i.e.,
w,i -_O0. Following are characteristics and models of clutter,
jamming, and thermal noise at radar sensor i.

1) Clutter: Clutter generates undesired radar returns that
may interfere with the desired signal. In RSN, the signal-to-
clutter ratio (SCR) is often more important than the signal-
to-noise ratio (SNR). The integrated clutter can be generally
approximated as the sum of Nci clutter patches. For clutter
patch k, the space-time data vector is modeled as [9]

2) Jamming: Jamming signals are generated by hostile
interfering signal sources that seek to degrade the performance
of radar sensors by mechanisms such as degrading signal-to-
interference-plus-noise ratio (SINR) by increasing the noise
level, or generating false detections to overwhelm RSN with
false targets. A model for Nji jamming signals is commonly
presented as [1]

Nji

wji =jE31jXaj1(Oj), i=1,2, ..., N.
1=1

(13)

where /3I contains voltage samples of the Ith jamming wave-
form and aji(01) is the jamming signal waveform at an angle
01. The different jamming waveforms are uncorrelated with
each other.

3) Thermal Noise: Among noise existing in RSN, thermal
noise due to ohmic losses at the radar receiver is normally
dominant. We model the thermal noise vector ni at radar
sensor i as a complex white Gaussian vector with zero-mean
and covariance rnil The covariance matrix of noise Rni
u72I where I is the KP x KP identity matrix.

In RSN, detection performance is largely affected by clut-
ters. So we will consider the disturbance at the ith radar as a
sum of thermal noise and clutter. The disturbance covariance
matrix RWi is given by

Pki = kibt (fki) X as (Oki)
= (kiUki, k = 1,2,...,Nci. (10)

where (ki is a complex random variable that accounts for the
amplitude and phase of clutter patch k. Uki = bt(fki) ()

as (Oki) where bt(fki) and as (Oki) are temporal vector and
spatial vector of clutter patch k, respectively. fki and 0ki are

the normalized Doppler shift and angle of arrival of the kth
clutter patch, respectively. Total clutter vector wci equals to

Ncj

Wci = kibt (fki) X as (Oki)
k=1
Ncj

= E kiUki (1 1)
k=1

The KP x KP covariance matrix of the clutter Rci at the ith
radar is given by

Rci E{wiwcH }

NC
ci

lj 1EfjHUki ji:
k=l j=l

Mci (12)

where H denotes the Hermitian operation, E{t } denotes the
expectation, and M,j is the normalized covariance matrix, i.e.,
all diagonal entries of M,j are ones.

where Rj and R,j are the covariance matrices of noise and
clutter, respectively. E,j(h) is a random variable used to model
the clutter power of the hth range cell. E,j(h) often follows
Weibull distribution for ground clutter or gamma distribution
for sea and/or weather clutter [14][21]. In homogeneous en-

vironments, the average clutter power does not depend on h,
i.e., E,j(h) is constant. Therefore, the disturbance covariance
matrix is rewritten as

Rwi = (7OQM2i

= (72 1 + E,(7 2 Mc,. (15)

where or 2 is the total disturbance power and MWi is the
normalized disturbance covariance matrix.

M i I1 I + CNR, M iCNR +1I CNRi +1Ici (16)

with CNRi = Ej2 i is the clutter-to-noise power ratio. Then,
total interference and noise can be modeled as a complex
zero-mean white Gaussian vector with the covariance matrix
072M,,i, i.e., wi -CA\(0, o72iMWi).
IV. MAXIMUM LIKELIHOOD MULTI-TARGET DETECTION

(ML-MTD) ALGORITHM

In this section, we develop an algorithm to detect the
number of targets in the sensing region. We assume that signals

3

E{wiwH}
Rni + Eci(h)Rci. (14)

Rwi
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backscattered from targets and interference are uncorrelated.
From the signal model in (8), the covariance matrix of received
signal zi(u, t) at radar sensor i is given by

a log-likelihood function F(T) {T = [T, T2, ...,TN]} in (24).
Hence, our mission is to find Ti such that F(T) is minimized.

F(T)
R(Ti) E{zi(u, t)iz(,~t)},

A(oi, fi)Rs,iAH(Oi fi) + a2iwi
4,(Ti) + (72 Mwi. (17)

where R5,i is a Mi x Mi positive definite matrix which
represents the covariance matrix of the signal si (u, t), or¾i is
the disturbance power, and MWi is the normalized disturbance
covariance matrix at radar sensor i. R,,i and ) (Ti) are defined:

= -lIn f(z(u, t)),

VxIln(27r)+ 1:loglR(T l+
i=l

IN
+ ZzH [R(T) ] - 1 Zi

i=1

(24)

Omitting terms that are independent of Ti, we find the log-
likelihood function F(T).

N N

r(r)= log (Ti) +EziH [R(Ti) ] - 1 Zi .(18)

(19)
The random variables cxm(u) (i = 1, 2, ..., Mj) in si (u, t)

models the RCS of the mth target. In [11], Swerling proposed
five target models called Swerling models where Swerling V
model is for non-fluctuating targets and Swerling I-IV models
are for fluctuating targets. In this paper, we focus our studies
on the Swerling II target models. We know that magnitude of
the RCS oa(u) for Swerling II targets fluctuates independently
from pulse to pulse according to a chi-square probability
density function with two degree of freedom, i.e., a Rayleigh
probability density function. Therefore, the RCS of target m
can be modeled as a Gaussian random variables. That is,

am (u) = aim (u) +jaQm (U) . (20)

where aim(U) and aQm(U) follow Gaussian distribution with
zero mean and variance pm/2 for each branch I, Q.
From (17), it follows that the rank of matrix R(T7) is Ti,

which is equal to the number of targets Mi present in the
surveillance region, and the smallest (KP- T) of its eigen-
values are zero, i.e., the received signal contains interference
and noise only. Sorting the eigenvalues of R(T') in a decreasing
order, we obtain

(21)

(22)

A1 > ±A2> > AKP>i+1

ATi+l = AT,+2 = ... = AKP = (7Wi-
Assume that measurements zi (u, t), at the clusterhead, are

statistically independent complex Gaussian random vectors
with zero mean. The joint probability density function of these
random vectors has the form:

N

f(z(u, t)) f (zi(u,t)),
i=l

NI exp )zI[R(T)|1 (23}

Basically, we have to estimate Ti such that the joint proba-
bility density function f(z(u, t)) is maximized. We now define

(25)
i=l i=l

From [6], [8], and [7], the utility function A(T) takes the form:

A(T) = F(T) + P(N). (26)

where P(N) = p(N)[Trg(2KP -Tag)] is a bias correction
term or penalty function to make estimate unbiased. Tavg is
an average value of {Tfli =1, 2, ..., N} and p(N) is a penalty
coefficient which is a constant function of N. For example,
p(N) 1 for the Akaike information criterion (AIC) and
p(N) = InN for the minimum description length (MDL).
A(T) then can be rewritten as

N N

A(T) = Elog iR() [R Zi +
i=l

7

i=
+ p9(N) {Tavg(2KP -Tavg)}. (27)

Our ML-MTD algorithm to detect the number of targets M
present in the sensing field now can be expressed as

N

M = F ERZTi.
iw.

where T~ {Ti-~, T~2, ..., TN}I is computed as

{T1,T2, ...,TN} = arg mini A(T).
T1,T2,.**,TN

(28)

(29)

In practice, sensors can observe the different numbers of
targets, i.e., Tis may not be equal, since targets might not be
exposed to all sensors. However, for the sake of simplicity, we
assume that all radar sensors can observe the same number of
targets, i.e., Ti = T2 = ... = TN =T and energy backscattered
from targets is similar at radar sensors. Furthermore, we as-
sume that the environment is homogeneous, that is, the average
clutter power is a constant. These assumptions imply that
R(T) R(T) R(TN R(T). For those reasons, our ultimate
purpose is to evaluate detection performance improvement
achievable by exploiting the networking of multiple radar
sensors. Under our assumptions, the utility function A(T) can
be simplified as

4

Ef si (u, t)sH(U. t) Ii

A(oi. fi)Rs,iAH (Oi . fi)4) (ir )
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A(T)= Nlog IR(T) l+Ntr([R(T) ]-Y)+p(N){T(2KP-T)}.
(30)

where tr(.) denotes the trace of a matrix and Y is the sample
covariance matrix of z1, z2.* ZN-

N

Y = ZiZT
i=l

(31)

Based on (30) and (31), we can observe that the utility
function A(T) depends on the number of radar sensors N. Our
ML-MTD algorithm is used to determine any non-negative
integer T to minimize the utility function A(T) when the
number of radars is changed. Achieved results are analyzed to
evaluate the multi-target detection performance in Section V.

V. MULTI-TARGET DETECTION PERFORMANCE ANALYSIS

We denote the true number of targets appearing in the
observation area and the number of targets we can estimate
from received signals as M and M, respectively. The proba-
bility of miss detection PMD and the root mean square error
(RMSE) are used as metrics to evaluate detection performance
of the RSN using our proposed algorithm. We define PMD and
RMSE as follows:

PMD is the probability that the estimated number of
targets is smaller than the true number of targets. Suppose
that Wind is the number of estimations in which the esti-
mated number of targets is smaller than the true number
of targets and Wot is the total number of estimations. PMD
is given as

10 -,

5 6 7 8 9 10 11
SINR(dB)

(a)

0.5r

0.45 _

12 13 14 15

- Single Radar
4 Radars
8 Radars

0.4

0.35

7 0.3

0.25

0.2

0.15 _

6 7 8 9 10 11
SINR(dB)

(b)

12 13 14 15

RMSE is used to determine the vibration of the estimated
number of targets M around the true number of targets
M.

1St
RMSE (M_ Mg)2. (33)

To study the MTD performance, we setup parameters for
the RSN and targets as follows.

1) Spacing di between elements of the K-element ULA at
radar sensor i is chosen to be a half of the wavelength
Ai, i.e., di = A2i

2

2) The pulse duration (TP) is 1 ms.
3) The number of elements (K) in ULA is 5.
4) The number of pulses (P) in a coherent pulse interval

is 4.
5) To observe targets, we assume that 0im is a random

variable which follows a uniform distribution in an

interval [-0.5, 0.5].
6) The maximum Doppler frequencies for targets are simi-

lar, e.g., fmax = 5000Hz. The normalized Doppler shift
fim only depends on the random variable 0im.

Fig. 1: PMD and RMSE vs. Average SINR, M=3

7) Average Signal-to-Interference-plus-Noise Ratio (SINR)
refers to average SINR of all radars in RSN. We examine
detection performance of RSN with average SINR in an

interval [5dB, 15dB].
8) The MDL criterion is used for the penalty function.
9) 105 estimations are performed, i.e., St = 105.

We first examine the case in which there are three targets
in surveillance region, i.e., M = 3. Single radar system, 4-
radar RSN, and 8-radar RSN are employed to detect these
targets. At each average SINR, the estimated number of targets
is compared to the true number of targets to compute PMD
and RMSE which are drawn in Fig. 1 for this case. After
that, we increase the number of targets into four, i.e., M = 4.
Using the same RSN as the previous case, we can get PMD
and RMSE as plotted in Fig. 2. Based on achieved results
in Fig. la and Fig. 2a, we can realize that miss-detection
probability of 4-radar RSN and 8-radar RSN is much smaller
than that of single radar system. This implies that detection

5

10
, Single Radar
, 4 Radars
, 8 Radars

n 10

PMD P(M < M)
WJmd

0.1 _
5

(32)
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SINR(dB)

(a)

Single Radar four targets requires average SINR around 4dB higher than
4 Radars
8 Radars that to detect three targets. This means that we need increase

the transmit power for radar sensors. If the number of sensor
radars is however large, e.g. N = 8, the detection performance
of the RSN does not change much.

Besides the miss-detection probability, RMSE is the other
metric to examine the detection performance of the RSN.
RMSE helps us evaluate the variability of the estimated
number of targets around the true number of targets present in
the sensing field. From Fig. lb and Fig. 2b, we note that, to
estimate three or four targets, RMSE of a single radar system
is very high while RMSE of RSN is reduced tremendously. For
example, at SINR = 9dB, compared to a single radar system,
the 4-radar RSN can reduce RMSE by 31.52% for three target

12 13 14 15 case and 42.32% for four target case. Moreover, we can see
that RMSE is reduced when we increase the number of sensors
and/or average SINR.

0.55r
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015W
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(b)

2: PMD and RMSE vs. Average SINR, M=4

15

performance of 4-radar RSN and 8-radar RSN is improved.
For example, to achieve the same PMD = 10% which is good
enough according to Skolnik [4], the average SINR required
for 4-radar RSN to detect three targets is about 9dB while the
average SINR required for the single radar system is greater
than 15dB. This means that detection performance gain of the
4-radar RSN is greater than 6dB. In both cases, moreover,
the probability of miss-detection is vastly reduced when the
8-radar RSN is used.

Furthermore, we observe that the higher average SINR, the
smaller probability of miss-detection. The reason is that, at
high average SINR, radar sensors radiate signals at a high
power level, so the coverage area of radar sensors is large.
However, radiating signals at high power levels is costly. Thus
tradeoff between cost and detection performance is necessary.
We also observe that when we increase the number of targets,
the detection performance is slightly reduced. For example,
to achieve the same PMD = 10%, the 4-radar RSN to detect

VI. CONCLUSIONS

We investigate a multi-target detection problem in Radar
Sensor Networks. Signal, interference, and noise models at
radar sensors are presented and analyzed. We also propose
a Maximum Likelihood Multi-Target Detection algorithm to
estimate the possible number of targets in a surveillance area.
RSN-clusterhead utilizes our algorithm to combine measure-
ments from radar sensors and make decision. Achieved results
show that detection performance of our RSN is much better
than that of a single radar system in terms of the miss-detection
probability and the root mean square error. Besides scenarios
presented in our work, one can extend our proposal in several
directions as follows:

1) For the sake of simplicity, we assumed clutter environ-
ment which affects largely the performance of RSN is
homogeneous. Multi-target detection therefore can be
examined when heterogeneous clutter environment is
considered.

2) We only consider target models as small moving point-
like targets. Thus dynamic and state space-based models
might be further studied.

3) We only examine the case in which Swerling II target
models are present in the sensing area. Naturally, multi-
ple target model types can appear during the observation
time, so multi-target detection problem when multiple
target models coexist in the sensing region is worth
looking into.

4) Our proposal is a primary state for important tasks such
as target recognition, classification, tracking, etc. A joint
algorithm to combine multi-target detection and one of
above tasks can be investigated.
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ABSTRACT 

Energy conservation is critical in Wireless Sensor 

Networks. Replacing or recharging batteries is not an 

option for sensors deployed in hostile environments. 

Generally communication electronics in the sensor utilizes 

most energy. This paper studies the effect of changing the 

transmission power and baud rate on transmission 

distance. Using Shannon channel capacity formula and 

Log – Distance Path Loss Model, transmission distance is 

shown to be related to transmit power and baud rate. 

Extensive empirical readings are taken to confirm the 

above relation. The path loss exponent got as a result of 

data fitting is within the acceptable range for wireless 

environment. Using the equation derived in this paper, the 

distance between neighboring motes and traffic density it 

will be possible for sensors to adjust their transmit power 

and baud rate so as to use only the required amount of 

energy to maintain the wireless link to the neighbor and 

conserve power. 

I. INTRODUCTION 

Wireless Sensor Networks (WSN) are comprised of 

small, inexpensive sensors with wireless communication 

capabilities, called motes. They are deployed in ad – hoc 

networks and are powered by limited power supplies. 

These motes are deployed in large numbers and provide 

unprecedented opportunities for instrumenting and 

controlling homes, cities and the environment. They find 

applications in different fields like military sensing, 

physical security, air traffic control, traffic monitoring, 

video surveillance, industrial automation etc. Each poses 

different challenges for these motes but one common 

challenge faced in all fields is power conservation. This is 

because motes are sometimes deployed in difficult to 

reach regions and this makes it difficult to replace the 

batteries. Hence power conservation becomes an 

important factor for these motes. One of the main reasons 

for deploying these motes in ad – hoc is power 

conservation. Power is consumed during data processing 

and RF communication, but communication electronics 

uses far more power than processing. Hence a lot of effort 

goes into designing energy efficient routing algorithms   

[1, 2, 3], directed diffusion algorithms [4, 5], clustering 

algorithms [6, 7, 8], data aggregation [9] and MAC 

protocols [10, 11, 12]. Many of these algorithms assume 

fixed transmit power and baud rate. 

 In this paper we study the effect of changing the 

transmit power and baud rate on transmission distance. 

This study is particularly useful for WSN’s which are 

mobile, such as in applications involving robotic swarms 

[19]. We experimentally determine a relation between 

distance, transmit power and baud rate for Crossbow’s 

Mica2 motes deployed in indoor environment. This can be 

incorporated along with the above algorithms and with 

knowledge of the distance to neighboring mote and the 

traffic density can be used to adjust the transmit power 

and baud rate so that packets can be forwarded to the 

neighboring mote with the least energy and maximum 

reliability. Adjusting the transmit power the neighboring 

mote will fall within the transmission range and neither 

will be out of range nor will be the transmission range 

much bigger than the desired distance. This will also help 

to keep packet exchange to the desired mote and not to any 

distant mote, which can itself start some other packet 

exchange and so will help keep interference to a 

minimum. This study along with the energy efficient 

algorithms will further increase energy efficiency in real 

time when deployed on Mica2 motes. 

This paper is organized as follows. In section II we 

briefly describe the factors affecting transmission 

distance. Section III gives the details of our experiment 

and the empirical data plots obtained. In section IV curve 

and surface fitting is described and lastly in section V we 

provide a conclusion of our study.  

II. TRANSMISSION DISTANCE 

The study of Transmission Distance, Transmit Power 

and Baud Rate done for this paper is related to Energy 

Conservation in Wireless Sensor Network. Transmit 

Power and Baud Rate together affect the Transmission 

Distance. In a wireless channel there is some power loss 

called Path Loss. This path loss is inversely proportional 

to the distance between the transmitter and receiver. With 

the knowledge of distance and path loss we can find the 

exact transmit power required to maintain a good link to 

the receiver without wasting any energy. 
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Another factor that affects the transmission distance is 

the antenna sensitivity. Baud rate of the data affects the 

receiver antenna sensitivity. This is because at the higher 

baud rate, there is less energy and a fewer number of 

actual radio waves in each bit of information transmitted. 

The lower baud rates have more energy per bit and more 

actual radio waves per bit transmitted. The more radio 

waves received per bit makes it much easier to establish 

the correct waveform. Thus, lower baud rates mean more 

energy per bit; better receive signals and longer 

transmission distances [13]. The advantage is by keeping 

the transmit power constant and only decreasing the baud 

rate we can increase the transmission distance of the radio. 

III. EXPERIMENT DETAILS 

The following hardware was used for the experiment 

1. MIB510 Programming board manufactured by 

Crossbow Technology. 

2. Mica2 motes 2 nos. manufactured by Crossbow 

Technology 

For the radio communications Mica2 uses the CC1000 

Chip which works in the 433 MHz band. The usual 

antenna chosen is a length of insulated wire called the 

monopole whip antenna one – quarter wavelength 

long.  This happens to be 6.8 inches for the 433 MHz 

Mica2 [14]. Mica2 is powered by two AA batteries 

and requires a voltage between 2.7 – 3.3 Volts for 

successful operation. 

 

A. CC1000 transceiver details 

CC1000 uses the Binary Frequency Shift Keying 

(BFSK) modulation in the physical layer. Its transmit 

power and the baud rate are completely programmable. 

The crystal oscillator connected has a frequency of 

14.7456 MHz. There are 22 inbuilt 8 – bit registers which 

can be used to program the operating parameters. A few 

relevant parameters are as follows. 

Frequency Control Word A which sets the local 

oscillator frequency in receive mode and Frequency 

Control Word B which sets the transmitting frequency, f0 

in the transmit mode, together operate the frequency 

synthesizer (PLL). In the experiment Word A had a value 

of 0x580000 and B had a value of 0x57F685. Two 

registers FSEP0 and 1 are used to set the frequency 

separation and they hold a value of 0x355. Transmit and 

receive frequencies can be calculated using the following 

formula [15]. 

16384

8192)( +×+
×=

TXDATAFSEPFREQ
ff refVCO

         (1) 

Here
VCOf gives the Local Oscillator (LO) frequency in 

receive mode and the f0 and f1 frequency in transmit mode 

(lower and upper FSK frequency).
reff is the reference 

frequency calculated using the formula given below. 

FREQ is the value in frequency control word A or B 

according to whether the formula is used to calculate 

receive or transmit frequency. FSEP is the value in the 

FSEP0 and 1 registers. TXDATA is 0 or 1 in transmit mode 

depending on the data bit to be transmitted. In the receive 

mode TXDATA is always 0. Now to calculate 
reff we use 

the following formula [15] 

REFDIV

f
f xosc
ref =                      (2) 

xoscf  is the crystal oscillator frequency of 14.7456 MHz 

and REFDIV is set to 12. This gives 
reff = 1.2288 MHz. 

Using all these values in eq. 1, in receive mode 

HzfVCO
610152.433 ×=  and in transmit mode 

HzfVCO
61096997.432 ×= . 

Thus the LO frequency in the receive mode is         

433.152 MHz. In the experiments we have used a high 

side LO injection. So fVCO = fRF + fIF where fRF is the 

centre frequency and fIF is the Intermediate frequency. For 

CC1000 fIF is designed to be 150.0375 KHz. So we get   

fRF = 433.0019625 MHz. 

The upper FSK transmit frequency is given by                  

f1 = f0 + fsep. f0 is the fVCO frequency calculated above for 

transmit mode i.e. 432.96997 MHz and fsep is the 

frequency separation calculated using the formula [15] 

given below. 

16384

FSEP
ff refsep ×=                      (3) 

Substituting the values Hzf sep 63975= , further using this 

fsep we get f1 = 433.03395 MHz. From f0 and f1 the centre 

frequency will be 433.0019625 MHz and is same as in the 

receive mode. 

The transmit power of CC1000 can be varied from         

-20 dBm to 10 dBm in steps of 1 dB and is controlled by 

the PA_POW register. We carried out our experiments at 

four different power level setting as shown in Table 1. 

Another parameter that was required for our 

experiments is the baud rate. This is set using a part of 

MODEM0 register as shown in Table 2. For our 

experiments we used 19.2, 38.4 and 76.8 kBaud. 
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Location - 2          Baud Rate - 76.8 kBaud          Output Power = -17 dBm   Register Value = 0x2

Table 1: PA_POW register values and corresponding 

output power [15] 
Output Power 

(dBm) 

PA_POW Register Value 

(hex) 

-20 01 

-19 01 

-18 02 

-17 02 

-16 02 

-15 03 

-14 03 

-13 03 

-12 04 

-11 04 

 

Table 2: MODEM0 register part to set Baud Rate[15] 
Register 

Part Name 

Bit & Parameter Value 

MODEM0{6:4} 

BAUDRATE{2:0} 

000: 0.6 kBaud 

001: 1.2 kBaud 

010: 2.4 kBaud 

011: 4.8 kBaud 

100: 9.6 kBaud 

101: 19.2, 38.4 and 76.8 kBaud 

110: Not Used 

111: Not Used 

 

The experiment was carried out in a big warehouse 

which was used as a lab with minimal office furniture. The 

Mica2 motes were placed on the ground and were always 

in line of sight of each other. The following picture was 

taken during the experiment. 

 

  
(a) (b) 

Figure 1: Experimental Site (a) Front view (b) Top view of 

motes 

 

For the transmitter mote a certain power level and baud 

rate is set from the possible options available. Since the 

wireless channel varies a lot randomly with respect to time 

there will be some packet loss even when the receiver 

mote is within the transmission distance. Hence the 

transmitter mote sends a total of 4000 packets, so as to 

follow Monte Carlo method, each with a sequence 

number. The receiver mote keeps a record of the number 

of packets received and missed and finally transmits a 

summary packet to the computer attached to it. A 

resolution of 5 inches was used for the distance between 

the transmitter and receiver. Once it is found that the 

receiver is not receiving any packets at all we know that 

the receiver is out of the transmission range. When it is 

absolutely sure the receiver is out of range the transmit 

power or baud rate on the transmitter mote are changed to 

a different value and the above experiment carried again. 

The plots in Figure 2 were generated using the data 

gathered from the experiment. 
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(d) 

Figure 2: Packet success in percentage as a function of 

transmission distance for power levels of (a) -19.5 dBm, 

(b) -17 dBm, (c) -14 dBm, (d) -11.5 dBm and for 

19.2 kBaud, 38.4 kBaud and 76.8 kBaud 

 

Each curve from the plots in Figure 2 is initially in the 

region of 90 – 100 % this is because the transmitter and 

receiver motes are within the transmission range. A few 

packets are dropped but this could be because of variations 

in the channel that occur for a very small amount of time 

and is normal for any wireless channel. As the distance 

between the transmitter and receiver is increased, after a 

certain distance the curve drops drastically and the packets 

received are in the range of 0 – 5 %. This implies the 

transmitter is out of range of the receiver mote. 

IV. DATA FITTING 

The empirical data is thought to be derivable from some 

underlying function. The plots in section III seem to 

closely follow the Q – function. We used curve fitting 

using method of least squares to minimize the sum of 

squared deviations. After fitting Q – function to each 

curve following plots were generated. All curve fits are 

not shown in Figure 3 but the data got from all curve fits is 

shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Q–function curve fit at 19.2 kBaud & -19.5 dBm 

 

 An initial value of one was used for std. dev. for curve 

fit and for mean of distance a value where packet success 

equals 50% was used. The following table shows the 

parameters got from the curve fit in above plots. 
 

Table 3: Mean, Std. Dev. and Residual Error of curves fit 

above for different baud rate and transmit power 
Baud 

Rate 

(kBaud) 

Transmit 

Power 

(dBm) 

Curve Parameters 

(Inches) 

Residual 

Error 

Mean =  149.6819 
-19.5 

Std Dev = 3.093 
208.8363 

Mean =  167.642 
-17.0 

Std Dev = 4.567 
78.0394 

Mean =  222.2506 
- 14.0 

Std Dev = 1.0526 
41.3694 

Mean =  302.4448 

76.8 

- 11.5 
Std Dev = 1.0754 

148.6817 

Mean =  168.0964 
-19.5 

Std Dev = 3.2833 
57.4137 

Mean =  191.759 
-17.0 

Std Dev = 0.9316 
79.4251 

Mean =  256.6509 
- 14.0 

Std Dev = 1.1637 
324.2136 

Mean =  328.0941 

38.4 

- 11.5 
Std Dev = 1.3191 

115.0494 

Mean =  190.7525 
-19.5 

Std Dev = 1.8992 
50.2595 

Mean =  239.1081 
-17.0 

Std Dev = 2.0253 
11.9331 

Mean =  292.7798 
- 14.0 

Std Dev = 1.3931 
80.6525 

Mean =  353.1259 

19.2 

- 11.5 
Std Dev = 0.9846 

35.7488 
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For all the above std. dev. of distance the                 

average = 1.899 in. The maximum error is 2.668 in. This 

is the error in the std. dev. of Q – function and not in the 

transmission distance. In transmission distance the error 

will be 334.12668.2 = in. This is because only the 

distance between mean and monotonically decreasing part 

of Q – function is included while measuring transmission 

distance. 

The mean of the distance in Table 3 is related to channel 

bandwidth and frequency of operation apart from transmit 

power and baud rate. This is three dimensional and we use 

surface fit as mentioned below. 

A very important result derived by Shannon [16] is 

( )







×
+×=

c

r

c
BN

P
BC

0

2 1log                (4) 

Here C  is the channel capacity in bits per seconds,
cB is 

the channel bandwidth in Hz, rP is the received power in 

watts and
0N is the single – sided noise power density in 

watts / Hz. Writing in terms of rP  and converting it to 

dBm we get 

( )

























−×××= 121000log10 010

cB

C

cr BNdBmP          (5) 

 In the wireless channel the received power is calculated 

using the formula [17] below. 

( )[ ] [ ] ( )[ ]dBdPLdBmPdBmdP tr −=              (6) 

Here ( )dPr is the received power in dBm at a distanced  

from transmitter, tP  is the transmit power in dBm 

and ( )dPL  is the path loss in dB at a distance d  from 

transmitter. For finding the path loss ( )dPL  we use the 

Log – Distance Path Loss model [17] where 

[ ] ( )
















××+=

0

100 log10
d

d
ndPLdBPL            (7) 

In this formula [ ]dBPL  is the path loss in dB, ( )0dPL  is 

the path loss at a reference distance 0d , n is the path loss 

exponent, d is distance in meters at which the path loss is 

to be calculated and 0d  is the reference distance also in 

meters. 

 Substituting eq. (7) in (6) and the result in (5) we get 
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Solving for d we have 

( )

n

BNdPLP cB

C

ct

dd ×
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×= 10

121000log10

0

0100

10                    (8) 

Thus we relate the transmission distance with transmit 

power, baud rate and channel bandwidth. We use this 

equation in the surface fit using method of least squares. 

 In the above equation ( )0dPL  is calculated using the 

Friis free space path loss formula [17] given below. 

( )
( ) 









××
×−=

2

0

2

2

100
4

log10
d

dPL
π
λ              (9) 

Hereλ is the wavelength and 0d is the reference distance. 

Centre frequency of the motes is 433.002 MHz, as 

calculated in section III, from which we get λ  and the 

distance 0d  it is said should be in the far – field region of 

the transmitting antenna. This    far – field region or 

Fraunhofer region of a transmitting antenna is defined as 

the region beyond the far – field distance fd which is 

related to the antenna dimension and wavelength. It is 

given as follows [17] 

λ

22 D
d f

×
=                     (10) 

Where fd is the far – field distance,D  is the largest 

physical linear dimension of the antenna andλ  is the 

wavelength. 

The Mica2 motes have a monopole whip antenna which 

is 4/λ meters high. Using 433.002 MHz frequency we get 

6928.0=λ m = 27.2767.in and the whip antenna       

height = 0.1732 m = 6.8 in. So D  = 0.1732 m. Putting 

these values in eq. (10) we get 086116.0=fd m = 3.3903 in 

Additional criteria to be in the far – field region are 
fd  

must satisfy 

Dd f 〉〉  i.e. 8.6〉〉fd  in and 

λ〉〉fd  i.e. 2767.27〉〉fd in. 

So to be in the far – field region we choose our distance 

0d  to be 100 in = 2.54 m and from the λ  value got above 

we calculate ( )0dPL  and use it in eq. (8). The 
0N  in      

eq. (8) is calculated using TkN ×=0
. k is the Boltzmann 

constant = 
-23101.3806503× m2 kg s-2 K-1 and T  is the 

room temperature in degree kelvin = 3000 k. The channel 

bandwidth for 433 MHz Mica2 mote, kHzBc 620=  [18]. 

Using all these values in eq. (8) we try to find the best 

values for n  the path loss exponent such that the error, 

between the distances calculated using eq. (8) and the 

values of distance we got from our experimental data, is 

minimized. To start with, a value of one is assumed for n. 

After doing the surface fit we get the following graphs. 
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(b) 

Figure 4: Mean of Distance vs Transmit Power and Baud 

Rate using (a) Empirical Data (b) eq. (8) derived from 

Shannon theorem and Path Loss Model 

 

The optimized value of path loss exponent n got from 

surface fit is n = 4.10. The following graph compares 

distances using both data and also shows the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of Mean of Distance vs. Transmit 

Power & Baud Rate using Empirical & Surface Fit data 

In the plot above the white bars show the distances got 

using the empirical data at baud rates of 19.2, 38.4 and 

76.8 kBaud. The black bars show the distance got using 

eq. (8). So the difference between the two is the error. For 

comparison purpose the table below shows the empirical 

distance, distance obtained using eq. (8), the absolute error 

between the two and the percentage error. 

 

Table 4: Summary of mean of distance and absolute error 
Empirical Data 

Baud Rate Transmit 

Power 19.2 kBaud 38.4 kBaud 78.6 kBaud 

- 19.5 dBm 190.7526 168.0964 149.6819 

-17.0 dBm 239.1081 191.7589 167.6420 

-14.0 dBm 292.7798 256.6509 222.2506 

-11.5 dBm 353.1259 328.0941 302.4448 
 

Shannon Formula Surface Fit - n = 4.10 

Baud Rate Transmit 

Power 19.2 kBaud 38.4 kBaud 78.6 kBaud 

- 19.5 dBm 223.0249 187.8755 157.8458 

-17.0 dBm 256.6032 216.1618 181.6109 

-14.0 dBm 303.6356 255.7817 214.8980 

-11.5 dBm 349.3505 294.2918 247.2528 
 

Absolute Error 

Baud Rate Transmit 

Power 19.2 kBaud 38.4 kBaud 78.6 kBaud 

- 19.5 dBm 32.2723 19.7791 8.1639 

-17.0 dBm 17.4952 24.4028 13.9689 

-14.0 dBm 10.8558 0.8692 7.3526 

-11.5 dBm 3.7754 33.8022 55.1921 
 

Max Error - 55.1921 Min Error - 0.8692 
 

Percentage Error 

Baud Rate Transmit 

Power 19.2 kBaud 38.4 kBaud 78.6 kBaud 

- 19.5 dBm 16.9184 11.7665 5.4542 

-17.0 dBm 7.3168 12.7258 8.3326 

-14.0 dBm 3.7078 0.3387 3.3083 

-11.5 dBm 1.0691 10.3026 18.2486 

Note: All distances in Inches. 

 

The error in the above table is very small. A close 

comparison of empirical data and surface fit data reveals a 

mix of positive and negative errors in mean of distance 

which will reflect in the same way in transmission 

distance. When this equation is used in a networking 

protocol most of the time the transmit power and baud rate 

set will maintain a good link to the receiver. The bad link 

occurring, in spite of setting the transmit power and baud 

rate as per eq(8), can happen also because of the dramatic 

change in the environment for short or long period of time. 

In this case the transmit power could be slightly increased 

or the baud rate slightly decreased to maintain a good link. 

Once done these new values can be used throughout the 

lifetime of the network. 
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Tuning of the transmission power and baud rate will 

only increase the network setting time a little but 

afterwards throughout the operation of the network energy 

will be conserved. The equation in this paper definitely 

gives a better starting point at fixing the transmit power 

and baud rate rather than approximately varying them 

from minimum to maximum and wasting a lot of time for 

network setup. 

V. CONCLUSION 

The key challenge in Wireless Sensor Networks being 

power conservation, the study in this thesis will support 

multi – hop routing and clustering algorithms in increasing 

the power saving in each sensor node. Using Shannon 

theorem and Log – Distance Path Loss Model the 

transmission distance is shown to be related to transmit 

power and baud rate. The extensive empirical data 

obtained confirms to this relation of transmission distance. 

The optimized value of the path loss exponent obtained as 

a result of surface fitting is close to that obtained in other 

wireless environments. Using this relation along with the 

knowledge of localization and traffic density between the 

neighboring mote it will be possible to adjust the transmit 

power and / or the baud rate to maintain the wireless links 

between the neighboring motes without loosing the 

connection and without incurring huge energy costs. 

Apart from the advantage of power saving, the correct 

transmit power level will decrease the level of interference 

in the network since less motes in the surrounding will 

hear the conversation. There is also an increase in the 

network capacity as the packet transmissions are confined 

only to the small local area and other motes out of the area 

are free to carry out their own transmissions with some 

other motes within their area.  
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ABSTRACT
Motivated by the observation that channel assignment for multi-
radio multi-channel mesh networks should support both unicast
and local broadcast1, should be interference-aware, and should re-
sult in low overall switching delay, high throughput, and low over-
head, we propose two flexible localized channel assignment algo-
rithms based on s-disjunct superimposed codes. These algorithms
support the local broadcast and unicast effectively, and achieve
interference-free channel assignment under certain conditions. In
addition, under the primary interference constraints2, the channel
assignment algorithm for unicast can achieve 100% throughput with
a simple scheduling algorithm such as the maximal weight indepen-
dent set scheduling, and can completely avoid hidden/exposed ter-
minal problems under certain conditions. Our algorithms make no
assumptions on the underlying network and therefore are applica-
ble to a wide range of MR-MC mesh network settings. We conduct
extensive theoretical performance analysis to verify our design.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Communi-
cation

General Terms
Algorithms, Design

Keywords
Multi-radio multi-channel wireless mesh networks, interference,
channel assignment, superimposed codes

1A broadcast to be heard by all immediate neighbors.
2Under the primary interference constraints, each radio can talk
with at most one single neighbor at any instant of time. Namely the
set of active links supported the same channel at any point of time
is a matching.
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1. INTRODUCTION
With recent advances in wireless technology, the utilization of

multiple radios as well as non-overlapping channels provides an
opportunity to reduce interference and increase network capacity.
Equipped with multiple radios, nodes can communicate with multi-
ple neighbors simultaneously over different channels, and thus can
significantly improve the network performance by exploring con-
current transmissions [1].

In a multi-radio multi-channel (MR-MC) mesh network, a key
challenging problem for capacity optimization is channel assign-
ment. Since practically the number of radios at each node is always
much smaller compared to that of orthogonal channels due to rea-
sons such as cost and small form factors, it may be prohibitive to
assign one fixed channel to each radio. In other words, a radio may
need to switch to different channels as time goes for better per-
formance. This radio constraint makes the channel assignment in
MR-MC mesh networks much harder. In this paper, we propose
two channel assignment algorithms for interference mitigation and
throughput maximization. Our research is motivated by the follow-
ing observations.

• Current channel assignment approaches lack a support to lo-
cal broadcast in MR-MC mesh networks. As neighboring
nodes tend to use different channels for transmissions, the
broadcast packet has to be separately transmitted by the sender
on multiple channels. Thus, broadcast can be more expensive
than that in single-radio single-channel (SR-SC) networks.

• A number of current channel assignment approaches rely
heavily on solving complex optimization problems, which
might be impractical for many MR-MC mesh network sce-
narios. In addition, techniques based on default radio/channel
degrade network throughput when the number of radios is
much smaller than that of channels.

• Channel switching delay is an important parameter that should
be counted in channel assignment. Since the number of ra-
dios per node is usually much smaller than that of orthogo-
nal channels, allowing a radio switch among the full range
of channels results in higher overall delay since the radio
may switch back and forth frequently when multiple differ-
ent flows traverse the same node simultaneously.

• CSMA/CA is believed to be inadequate to meet the high traf-
fic demand in mesh networks [2]. Any channel assignment
that requires RTS/CTS for channel reservation is unfavored
due to the high overhead. Since co-channel interference is
one of the major reasons for capacity degradation in MR-
MC mesh networks, interference-aware channel assignment
for throughput optimization should be sought.
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In this paper, we propose two channel assignment algorithms
based on s-disjunct superimposed codes. The basic idea is sketched
as follows. For each node, all available orthogonal channels are
labelled as either primary or secondary via a binary channel code-
word. This labelling is controlled by an s-disjunct superimposed
(s, 1, N)-code. The codeword of the transmitting node, together
with those of the interferers, determine the channel. Note that
primary channels are always preferred during channel assignment.
Our analysis indicates that by exploring the s-disjunct property of
the (s, 1, N)-code, it is possible to achieve interference-free chan-
nel assignment for both unicast and broadcast. Comparing with
the related literature in Section 2, we have identified the following
unique contributions of our paper.

• We have designed two localized simple algorithms that can
effectively support both local broadcast and unicast. Un-
der certain conditions, interference-free broadcast and uni-
cast can be achieved.

• Since our algorithms assign channels to transmitters for both
unicast and broadcast, and because the channels are selected
from a small subset of primary channels whenever possible,
our algorithms can effectively decrease the overall switching
delay caused by the oscillation of switching back and forth
due to the large difference between the numbers of radios and
channels.

• With a very simple scheduling algorithm, our channel as-
signment for unicast is proved to be able to achieve 100%
throughput under the primary interference constraints. We
also identifies the conditions when hidden and exposed ter-
minal problems are completely avoided with our channel as-
signment.

• We have conducted extensive theoretical performance analy-
sis to verify our algorithm design. In addition, our algorithms
are localized, and have low computation and communication
overheads.

• Our algorithms support dynamic, static, and adaptive chan-
nel assignment without requesting any complex scheduling
and/or channel coordination. These algorithms make no as-
sumptions on the underlying network settings such as traffic
patterns and MAC/routing protocols. Therefore they are ap-
plicable to a wide range of mesh networks.

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work in channel assignment for MR-MC mesh
networks. In Section 3, we present our network model and assump-
tions. Section 4 introduces the s-disjunct superimposed code and
links it to the problem of channel assignment in MR-MC mesh net-
works. In Section 5, we present our channel assignment algorithms
for both unicast and broadcast, and analyze their performance the-
oretically. In Section 6, we discuss a number of related issues.
Section 7 summarizes the work and concludes the paper.

2. RELATED WORK
In this section, we survey the most related research in channel

assignment for MR-MC mesh networks.
The benefits of using multiple radios and channels have been the-

oretically studied in [1,3–5] by jointly considering routing, schedul-
ing, and channel assignment. Load-aware channel assignment is
studied in [6, 7]. Marina and Das jointly consider channel assign-
ment and topology control in [8].

In Kyasanur and Vaidya [9], the multiple radios at each node
are divided into two groups, with one assigned fixed channels for
packet reception and ensuring connectivity, and the other assigned
switchable channels for capacity increase. This multiple channel
management actually handles the channel allocation at the receiver
side. Each switchable radio switches to the fixed channel of the
destination radio when data transmission needs to be launched. For
fixed channel assignment, a node selects random channels for its
fixed interfaces initially. To balance the utilization of all channels,
nodes collect two-hop neighborhood information and change their
fixed channels accordingly. Obviously this fixed channel assign-
ment takes time to converge. In addition, the number of switchable
channels is relatively large when the number of radios per node is
small, which may cause a large overall switching delay when the
node has to switch back and forth in order to simultaneously relay
multiple flows to different neighbors. Furthermore, the receiver-
based channel assignment does not support broadcast efficiently
and each broadcast packet has to be transmitted separately on one
of the fixed channels for each neighbor. Our work differs in that
we consider transmitter channel assignment, which is expected to
incur low overall switching delay and can trivially support efficient
broadcast.

A common default channel is introduced in [10–14] to handle
the network partition caused by dynamic channel assignment, and
to facilitate channel negotiation for data communications. To as-
sign channels to the interfaces other than the default radio, [10]
presents a localized greedy heuristic based on an interference cost
function defined for pairs of channels. Refs. [11, 12] consider the
mesh networks with main traffic flowing to and from a gateway,
which is also in charge of the channel computation. In their chan-
nel assignment to a non-default radio, nodes closer to the gateway
and/or bearing higher traffic load get a better quality channel. In
DCA [14], the default channel is used as a control channel. For
each node, one of the radios stays on the control channel for ex-
changing control messages, and other radios dynamically switch to
the data channels for transmission. In this case, the utilization of
the control channel could be small even though the data channels
can be fully utilized. A multi-channel MAC is proposed in [13]
for single-radio networks. This MAC protocol requires all nodes to
meet at the common channel periodically to negotiate the channels
for data communication.

The default channel does not have to be the same for all nodes in
the network. In [15], each node fixes one radio on some channel but
different nodes possibly use different fixed channels. This channel
assignment actually fixes the reception channel for each node, and
therefore the remaining radios of the node dynamically switch to
its neighbors’ fixed channels for data transmission. The same idea
is adopted in [9]. In SSCH [16], radios switch among channels
following some pseudo-random sequences such that neighboring
nodes meet periodically at a common channel. This approach is
simple but it requires clock synchronization.

Compared to the works mentioned above, our work does not re-
quire any special radio. We consider the channel assignment to all
radios in a static fashion. In addition, our channel assignment al-
gorithms are localized and are designed for a mesh network with a
more general peer-to-peer traffic pattern.

Another important category of related work is code assignment
for hidden terminal interference avoidance in CDMA packet ra-
dio networks. Bertossi and Bonuccelli [17] presents a centralized
greedy algorithm to assign CDMA codes to vertices such that every
pair of nodes at two-hop distance is assigned with a couple of dif-
ferent codes and the number of orthogonal codes utilized is mini-
mized. This is a NP-Complete problem, and therefore the proposed
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algorithm is an approximate heuristic. The distributed implemen-
tation of the algorithm, which results in a high overhead, is also
proposed in [17]. The same code assignment problem is consid-
ered in [18] too, where a distributed heuristic is proposed. Note
that to ensure hidden terminal interference-free communications,
different codes should be assigned to every pair of nodes that are
two-hop away. Our work differs from [17, 18] in that we intend
to assign channels to nodes with an objective of interference-free
unicast and broadcast to their immediate neighbors. In addition,
the number of available orthogonal channels in our study is much
smaller than that of the CDMA codes in a packet radio network.
Furthermore, our localized algorithms are much simpler and results
in much lower overhead.

Our work focuses on channel assignment for general MR-MC
mesh networks. Each node is associated with a binary channel
codeword, and computes its channels based on the codewords of
the interferers. The algorithms involved are simple, has very low
computation and communication overheads, and can support both
unicast and local broadcast effectively.

3. NETWORK MODEL
In this section, we introduce the underlying network model, as-

sumptions, and terminologies employed in the paper.

3.1 Basics
We consider a stationary multi-radio multi-channel (MR-MC)

wireless mesh network with |V | nodes. There exist N orthogonal
(non-overlapping) frequency channels labelled by k1, k2, · · · , kN .
Each node is equipped with Q radio interfaces. In our considera-
tion, Q � N . This is a practical assumption since the number of
radios per node is constrained by cost and form factors. For ex-
ample, in an IEEE 802.11a based mesh network, each node may
have 2 or 3 radios but the number of orthogonal channels is 12.
We assume that the footprint of a radio is a disk resulting from an
omni-directional antenna. In addition, we assume that each radio
supports the same set of non-overlapping channels. Note that the
number of radios equipped on each mesh node could be different.

For each node, the N available orthogonal channels are divided
into two categories: primary channels and secondary channels. A
binary column vector �cu of length N , called a channel codeword,
is associated with each node u to label its channels, with a value
1 representing a primary channel and a value 0 secondary. For
example, �cu = (1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0)′ means that channels
k1, k4, k8, and k10 are primary to u, and k2, k3, k5, k6, k7, k9,
k11 and k12 are secondary to u for a network that can support 12
orthogonal channels. Note that partitioning the channels into two
sets can facilitate our algorithm design. Intuitively, a node should
favor a channel that is secondary to all its interferers. Therefore for
each node, the number of primary channels should be smaller than
that of the secondary.

We require that for any two channel codewords �cu and �cv , there
exist at least two channels k1 and k2 such that k1 is primary to u but
secondary to v, and k2 is secondary to u but primary to v. In other
words, we can always find out a channel that is primary to one node
and secondary to another node when the two corresponding chan-
nel codewords are different. For simplicity, we assume all nodes
have the same number of primary channels. Let this number be w.
Then the number of channel codewords satisfying the above con-
dition is

�
N
w

�
for N available orthogonal channels, which reaches

its maximum when w = N
2

. For example, when N = 12, there
are 66, 495, and 924 available channel codewords for w = 2, 4, 6
respectively. We assume that the channel codewords assigned to
each node is unique. As explained in Section 6, this assumption

can be relaxed when the cellular grid architecture is introduced for
salability considerations.

In our study, the network is modelled by a directed graph G(V, E),
where V is the set of nodes, and E is the set of directed links. A
channel code, denoted by a N × |V | binary matrix C, is associated
with G. Therefore sometime G is denoted by G(V, E, C). Each
column of C represents a channel codeword pertaining to a node in
the network. For example, the uth column is the channel codeword
�cu for node u. The purpose of this paper is to assign channels to
a node u based on �cu and the channel codewords of its interfer-
ers in order to mitigate co-channel interference for network capac-
ity maximization, an optimization problem requiring the joint con-
sideration of routing, channel assignment, and packet scheduling.
Nevertheless, we focus on channel assignment in this paper, and
propose to study joint routing and scheduling based on our channel
assignment as a future research.

We assume that a DATA packet sending from u to v is acknowl-
edged with an ACK message from v to u. Therefore even though
we use a directed graph to model the network, only bidirectional
links are considered. A directed link from node u to v is denoted
by (u → v). In addition, we use N1(u) and N2(u) to represent the
sets of neighbors of u within one-hop and two-hop away. We have
u /∈ N1(u) and u /∈ N2(u).

3.2 Interference Model
For any node u ∈ V , denoted by N (u) the set of interferers of

u. A node v ∈ V is an interferer of u if v’s transmission inter-
feres with u’s transmission. Therefore when two-way handshake
(DATA-ACK) is adopted for successful packet delivery, the inter-
ferers for the unicast from u to v include N1(u) and N1(v). For a
local broadcast by u, the interferers include all nodes in N2(u).

4. LINKING SUPERIMPOSED CODES
WITH MR-MC NETWORKS

In this section, we first give a brief introduction on superimposed
codes. Then we link the superimposed (s, 1, N)-code, also called
the s-disjunct code, to channel assignment in MR-MC mesh net-
works.

4.1 Superimposed codes
Superimposed codes were introduced by Kautz and Singleton

[19] in 1964. Since then, they have been extensively studied and
applied to various fields, such as multi-access communications [20],
[21], cryptography [22], pattern matching [23], circuit complex-
ity [24], and many other areas of computer science. For conve-
nience, we first introduce the basic definitions and properties of
superimposed codes.

Let N, t, s, and L be integers such that 1 < s < t, 1 ≤ L ≤
t − s, and N > 1. Given a N × t binary matrix X , denote the ith
column of X by X(i), where X(i) = (x1(i), x2(i), · · · , xN (i))′.
We call X(i) a codeword i of X with a length N . In other words,
X is a binary code with each column corresponding to a codeword.
Let w and λ be defined as:

wi =
N�

k=1

xk(i), (1)

λj =
t�

k=1

xj(k). (2)

Therefore w and λ are called the column weight and row weight of
X , respectively. We have wmin = mint

i=1 wi, wmax = maxt
i=1 wi,

λmin = minN
j=1 λj , and λmax = maxN

j=1 λj . Note that wi and
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Figure 1: An example of a superimposed (3, 1, 13)-code of size
13

λj record the number of 1’s in column i and in row j of X , respec-
tively. Hence wmin and wmax are the minimum and the maximum
column weights of X , respectively; and λmin and λmax are the
minimum and the maximum row weights of X , respectively.

The Boolean sum

Y =

s

i=1

X(i) = X(1)



X(2)



· · ·



X(s)

of codewords X(1), X(2), · · · , X(s) is the binary codeword Y =
(y1, y2, · · · , yN)′ such that

yj =

�
0, if xj(1) = xj(2) = · · · = xj(s) = 0,
1, otherwise,

for j = 1, 2, · · · , N . We say that a binary codeword Y covers a
binary codeword Z if the Boolean sum Y

�
Z = Y .

Superimposed code (SC): A N × t binary matrix X is called a
superimposed code of length N , size t, strength s, and listsize ≤
L − 1 if the Boolean sum of any s-subset3 of the codewords of X
covers no more than L − 1 codewords that are not components of
the s-subset. This code is also called a (s, L, N)-code of size t.
Fig. 1 shows an example of a superimposed (3, 1, 13)-code of size
13.

s-disjunct Code: A binary matrix X is called an s-disjunct code
if and only if it has the property that the Boolean sum of any s
codewords in X does not cover any codeword not in that set of s
codewords.

Based on the definitions, a superimposed (s, 1, N)-code is a
s-disjunct code. Taking the (3, 1, 13)-code shown in Fig. 1 as
an example, the Boolean sum of the first 3 codewords of X is
X(1)

�
X(2)

�
X(3) = (1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0)′, which

doesn’t cover any other codeword of X but themselves.
According to the s-disjunct characteristic of the superimposed

(s, 1, N)-code, we can derive the following important property:

LEMMA 4.1. Given an (s, 1, N) superimposed code X , for any
s-subset of the codewords of X , there exists at least one row at
which all codewords in the s-subset contains the value 0.

PROOF. For contradiction we assume that there is no row at
which all codewords in the s-subset contain a common value 0.
Then the Boolean sum of the s codewords equals (1, 1, · · · , 1)′,

3An s-subset is a subset of s codewords.

which can cover all other codewords in X , contradicting to the fact
that X is a superimposed s-disjunct code.

4.2 Superimposed (s, 1, N)-codes and Channel
Assignment in MR-MC Networks

As elaborated in Subsection 3.1, an MR-MC network is mod-
elled by a directed graph G(V, E, C), where C is the corresponding
channel code. For any given node u ∈ V , �cu ∈ C is a binary vec-
tor with each element corresponding to a channel and its 1/0 value
representing this channel being a primary channel or a secondary
channel of node u. This observation helps us to build a direct map-
ping between a superimposed s-disjunct code X (represented by a
N×t matrix), and the channel code C of a network G: N represents
the number of available orthogonal channels, and each codeword of
X indicates a possible channel codeword to a node in G. Then the
column weight wi of X represents the number of primary channels
a node i has, and the row weight λj represents the number of nodes
that take channel kj as a primary channel.

In this paper, we will design algorithms for channel assignment
based on superimposed codes. This research is motivated by the
following observation: if the channel code C of a network G is a
superimposed s-disjunct code X , the nice s-disjunct property of X
can be applied to derive the conditions for interference-free channel
assignment.

Therefore we assume that the channel code C of network G is an
s-disjunct superimposed code. From now on, we will use X to rep-
resent the channel code. We require that each node gets a unique
codeword from X before participating in the network. In our algo-
rithms, codewords from one-hop or two-hop neighbors are required
for channel computation. A natural question is: how to obtain the
codewords from neighboring nodes before channel assignment is
complete? In this study, we assume that each node broadcasts its
channel codeword once on each of its primary channels, or on all
channels, to inform the neighbors of its codewords.

5. CHANNEL ASSIGNMENT BASED ON
SUPERIMPOSED CODES

In this section, we first propose a generic channel assignment
algorithm for MR-MC mesh networks. The generic algorithm as-
signs channels to nodes instead of links. This can facilitate channel
selection for broadcast traffic. Then we propose an algorithm for
link channel assignment targeting the unicast traffic. We also ana-
lyze the performances of both algorithms in detail.

5.1 The Generic Channel Assignment
Algorithm

Let G be an MR-MC wireless mesh network with N available
orthogonal channels, and X be the superimposed (s, 1, N)-code
for its channel assignment. For any node u in G, a unique code-
word X(u) ∈ X is associated with u indicating u’s primary and
secondary channel sets. Denote by N (u) the set of interferers of
u. Algorithm 1 is a generic one that computes a set of channels for
node u’s transmissions.

Intuitively, u should choose only those channels not being used
by any of its interferers from its primary channel set. If none of
these primary channels is available, u should choose the secondary
channels that are not primary to any of the nodes in N (u), the set
of interferers of u. Since all nodes intend to utilize their primary
channels whenever possible, choosing a channel that is secondary
to all interferers is a reasonable choice. If u can not find out a
channel that is secondary to all interferers, it picks up the primary
channels that are primary to the least number of nodes in N (u).
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These primary channels have the smallest row weight in X (N (u)),
the set of codewords of N (u). Let CH(u) be the set of channels
assigned to u.

Algorithm 1 Channel Assignment for Node u

Input: Codewords X(u) and X (N (u)).
Output: CH(u), the set of channels assigned to u.

1: function CH(u)=ChannelSelect(X(u), X (N (u)))
2: CH1(u) ← Channels(BoolSum(X (N (u) ∪ {u})) ⊕

BoolSum(X (N (u)))) � Find the set of primary channels
that are secondary to all nodes inN (u).

3: if CH1(u) �= ∅ then
4: CH(u)← CH1(u)
5: else
6: CH2(u)← Channels(BoolSum(X (N (u) ∪ {u}))) �

Find the set of secondary channels that are secondary to
all nodes inN (u).

7: if CH2(u) �= ∅ then
8: CH(u)← CH2(u)
9: else

10: CH3(u)← Select Channels(X(u)) with the smallest
row weight in X (N (u)) � Select the primary
channels with the least row weight inN (u).

11: CH(u)← CH3(u)
12: end if
13: end if
14: end function

The basic idea for Algorithm 1 can be sketched below. Given
X(u) and X (N (u)), the Boolean sum of X (N (u)) and X (N (u)
∪{X(u)}) are first computed. Then the algorithm computes CH1(u),
the set of u’s primary channels that are secondary to all nodes in
N (u). If CH1(u) �= ∅, assign CH1(u) to u; Otherwise, check
CH2(u), the set of channels that are secondary to all nodes in
N (u) ∪ {u}. If CH2(u) �= ∅, assign CH2(u) to u; otherwise,
assign CH3(u), the set of primary channels whose corresponding
row weights in the set X (N (u)) are minimum, to u.

Note that the set of primary channels of u are those favored by u.
Therefore, CH1(u) contains the channels favored by u only, and
CH3(u) is the set of channels favored by u and the least number of
interferers of u. For CH2(u), since it contains the set of channels
nobody likes to utilize in u’s interference range, u should take this
advantage. These channel assignment criterions reflect our design
principle: a node always selects a channel that causes the least
interference to its neighborhood.

Also note that Algorithm 1 is a localized one with each node u
running a copy and making its channel assignment independently.
We will prove in Lemma 5.1 that if there is an unused channel in
CH1(u) for a radio r of u, r’s transmission is guaranteed to be
interference free.

Since each node may be equipped with multiple radios, the chan-
nels in CH1(u) may not be enough. In this case, assign all chan-
nels from CH1(u) first, then use the channels from CH2(u), and
then from CH3(u).

Remarks: Algorithm 1 is a generic one that takes the codewords
of u and its interferers as inputs. Therefore, Algorithm 1 does not
rely on any interference model, as long as the set of u’s interferers
can be defined. Additionally, since Algorithm 1 assigns channels
to the node, or the transmitters of the node, Algorithm 1 is a static
channel allocation method. If roles of radios (the role of transmis-
sion or reception) are fixed, Algorithm 1 can help to decrease the
number of channel switchings significantly compared to dynamic
channel assignment. However, Algorithm 1 is dynamic when the
set of interferers are collected on-line. Therefore, Algorithm 1 is

flexible in that it can support both static and dynamic channel as-
signments.

Note that the channels determined by Algorithm 1 can be used
for both unicast and local broadcast simultaneously. Since Algo-
rithm 1 intends to pick up channels that may not be used by the
interferers based on the local knowledge, it is superior in support-
ing local broadcast compared to existing research (Section 2). We
plan to conduct extensive simulations to study the performance of
Algorithm 1 when utilized to support broadcast in MR-MC mesh
networks.

Example: Take the superimposed 3-disjunct code X in Fig. 1 as an
example. Given a node u and N (u) = {v, w, y}. Let X(u) =
X(1). If X(v) = X(2), X(w) = X(3), and X(y) = X(4),
Algorithm 1 yields CH1(u) = {1, 10}, which means that chan-
nels 1 and 10 can be assigned to u. In this case, u picks up its
primary channels. Since both channels are primary to u, based
on Lemma 5.1, the transmission from u will not interfere with
any other on-going traffic. If N (u) = {v, w, y, z}, and X(v) =
X(3), X(w) = X(10), X(y) = X(12), and X(z) = (13), no
primary channels of u can be assigned to u but u can get chan-
nels {5, 7} that are secondary to all nodes in N (u) ∪ {u}. When
N (u) = {v, w, y, z}, and X(v) = X(4), X(w) = X(10),
X(y) = X(12), and X(z) = X(13), no channel that is secondary
to all nodes in N (u) can be assigned to u. Therefore u picks up
channels from its primary channel set {1, 2, 4, 10} since all of them
have the same row weight of 1 in N (u).

5.1.1 Conditions for Interference-Free Channel
Assignment

In this subsection, we study the conditions for interference-free
channel assignment based on Algorithm 1. Note that Algorithm 1
does not require a node u to collect the codewords of all interfer-
ers. If u knows nothing about its neighborhood, one of its primary
channels will be picked for transmission. However, if N (u) is the
complete set of interferers of node u, interference-free channel as-
signment is possible. In the following, we will first study the two
scenarios when the channels assigned to u based on Algorithm 1 do
not conflict with those of any other node in N (u). Then we study
the conditions when interference-free communication in the whole
network can be achieved. For simplicity, we assume that each node
u in the network is equipped with two radios: one for transmission
and one for reception. The results can be generalized to the case of
more than two radios.

LEMMA 5.1. If CH1(u) �= ∅, node u does not interfere with
any other node in N (u).

PROOF. When CH1(u) �= ∅, node u picks up channels from
CH1(u), a subset of u’s primary channel set, for transmission.
CH1(u) contains channels that are primary to u but secondary
to all nodes in N (u). For ∀v ∈ N (u), v can’t use any channel
from CH1(u) based on Algorithm 1 since v is assigned with ei-
ther its own primary channels (from CH1(v) or CH3(v)), which
can’t be in CH1(u), or channels that are secondary to all interfer-
ers in N (v) (CH2(v)), which are secondary to u too since u ∈
N (v).

Note that based on Lemma 5.1, if N (u) is the complete set
of interferers of node u, u’s transmissions on the channels from
CH1(u) do not cause any interference to other on-going traffic.

THEOREM 5.1. If CH1(u) �= ∅ holds for ∀u ∈ V and N (u)
is the complete set of interferers of u in the network G(V, E), the
channel assignment based on Algorithm 1 guarantees interference
free communications in the network.
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PROOF. The theorem holds from Lemma 5.1.

Theorems 5.1 indicates that if each node can compute a pri-
mary channel that is secondary to all its interferers based on Al-
gorithm 1, interference-free communications in the whole network
can be achieved. In the following, we identify another scenario to
accomplish interference-free transmission.

LEMMA 5.2. Given a node u with CH1(u) = ∅ and CH2(u) �=
∅, if CH1(vi) �= ∅ holds for all its interferers v1, v2, · · · , v|N (u)|,
node u’s transmissions do not interfere with any other node in
N (u).

PROOF. Since CH1(u) = ∅ and CH2(u) �= ∅, the set of chan-
nels assigned to u contains u’s secondary channels that are sec-
ondary to all other nodes in N (u). If CH1(vi) �= ∅ holds for
all its interferers v1, v2, · · · , v|N (u)| in N (u), the set of channels
assigned to vi for i = 1, 2, · · · , |N (u)| include vi’s primary chan-
nels only. Therefore, u’s and its interferers’ transmission channels
do not overlap, and thus u’s transmissions do not interfere with its
interferers, and are not interfered by its interferers.

Note that Theorem 5.1 does not place any restrictions on the size
of the interferer set for any node. In the following, we prove that
when s ≥ |N (u)| holds for ∀u ∈ V in the network G(V, E),
interference-free communication is guaranteed.

THEOREM 5.2. If s ≥ |N (u)| and N (u) is the complete set of
interferers of u for ∀u in G, the channel assignment based on Al-
gorithm 1 guarantees interference free communications in the net-
work.

PROOF. Since X is an s-disjunct code, BoolSum(X (N (u)))
does not cover X(u), which means that there exists at least one
row in X at which X(u) has the value 1 and all X (N (u)) have the
value 0 (see Lemma 4.1). Therefore condition CH1(u) �= ∅ holds.
Based on Theorem 5.1, the claim holds.

Theorem 5.2 reports another condition for interference-free com-
munications in the whole network based on Algorithm 1. In other
words, if s upper-bounds the cardinality of the complete interferer
set of each node in the network, interference-free communications
can be achieved. This condition sounds very rigorous. However,
for a stationary multi-radio multi-channel mesh network where the
mesh routers can be carefully placed, the set of interferers could
be small to provide sufficient coverage. In this scenario, channel
assignment based on Algorithm 1 yields an interference-free net-
work.

5.1.2 Probabilities for interference-Free Channel
Assignment

Note that Lemma 5.1 and Lemma 5.2 report two conditions to
achieve interference-free communications with no restrictions on
the size of N (u). In this subsection, we conduct further analysis
to derive the probabilities for interference-free channel assignment
when |N (u)| > s based on Algorithm 1. In other words, we will
study the probability that a node u can find out a channel to achieve
interference-free communication in its local neighborhood when
s′ > s, where s′ = |N (u)|.

Let P1 be the probability that Lemma 5.1 holds for some node
u, and P2 be the probability that Lemma 5.2 holds. Let N (u)
be the complete set of interferers of node u. Under the protocol

interference model, N (u) = N2(u). We have

P1 = p(CH1(u) �= ∅), (3)

P2 = p(CH2(u) �= ∅, CH1(u) = ∅,
CH1(vi) �= ∅,∀vi ∈ N (u))

= p(CH2(u) �= ∅, CH1(u) = ∅) ·
p(CH1(vi) �= ∅, ∀vi ∈ N (u))

= p(CH2(u) �= ∅, CH1(u) = ∅) ·
|N (u)|

i=1

p(CH1(vi) �= ∅) (4)

The last two equalities hold because the channel codeword for each
node is randomly and independently assigned. Based on Eq. (3) and
(4), to compute P1 and P2, we need to first compute the probability
that CH1(u) �= ∅ for ∀u ∈ V , and the probability that CH1(u) =
∅ and CH2(u) �= ∅ hold simultaneously.

Let m be the number of rows in BoolSum(X (N (u))) with a
value 0. Given the condition CH1(u) �= ∅ or CH2(u) �= ∅, it
implies that m > 0. Denote these m rows by row1, row2, · · · ,
rowm. Let λmax be the maximum row weight among row1, row2,
· · · , rowm. We have t − s′ − λmax ≥ 0.

Note that the boolean sum BoolSum(X (N (u))) can cover a
codeword X(v) in the set X \ X (N (u)) iff X(v) has a value 0 at
all the m rows row1, row2, · · · , rowm. Therefore, the probability
that the boolean sum of X (N (u)) covers an arbitrary codeword
X(v) in X \ X (N (u)) is

pcover|m>0 =
m

i=1

|X | − s′ − λrowi

|X | − s′

=
m

i=1

(1 − λrowi

|X | − s′
) (5)

Thus the probability that the boolean sum of X (N (u)) does not
cover any arbitrary codeword X(v) in the set X \ X (N (u)) is

puncover|m>0 = 1 − pcover|m>0

= 1 −
m

i=1

(1 − λrowi

|X | − s′
). (6)

Based on the above analysis, we conclude that a good super-
imposed code for our channel assignment should have a larger s
and larger row weights λ since the higher the probability puncover,
the less interference our channel assignment causes. Methods of
constructing superimposed (s, L, N)-codes have been extensively
studied in [21] [23] [25] [26] [27] [28] [29] [30]. Ref. [31] reports
some optimal designs to construct an s-disjunct code with different
N, s, t.

Let p(m > 0|N (u)) denote the probability that there exists at
least one row with a value 0 in BoolSum(X (N (u))). Assuming
that each codeword in X is independent, we have

p(m > 0|N (u)) = 1 − p(m = 0|N (u))

= 1 −
N

i=1

(1 − (t−λi
s′ )

(t
s′)

) (7)

Therefore the probability that CH1(u) �= ∅ is

p(CH1(u) �= ∅) = p(m > 0|N (u)) · puncover|m>0 (8)

Now let’s compute the probability that both CH1(u) = ∅ and
CH2(u) �= ∅ hold. Based on the definition of m, CH2(u) �= ∅
and CH1(u) = ∅ hold iff the Boolean sum BoolSum(X (N (u)))
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covers the codeword X(u) and m > 0. According to Eq.(5), the
probability that node u can find a secondary channel for communi-
cation is

p(CH2(u) �= ∅, CH1(u) = ∅) = p(m > 0|N (u)) ·
pcover|m>0 (9)

For completeness, we provide the probability that a channel from
CH3(u) is picked. Note that both CH1(u) = ∅ and CH2(u) = ∅
hold iff the boolean sum BoolSum(X (N (u))) covers the code-
word X(u) and X(u) cannot have a value 0 at any row of the m
rows, namely m = 0. According to Eq.(7), the probability that
CH1(u) = ∅ and CH2(u) = ∅ is

p(CH1(u) = φ,CH2(u) = φ) = p(m = 0|N (u))

=
N

i=1

(1 − (t−λi
s′ )

(t
s′)

) (10)

The probability that P2 holds and the probabilities that u picks
up a channel from CH1(u), CH2(u), and CH3(u) with respect to
s′ for the superimposed (3, 1, 13)-code of size 13 (Fig. 1) are illus-
trated in Fig. 2. Notice that when s′ ≤ s, Algorithm 1 guarantees
to choose a channel from CH1(u) is 1.
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Figure 2: The probabilities that u picks up a channel from
CH1(u), CH2(u), and CH3(u), respectively, and the proba-
bility that P2 holds. Here s = 3, t = N = 13.

5.2 Channel Assignment for Broadcast
Traffic

When a channel for broadcast is needed, we can apply Algo-
rithm 1 directly. Let u be any node in a network G(V, E). Let
N (u) be the set of interferers of u. In the topology interference
model, N (u) contains all two-hop neighbors of u, i. e. N (u) =
N2(u). Let X(u) and X (N2(u)) be the codewords of u and its
interferers. For broadcast channel assignment at node u the inputs
to Algorithm 1 are X(u) and X (N2(u)).

Note that Algorithm 1 does not care whether N (u) is a complete
set of interferers or not. However, if N (u) is the complete set of
interferers of u, and |N (u)| ≤ s holds for ∀u ∈ V , broadcast does
not cause any interference (see Theorem 5.2).

In reality, broadcast and unicast coexist. However, broadcast is
inferior to unicast, as assumed by IEEE 802.11 standard. There-
fore, when applying Algorithm 1 for broadcast channel assignment,
u selects an unused channel in CH1(u) �= ∅ first. If fails, u picks
up an unused channel in CH2(u) �= ∅. If no channels in CH1(u)
and CH2(u) is available for u’s broadcast, u picks up an unused
primary channel from CH3(u).

5.3 Channel Assignment for Unicast Traffic
In this section, we consider the channel assignment for the uni-

cast traffic from node u to node v, where u and v reside in each
other’s transmission range. In our consideration, it is u’s responsi-
bility to compute the channel for the link (u → v). For simplicity,
we use N(u) to denote N1(u), the one-hop immediate neighbor
set of u. We have u ∈ N(v) and v ∈ N(u).

A simple idea would be to plug-in X(u) and X (N(v))∪{X(v)}
into Algorithm 1 to compute a channel for (u → v). However,
since X (N(u)) is available to u too, it is reasonable to use both
X (N(u)) and X (N(v)) for (u → v) channel assignment. This
is our motivation for designing Algorithm 2 for the unicast traf-
fic from u to v. Note that in Algorithm 2 we consider N(u) and
N(v) instead of N2(u) and N2(v) as the interferers for the uni-
cast traffic from u to v. We will prove that the channel codewords
from one-hop neighbors of both the sender and the receiver suffice
for Algorithm 2 to achiever 100% throughput with a very simple
scheduling algorithm.

Algorithm 2 Channel Assignment for unicast from u to v

Input: Codewords X (N(u)), and X (N(v))
Output: CH(u→ v), a channel to the link from u to v.

1: function CH(u → v)=UnicastChannelSelect(X (N(u)),
X (N(v)))

2: CH1(u)← SelectAChannel(BoolSum(X (N(v)∪ {v}))⊕
BoolSum(X (N(v) ∪ {v} \ {u}))) � Find a primary
channel that is secondary to all nodes in N(v) ∪ {v} \ {u}.

3: if CH1(u) �= ∅ then
4: CH(u→ v)← CH1(u)
5: else
6: CH2(u)← SelectAChannel(BoolSum(X (N(u) ∪ {u}))�

BoolSum(X (N(v))) ) � Find a secondary channel
that is secondary to all nodes in N(u) ∪ {u} but primary
to at least one node in N(v).

7: if CH2 �= ∅ then
8: CH(u→ v)← CH2(u)
9: else

10: CH3(u)← SelectAChannel(X(u)
�

X(v)) �
Select a channel that is primary to u and secondary to
v.

11: CH(u→ v)← CH3(u)
12: end if
13: end if
14: end function

The basic idea for Algorithm 2 is sketched below. Node u, the
unicast source, first computes a channel that is primary to u but
secondary to all nodes in N(v)∪{v}\{u}. In this case, the channel
selected corresponds to a row with a value 1 in X(u) and all 0’s in
X (N(v) ∪ {v} \ {u}). If this primary channel does not exist, u
computes a channel that is secondary to all nodes in N(u) ∪ {u}
but primary to at least one node in N(v). If fails again, u picks up a
primary channel that is secondary to v. As shown in Theorem 5.6,
this channel selection criteria intends to minimize interference and
accordingly maximize throughput.

The design motivation for Algorithm 2 is stated as follows. A
node should utilize its primary channels if possible; Otherwise, it
should choose a secondary channel that is secondary to all nodes
in its closed neighborhood, but not secondary to all nodes in the
receiver’s neighborhood, since otherwise, the receiver may choose
the same channel for its own unicast, causing interference.

Note that each node u runs a copy of Algorithm 2 to compute a
channel k for the unicast link (u → v), where v ∈ N(u). There-
fore Algorithm 2 is a localized transmitter-oriented channel assign-
ment algorithm.
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5.3.1 Interference Analysis
An interesting problem is whether Algorithm 2 can compute an

interference-free channel for u’s transmission to v. Note that there
are two different kinds of interferences for the unicast traffic: the
direct interference caused by immediate neighbors and the indirect
interference caused by the neighbors of the receiver. The first one
results in the exposed terminal problem while the second one results
in the hidden terminal problem.

The hidden and exposed terminal problems are well-known phe-
nomenons in wireless networks due to the broadcast nature of the
wireless media. For example, in Fig. 3, when node u is transmit-
ting data to node v, the hidden terminal problem occurs when node
x, which is unaware of the ongoing transmission, attempts to trans-
mit, thus causing collision at node v. In Fig. 4, when node v is
transmitting data to node u, the exposed terminal problem occurs
when node x, which is aware of the ongoing transmission, refrains
to communicate with y, thus causing degraded network throughput.

u V

Ru
Rx

X

Figure 3: The hidden terminal problem in wireless networks.

u v X

Rx

Rv

Y

Figure 4: The exposed terminal problem in wireless networks.

In the following we prove that when the number of immediate
neighbors of any node in the network is upper-bounded by s, the
hidden/exposed problems can be solved and the network commu-
nication is free of interference. Note that in the following analysis,
we assume that there is no broadcast traffic that can potentially in-
terfere with the unicast traffic.

THEOREM 5.3. Let u and v be any pair of immediate neigh-
bors in the network G(V, E). If |N(w)| ≤ s holds for ∀w ∈ V ,
Algorithm 2 yields hidden terminal interference-free channel as-
signment for the unicast traffic from u to v.

PROOF. Let x be any hidden terminal, as shown in Fig. 3. We
have x ∈ N(v). Since |N(v)| ≤ s, |N(v) ∪ {v} \ {u}| ≤ s.
Therefore the Boolean sum of all codewords owned by N(v) ∪
{v} \ {u} does not cover the codeword of u due to the s-disjunct
property of the superimposed code X used for channel assignment.
Thus CH1(u) �= ∅ holds in Algorithm 2 and u can choose one of
its primary channels that are secondary to all nodes in N(v)∪{v}\
{u}. Let k be the channel selected by u for the unicast from u to v.

We claim that it is impossible for any node x ∈ N(v)∪{v}\{u}
to choose k for unicast based on Algorithm 2. Assume x needs a
channel to unicast to y. Since |N(y)| ≤ s, CH1(x) �= ∅. There-
fore x will choose one of its primary channels that are secondary to
all nodes in N(y)∪{y}\{x} based on Algorithm 2. However, k is

secondary to x since x ∈ N(v). Therefore the unicasts from u to v
and from x to y do not interfere since they use different channels.

Note that any node w in N(u) but not in N(v) may choose the
same channel as that of u for unicast. But this unicast does not
cause interference at v since v is out of w’s transmission range.

THEOREM 5.4. Let v and u be any pair of immediate neigh-
bors in the network G(V, E). If |N(w)| ≤ s holds for ∀w ∈ V ,
Algorithm 2 yields exposed terminal interference-free channel as-
signment for the unicast traffic from v to u.

PROOF. Let x be any exposed terminal to the unicast from v to
u, as shown in Fig. 4. Let y be the destination of the unicast traffic
from x. We have x ∈ N(v), x /∈ N(u), and y /∈ N(v) ∪ N(u).
Thus the ACK from y to x does not reach v. For the same reason,
the ACK from u to v does not reach x. Therefore, no matter which
channels the links (u → v) and (y → x) receive from Algorithm 2,
the two ACKs do not collide at v and x.

Since v and y are hidden with respect to x, based on Theo-
rem 5.3,v and y choose different channels when |N(w)| ≤ s holds
for ∀w ∈ V in the network. Therefore, the ACK from y to x and
the data from v to u do not collide at x. For the same reason, the
ACK from u to v and the data from x to y do not collide at v.

Based on this analysis, Algorithm 2 yields exposed terminal-free
channel assignment.

Note that Theorems 5.3 and 5.4 hold when |N(w)| ≤ s for
∀w ∈ V for a network G(V, E). Assuming no interference caused
by broadcast traffic (see Subsection 5.2), these two theorems indi-
cate that Algorithm 2 yields interference-free communications in
the network G when the maximum node degree (the number of
one-hop neighbors) is ≤ s.

THEOREM 5.5. If |N(w)| ≤ s for ∀w ∈ V holds for a network
G(V, E), Algorithm 2 yields interference-free communications in
G.

PROOF. Proof follows from Theorems 5.3 and 5.4.

5.3.2 Throughput Analysis
It is interesting to observe that the induced graph of the edges

being assigned the same channel via Algorithm 2 is a forest. Re-
cent research [32, 33] indicates that with a simple scheduling algo-
rithm (maximal weight independent set scheduling), a tree graph
can achieve 100% throughput under the primary interference con-
straints. This result can be applied to analyze the achievable through-
put via Algorithm 2.

Let’s study Algorithm 2 again. It has the following nice feature:

LEMMA 5.3. Let (w → u) and (u → v) be two adjacent edges
in G(V, E). Assume k1 is the channel assigned to (w → u) and
k2 is the channel to (u → v) by Algorithm 2. We have k1 �= k2.

PROOF. Channels k1 and k2 are computed by w and u respec-
tively. If CH1(w) �= ∅, k1 ∈ CH1(w). Therefore k1 is primary to
w but secondary to N(u)∪{u}\{w}. In this case, since k1 is sec-
ondary to u, k1 /∈ CH1(u) and k1 /∈ CH3(u). Also because k1

is primary to w, k1 can not be in CH2(u) since w ∈ N(u) and all
channels in CH2(u) are secondary to N(u) ∪ {u}. Thus channel
k1 can not be selected by u for the edge (u → v) if k1 ∈ CH1(w).

If CH1(w) = ∅ and CH2(w) �= ∅, k1 is selected from CH2(w)
by w, which means that k1 is secondary to all nodes in N(w)∪{w}
but primary to at least one node in N(u). Therefore k1 can not be
in CH2(u) since it contains channels secondary to all nodes in
N(u) ∪ {u}. k1 /∈ CH1(u) and k1 /∈ CH3(u) hold too since k1
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is secondary to u as u ∈ N(w). Therefore channel k1 can not be
selected for the edge (u → v) if k1 ∈ CH2(w).

If k1 is selected from CH3(w), k1 is primary to w and secondary
to u, therefore k1 /∈ CH1(u) and k1 /∈ CH3(u). We claim that
k1 /∈ CH2(u) too since otherwise k1 would be secondary to w
because w ∈ N(u) and all channels in CH2(u) are secondary to
the nodes in N(u) ∪ {u}.

Therefor the channel k1 assigned to the link (w → u) by Al-
gorithm 2 could not be assigned to the link (u → v). We have
k1 �= k2.

Note that the proof of Lemma 5.3 utilizes the fact that CH3 is al-
ways non-empty. This is guaranteed by the following requirement
on the channel codewords: for any two channel codewords X(u)
and X(v), there exists two channels k1 and k2 such that k1 is pri-
mary to u and secondary to v, and k2 is primary to v and secondary
to u.

COROLLARY 5.1. Let k1 and k2 be the channels assigned to
the edges (u → v) and (v → u), respectively, by Algorithm 2.
Then k1 �= k2.

PROOF. Claim follows from Lemma 5.3.

Corollary 5.1 indicates that the channels used for DATA and for
ACK are always different. Lemma 5.3 indicates that two adjacent
links can transmit DATA or ACK concurrently. Therefore, a mul-
tihop path can achieve maximum throughput in MR-MC networks
since all nodes can transmit simultaneously without causing any
collision.

Let Gk(V, Ek) be the induced graph containing all edges receiv-
ing channel k based on Algorithm 2. We have

LEMMA 5.4. For ∀k ∈ C, where C is the set of orthogonal
channels, Gk is a forest.

PROOF. For contradiction we assume that Gk is not a forest. In
other words, Gk contains a circle O. Consider any two adjacent
edges (w → u) and (u → v) in O. Based on Lemma 5.3, the
channels assigned to (w → u) and (u → v) must be different.
Therefore only one of them can appear in Gk . A contradiction to
the assumption that (w → u) and (u → v) both appear in Gk.
Thus no circle O exists in Gk.

Lemma 5.3 indicates that each tree in Gk has a star-shaped topol-
ogy4, and the number of concurrent transmissions supported equals
the total number of stars in all Gk.

COROLLARY 5.2. Each tree in Gk is a star.

PROOF. Proof follows from that of Lemma 5.3.

COROLLARY 5.3. The number of concurrent transmissions sup-
ported by the network equals the total number of stars in all Gk for
all k ∈ C.

PROOF. Since each star topology can support only one unicast
at any time, claim follows.

Brzezinski, Zussman, and Modiano [32] has proved the follow-
ing lemma:

LEMMA 5.5. A maximal weight independent set scheduling al-
gorithm achieves 100% throughput for a tree network.

4Since we consider directed links, this topology actually is a star-
shaped DAG (Directed Acyclic Graph).

Therefore we have

THEOREM 5.6. There exists a simple scheduling algorithm such
that Algorithm 2 yields 100% throughput.

PROOF. Proof follows from Lemma 5.4 and Lemma 5.5.

Brzezinski, Zussman, and Modiano [32] presents multiple algo-
rithms based on matroid intersection to partition the network into
subnetworks with large capacity regions to maximize the through-
put of each of the subnetwork. Algorithm 2, which is much simpler,
maximizes the throughput if each node has a unique channel code-
words satisfying the condition elaborated in Section 3.1.

5.3.3 Simulation Study
In this subsection, we conduct simulation to evaluate Algorithm 2

in terms of channel utilization and usage fairness. Our goal is to in-
vestigate: 1. the number of concurrent transmissions; 2. the chan-
nel usage fairness.

In the simulation we have considered an area of a 100 × 100
square units with 13 randomly deployed nodes. The simulation
settings are listed as follows:

• All simulation results are averaged over 100 different topolo-
gies.

• The number of available channels in the network is set to
N = 13.

• The superimposed (3, 1, 13)-code X , as shown in Fig. 1, is
applied in the simulation.

• Each node randomly picks a unique codeword from X as its
channel codeword.

• The average node degree is denoted by d, where d varies
from 2 to 6.

• The number of radios equipped by each node is denoted by
Q, where Q ∈ {2, 4, 6, 8, 10, 12}. Q varies under different
topologies.

Note that the number of channels utilized by a node can be mea-
sured by the number of concurrent transmissions supported by that
node. Therefore for an arbitrary node u, we denote its channel uti-
lization by the number of supported concurrent transmissions.

Fig. 5 describes the relationship among the number of concurrent
transmissions supported by each node, the average node degree d,
and the number of radios Q. For each settings of d and Q, the re-
sults are averaged on all the nodes in the network over 100 different
topologies. As shown in Fig. 5, when the number of radios is fixed
in the network, the smaller the average node degree, the larger the
number of concurrent transmissions supported by each node. This
is because the smaller the average node degree, the less number of
interferers a node may have, namely the more number of channels
available for concurrent transmissions.

When the average node degree is fixed, the larger the number of
radios, the more the number of concurrent transmissions supported
by each node. This result is intuitive since the number of concurrent
transmissions is bounded by the number of radios in the network.
Comparing the six curves in Fig. 5, we find that the smaller the
number of radios, the smaller the number of concurrent transmis-
sions supported by each node. We also find that when d ≤ s and Q
is fixed, the number of concurrent transmissions supported by each
node reaches its maximum, that is Q.

Fairness in channel usage is another important issue in wireless
networks. Note that in our simulation study, the channel assign-
ment matrix X has a constant column weight, which means that
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Figure 5: The average number of concurrent transmissions
supported by each node.

each node in the network has the same numbers of primary chan-
nels and secondary channels. Since the channel codeword is picked
randomly and independently for each node, intuitively the channel
usage should be fair. This has been validated by our simulation
result reported in Fig. 6.
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Figure 6: The channel usage of each channel when average
node degree is 3.

6. DISCUSSION

6.1 Strength of Algorithms 1 and 2
Note that Algorithms 1 and 2 are both localized. They re-

quire the availability of the channel codewords from one or two-hop
neighborhood, which results in low communication overhead since
the binary codewords are short. In addition, both algorithms have
low computation overhead since only simple Boolean algebraic is
involved.

Algorithm 1 is generic. It is suitable for both unicast and broad-
cast traffic. As long as the codewords of the set of interferers are
available, an interference-aware channel can be computed. Under
certain conditions, this channel causes no interference.

The underlying design principle for unicast channel assignment
(Algorithm 2) is the same as that of Algorithm 1: a node always
selects a channel that causes the least interference to its neighbor-
hood based on its current knowledge. With a simple scheduling
algorithm, Algorithm 2 can achieve 100% throughput.

Neither of the two algorithms relies on the s-disjunct superim-
posed code, which is introduced to identify the scenarios when in-

terference free communications are possible. However, if the chan-
nel codewords form an s-disjunct code, Algorithms 1 and 2 can
compute a channel for better interference mitigation. In addition,
the larger the s, the better the performance.

Both algorithms can be uploaded to the same node for broadcast
and unicast channel computation. However, broadcast may be infe-
rior to unicast, as in IEEE 802.11 standard. In this case, a channel
has a higher priority to be assigned for unicast. If the probability of
a channel being primary or secondary is the same for all nodes, the
channel usage is fair.

Note that even though we assume the frequency channels in our
discussion, both algorithms work with any kind of orthogonal chan-
nels: time slots, orthogonal codes, etc., as long as the channels
can be labelled by a binary string indicating their primary and sec-
ondary roles to each node.

6.2 Superimposed Codes
The s-disjunct property elaborated in Lemma 4.1 plays a signif-

icant role in interference-free channel assignment. It is clear that
the strength s should be strong and the size t should be large for a
superimposed code X of length N to be applicable to a MR-MC
network with N available orthogonal channels. Given N , comput-
ing a satisfiable superimposed s-disjunct code is non-trivial. As
reported by D’yachkov and Rykov in [31], the following relation-
ship of N , t, s, and λmax holds.

LEMMA 6.1. Let t > λmax > s ≥ 1 and N > 1 be integers.

1. For any superimposed (s, 1, N)-code of length N , size t, and
maximum row weight λmax:

N ≥ � (s + 1)t

λmax
� (11)

2. If λmax ≥ s + 2, (s + 1)t = λmaxN , and there exists
a superimposed (s, 1, N)-code X with size t and maximum
row weight λmax, then

• Code X has a constant column weight w = s + 1, and
a constant row weight λ = λmax, and the maximal dot
product of any two codewords in X is 1.

• The following inequality holds true:

λ2 − λ(λ − 1)

s + 1
≤ t (12)

Note that for a superimposed (s, 1, N)-code, the upper bound
of s is limited by N . Therefore s cannot be a large number if the
number of available channels N in the network is small. However,
this should not be a restriction on the application of superimposed
codes in IEEE 802.16e based stationary MR-MC wireless mesh
networks. The OFDMA technique in IEEE 802.16e [34] [35] al-
lows bandwidth to be divided into many lower-speed sub-channels
to increase resistance to multi-path interference. Typically a large
number of non-overlapping orthogonal sub-channels are available
for simultaneous transmissions. Therefore in this case, s can be
large since N is large.

However, the non-overlapping channels in 802.11 standards are
limited (3 non-overlapping channels in IEEE 802.11b/g; 12 non-
overlapping channels in original IEEE 802.11a). Therefore s in
802.11-based wireless mesh networks is limited to some small num-
ber, which may affect the effectiveness of channel assignment.

A good news is that it is very likely that we still have disjunct
property with more than s codewords. Let’s introduce the definition
for α-almost s-disjunct code proposed in [29] [36]: A binary matrix
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is α-almost s-disjunct if for any randomly selected set of s columns,
the probability that they cover no other column is at least α. In
[29], authors proposed a study on a 3-disjunct superimposed code
of size 30, where the number of codewords is much larger than
s. The results indicate that this superimposed code is 0.95-almost
15 disjunct, and 0.6-almost 30 disjunct. This study tells us that a
less powerful s-disjunct superimposed code could work well in our
channel assignment.

6.3 Scalability Considerations
In superimposed codes, although t increases superlinearly com-

pared to N [31], it is still a bounded number. Therefore, when
applying a superimposed code in a MR-MC network, the network
size is restricted because a superimposed code can only accommo-
date at most t nodes. To overcome this problem, we propose the
following scalability enhancement.

As shown in Fig. 7, we map the network by cellular grids (regular
hexagonal grids). The side length of each grid is Rmax, where
Rmax is the maximum interference range a node can have in the
network. Since the chromatic number of face coloring of such a
graph is 3, the cellular grids of the network can be easily classified
into 3 categories denoted by A, B, and C.

Given a superimposed (s, 1, N)-code X , we evenly divide X
into 3 subsets: tA, tB and tC . Each subset exclusively contains
about 1/3 codewords of X , representing a possible channel assign-
ment for a grid category. For example, nodes belonging to the grids
of category A are assigned channels based on tA; nodes belong-
ing to grids of category B are assigned channels based on tB; and
nodes belonging to grids of category C are assigned channels based
on tC , as shown in Fig. 7.

tC

t
A

tB

Rmax

tB tB

tB

tC

tCtC

tC

t
A

tB

Figure 7: Channel assignment in a scalable network under a
cellular grid topology.

Facilitated with a cellular grid topology, the network can scale to
infinite size, though the superimposed (s, 1, N)-code has a bounded
size t.

6.4 Applications to Mobile Mesh Networks
Since both algorithms are localized, and the communication over-

head for a node to obtain the channel codewords from its neighbor-
hood is low, channel assignment for mobile MR-MC wireless mesh
networks can be easily supported. We will quantitatively study the
performance of our algorithms in a mobile mesh network and test
their support to popular mobile routing protocols in our future re-
search.

6.5 Future Research
This paper presents our exploratory work toward capacity im-

provement in MR-MC mesh networks. We will study the perfor-
mance of our algorithms in an mobile environment and test their
capability of simultaneously supporting both unicast and broadcast.
Additionally, we will design a MAC protocol based on these two
algorithms to efficiently utilize the network resource for throughput

maximization. Furthermore, we will explore the impact of channel
codeword on the performance of channel assignment based on our
algorithms.

7. CONCLUSION
In this paper, we have designed two localized channel assign-

ment algorithms based on s-disjunct superimposed codes for multi-
radio multi-channel wireless mesh networks. Our algorithms can
effectively support channel allocation for both unicast and local
broadcast since channels are pertained to transmitters instead of
links even though the interferers at the destination affects channel
selection. The selected channels are expected to cause low overall
switching delay and low interference to the local neighborhood. In
addition, we have identified the conditions when interference-free
channel assignment can be achieved and when hidden/exposed ter-
minal problems can be avoided. For unicast, our algorithm results
in 100% network throughput with a simple scheduling algorithm.
Since we do not make any assumptions on the underlying network
settings such as traffic patterns and MAC/routing protocols, our
channel assignment algorithms are applicable to a wide range of
MR-MC mesh networks.
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Abstract

In this paper, we present Singular-Value Decomposition-
QR with Threshold (SVD-QR-T) algorithm to select a sub-
set of channels in virtual MIMO wireless sensor networks
(WSN) in order to reduce its complexity and cost. SVD-
QR-T selects best subset of transmitters while keeping all
receivers active. The threshold is adaptive by means of
Fuzzy C-Mean (FCM). Under the constraint of the same to-
tal transmission power, this approach is compared against
the case without channel selection in terms of capacity, bit
error rate (BER) and multiplexing gain in the presence of
water-filling as well without. It is shown that in spite of
less multiplexing gain, when water-filling is applied, SVD-
QR-T FCM provides lower BER at moderate to high SNR;
in case of equal transmission power allocation, SVD-QR-T
FCM achieves higher capacity at low SNR and lower BER.
In general, it provides satisfying performances compared
to the case without channel selection but reduced cost and
resource.

1 Introduction

1.1 Channel selection in virtual MIMO

Virtual multiple-input-multiple-output (MIMO) has
been studied intensively in recent years in order to improve
the energy-efficiency in wireless sensor networks (WSN)
[1][2][3]. Constrained by its physical size and limited bat-
tery, individual sensor is allowed to contain only one an-
tenna. Numerical results show that if these individual sen-
sors jointly form the MIMO system, tremendous energy will
be saved while satisfying the required performance. How-
ever, a natural drawback of virtual MIMO is the increased
complexity and the cost of multiple radio frequency (RF)
chains. One technique to reduce the complexity and cost

while providing similar capacity and performance is chan-
nel selection, or antenna selection.

The knowledge of channels can be obtained by various
channel estimation techniques, such as reciprocity principle
and feedback channel [4]. When channel side information
(CSI) is known to transmitters or receivers, antenna selec-
tion can be applied through subset selection algorithms by
switchers either at transmitters or receivers, or jointly work-
ing at both ends. Therefore the best set of channels are se-
lected to be active while remaining ones are not employed.
These switchers typically cost much less than RF chains so
that low-cost and low-complexity can be achieved with the
benefits of multiple antennas [5] [6]. This system is illus-
trated in Fig. 1.

Figure 1. system diagram for virtual MIMO
channel selection

Recent years have seen an explosion of interest in MIMO
antenna selection and various criteria have been used:

1. Capacity Maximization: In the previous work of [7]
[8] [9], channel capacity is used as the optimality cri-
terion, i.e., antennas that achieve the largest capacity
are active. [7] demonstrated that in case of no CSI at
transmitter (CSIT) but receiver (CSIR), close capac-
ity to that of the MIMO system can be achieved as
far as the number of selected receivers is no less than
the number of transmitters. [8] and [9] considered CSI
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at transmitter and proposed an exhaustive search algo-
rithm.

2. Minimum Error rate: Apart from maximization of ca-
pacity based on Shannon theory, [10] derived another
criteria from the respect of minimum error rate when
coherent receivers, either maximum likelihood (ML),
zero-forcing (ZF) or the minimum mean-square error
(MMSE) linear receiver is employed.

3. SNR Maximization: In [11], antenna selection is per-
formed only at the receiver on a basis of largest in-
stantaneous SNR using space-time coding. It is ana-
lytically shown that full diversity advantage promised
by MIMO can be fully exploited using this criteria as
long as the space-time code employed has full spatial
diversity.

Although there have been dazzling mathematical studies
on antenna selection criteria, practical algorithms of joint
transmit and receive antenna selection, i.e., channel selec-
tion is still open and the problem of corresponding perfor-
mance analysis require more investigations.

1.2 Contributions and Organization of
This Paper

In this paper, under the assumption of quasi-static
Rayleigh fading, we propose a practical algorithm to per-
form channel selection: singular-value decomposition-QR
with threshold (SVD-QR-T) employing Fuzzy C-Mean
(FCM) to virtually provide adaptive threshold. This algo-
rithm selects rt (see section 3) best subset of transmitters
while keeping all receivers active. An example is presented
to illustrate each step. Under the constraint of the same total
transmission power, this approach is compared against the
case without channel selection in terms of capacity, bit error
rate (BER) and multiplexing gain. it is shown that in spite of
less multiplexing gain, when water-filling is applied, SVD-
QR-T FCM provides lower BER at moderate to high SNR;
in case of no water-filling and equal transmission power al-
location, SVD-QR-T FCM achieves higher capacity at low
SNR and lower BER. In general, it provides satisfying per-
formances compared to the case without channel selection
but reduced cost and resource.

We organize the remainder of this paper as follows. In
Section 2, we introduce our virtual MIMO channel model.
Section 3 proposes SVD-QR-T FCM algorithm. Section 4
compares the performances of virtual MIMO after channel
selection with those without. Section 5 draws the conclu-
sion and presents future work.

2 Channel Model

Virtual MIMO channel model with Mt transmitters and
Mr receivers (Mt + Mr sensors) is illustrated in Fig. 2,
where each receiver observes a superposition of the Mt

transmitted signals corrupted by Rayleigh flat fading and
additive white gaussian noise. Each hji, i = 1, 2, · · · ,Mt

and j = 1, 2, · · · ,Mr represents the channel gain from
transmitter i to receiver j [12], which is assumed to be
Rayleigh independent and identically distributed (i.i.d.).
The additive noise also has i.i.d entries nj ∼ CN (0, σ2).

2X

1X
1Y

MtX MrY

2Y

11h

21h

MrMth

1Mrh

Figure 2. Graphic channel model for virtual
MIMO

We may denote this virtual MIMO channel graph with
discrete time model:
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X1

X2

...
XMt




+




n1

n2

...
nMr


 (1)

The above equation can be simplified as Y = HX +
n, where H is a Mr × Mt independent Rayleigh random
matrix and n denotes random noise.

3 SVD-QR-T Virtual MIMO

3.1 SVD-QR-T in virtual MIMO channel
selection

SVD has been applied to MIMO channel decomposition
in [12], [14], and sensor node selection in [15]. However,
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these studies are on theoretical analysis only and no algo-
rithm has been proposed on which channels will be physi-
cally selected in practice.

We propose SVD-QR-T as follows:

1. Given channel gain matrix H ∈ RMr×Mt and r =
rank(H) ≤ min(Mt, Mr), determine a numerical es-
timate rt of the rank r by calculating the singular value
decomposition

H = UΣVT , (2)

where U is an Mr × Mr matrix of orthonormalized
eigenvectors of HHT , V is an Mt × Mt matrix of
orthonormalized eigenvectors of HT H , and Σ is the
diagonal matrix Σ = diag(σ1, σ2, . . . , σi, σr), where
σi =

√
λi and λi is the ith eigenvalue of HHT and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. σi is the singular value of
H. In many practical cases, σ1, σ1, · · ·, σrt are much
larger than σrt+1, · · · , σr; thus we may set threshold
to pick up valuable σi, i = 1, 2, · · · , σrt and discard
those trivial singular values in order to save resource
but maintain satisfying performance. Sometimes rt
can be chosen much smaller than the rank r, even 1.
In this paper, we propose to use fuzzy c-means (FCM)
to determine rt. Details will be discussed in section
3.2.

2. Partition

V =
[

V11 V12

V21 V22

]
(3)

where V11 ∈ Rrt×rt, V12 ∈ Rrt×(Mt−rt), V21 ∈
R(Mt−rt)×rt, and V22 ∈ R(Mt−rt)×(Mt−rt).

3. Using QR decomposition with column pivoting, deter-
mine E such that

[VT
11, VT

21]E = QR, (4)

where Q is a unitary matrix, and R ∈ Rrt×Mt forms
an upper triangular matrix with decreasing diagonal el-
ements; and E is the permutation matrix. The positions
of 1 in the first rt columns of E correspond to the rt
ordered most-significant transmitters.

3.2 Fuzzy C-Means – Unsupervised Clus-
tering for Adaptive Threshold

In order to keep the balance between performances and
cost, we propose FCM clustering approach to divide singu-
lar value (σ1, σ2, . . . , σr) into two clusters, and thus pro-
vides virtual adaptive threshold, so the cluster with higher
center would remain for active channels.

FCM clustering is a data clustering technique where each
data point belongs to a cluster to a degree specified by a

membership grade. This technique was originally intro-
duced by Bezdek [16] as an improvement on earlier clus-
tering methods. Here we briefly summarize it.

Definition 1 (Fuzzy c-Partition) Let X = x1, x2, · · · , xn

be any finite set, Vcn be the set of real c× n matrices, and
c be an integer, where 2 ≤ c < n. The Fuzzy c-partition
space for X is the set

Mfc = U ∈ Vcn|uik ∈ [0, 1] ∀i, k; (5)

where
∑c

i=1 uik = 1 ∀k and 0 <
∑n

k=1 uik < n ∀i. The
row i of matrix U ∈ Mfc contains values of the ith mem-
bership function, ui, in the fuzzy c-partition U of X.

The row i of matrix U ∈ Mfc contains values of the ith
membership function, ui, in the fuzzy c-partition U of X.

Definition 2 (Fuzzy c-Means Functionals) [16] Let Jm :
Mfc ×Rcp →R+ be

Jm(U,v) =
n∑

k=1

c∑

i=1

(uik)m(dik)2 (6)

where U ∈ Mfc is a fuzzy c-partition of X; v =
(v1,v2, · · · ,vc) ∈ Rcp, where vi ∈ Rp, is the cluster cen-
ter of prototype ui, 1 ≤ i ≤ c;

(dik)2 = ||xk − vi||2 (7)

where || · || is any inner product induced norm on Rp;
weighting exponential m ∈ [1,∞); and, uik is the mem-
bership of xk in fuzzy cluster ui. Jm(U,v) represents the
distance from any given data point to a cluster weighted by
that point’s membership grade.

The solutions of

min
U∈Mfc,v∈Rcp

Jm(U,v) (8)

are least-squared error stationary points of Jm. An infi-
nite family of fuzzy clustering algorithms — one for each
m ∈ (1,∞) — is obtained using the necessary conditions
for solutions of (8), as summarized in the following:

Theorem 1 [16] Assume || · || to be an inner product in-
duced norm: fix m ∈ (1,∞), let X have at least c < n
distinct points, and define the sets (∀k)

Ik = {i|1 ≤ i ≤ c; dik = ||xk − vi|| = 0} (9)
Ĩk = {1, 2, · · · , c} − Ik (10)

Then (U,v) ∈ Mfc ×Rcp is globally minimal for Jm only
if (φ denotes an empty set)

Ik = φ ⇒ uik = 1
/

[
c∑

j=1

(
dik

djk
)2/(m−1)] (11)

65

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:51 from IEEE Xplore.  Restrictions apply. 

732 of 816



or

Ik 6= φ ⇒ uik = 0 ∀i ∈ Ĩk and
∑

i∈Ik

uik = 1, (12)

and

vi =
n∑

k=1

(uik)mxk

/ n∑

k=1

(uik)m ∀i (13)

Bezdek proposed the following iterative method [16] to
minimize Jm(U,v):

1. Fix c, 2 ≤ c < n; choose any inner product norm
metric for Rp; and fix m, 1 ≤ m < ∞. Initial-
ize U(0) ∈ Mfc (e.g., choose its elements randomly
from the values between 0 and 1). Then at step l
(l = 1, 2, · · ·):

2. Calculate the c fuzzy cluster centers v(l)
i using (13) and

U(l).

3. Update U(l) using (11) or (12).

4. Compare U(l) to U(l−1) using a convenient matrix
norm, i.e., if ||U(l) −U(l−1)|| ≤ εL stop; otherwise,
return to step 2.

3.3 Example of SVD-QR-T with FCM in
virtual MIMO channel selection

We use the following example to illustrate the SVD-QR-
T with FCM application in MIMO-WSN channel selection.

1. Step 1. Assume the estimated channel gain is

H =




0.6211 0.7536 0.6595
0.5602 0.6596 0.1834
0.2440 0.2141 0.6365
0.8220 0.6021 0.1703
0.2632 0.6049 0.5396




By matrix computation, we get:

V =



−0.5856 −0.5075 −0.6321
−0.6574 −0.1589 0.7366
−0.4743 0.8469 −0.2406




diag(Σ) = (2.0017, 0.6347, 0.2572). Use FCM to di-
vide diag(Σ) into 2 clusters, we get

v =
[

2.0010
0.4445

]

U =
[

1.0000 0.0190 0.0114
0.0000 0.9810 0.9886

]

where entry 1.0000 at U is the membership that 2.0017
belongs to the cluster with center 2.0010. Therefore,
the cluster with higher center is composed of only
2.0017, then 2.0017 is chosen and rt = 1.

2. Step 2. Obtain V11 and V21 from V:

V11 = −0.5856

V21 =
[ −0.6574
−0.4743

]

Based on [VT
11VT

21] get E by QR:

E =




0 1 0
1 0 0
0 0 1




As rt = 1, choose the first column of E

E(:, rt) =




0
1
0




3. Step 3. Analyze E(:, rt), 1 appears on the 2nd row,
and thus the 2nd column of H is selected to construct
Hs, which is:

Hs =




0 0.7536 0
0 0.6596 0
0 0.2141 0
0 0.6021 0
0 0.6049 0




This implies that the channel to be selected are those
that connect 2nd transmitter and all receivers, i.e.,
transmitter 2 and all the receivers are selected to be ac-
tive while other transmitters are not employed to save
their battery.

As we may see, the row index in which 1 appears in E(:
, rt) particularly decide which transmitters to be selected, so
with regard to SVD-QR-T, rt×Mr channels are selected to
be active.

4 Performance Analysis

Due to the randomness of channel gain matrix, we em-
ploy Monte Carlo simulations to analyze the performances
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on our algorithms in terms of capacity, multiplexing gain
and bit error rate (BER). Following steps are applied:

1. Use Jake’s Model [19] to randomly generate indepen-
dent Mt × Mr Rayleigh channels, take their channel
gains at a particular the same time as entries for matrix
H.

2. Follow the SVD-QR-T FCM and channel selection al-
gorithm respectively to select channels.

3. Obtain eigenvalue λis and its rank rs for Hs. Note that
λis is totally different with λi of H.

4. Here we assume B = 1Hz. Through 10,000 times
Monte Carlo simulations to obtain capacity, BER for
QPSK modulation and multiplexing gain with and
without water-filling.

4.1 Channel Known At the Transmitter:
Water-Filling

When both of CSIT and CSIR are known, water-filling
technique can be utilized to optimally allocate power Pi at
independent parallel channel i. The sum of capacities on
each of these independent parallel channels is the maximal
capacity of virtual MIMO [12]. This capacity can be ex-
pressed as

C = max∑
Pi≤P

r∑

i=1

B log2(1 +
Pi

σ2
λi) (14)

where P is total power constraint for transmitters, r is the
rank of H and λi is the eigenvalue of HHT . Since the SNR
at the ith channel at full power is SNRi = λiP/σ2, the
capacity (14) can also be given in terms of the power allo-
cation Pi as

C = max∑
Pi≤P

r∑

i=1

B log2(1 +
Pi

P
SNRi) (15)

where

Pi

P
=

{
1/SNR0 − 1/SNRi SNRi ≥ SNR0

0 SNRi < SNR0
(16)

for some cutoff value SNR0. The final capacity is given as

C =
∑

SNRi≥SNR0

B log2(
SNRi

SNR0
) (17)

The value of SNR0 must be found numerically, owning
to no existence of closed-form solution for continues distri-
butions of SNR [21]. This results in Monte Carlo simula-
tions to analyze the capacity performances on SVD-QR-T
FCM, which is illustrated in Fig. 3. It is shown that the

capacity of 4x4 virtual MIMO is 4 bps/Hz while it becomes
3.4 bps/Hz if SVD-QR-T FCM channel selection is applied.
This difference grows up to around 2.2 bps/Hz when SNR
reaches 20dB.
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Figure 3. Capacity of SVD-QR-T FCM vs. vir-
tual MIMO with water-filling

Although SVD-QR-T FCM does not seem to provide any
advantage in the above figure, it offers lower BER than vir-
tual MIMO without channel selection when SNR is higher
than 7dB, which is shown in Fig. 4. This is because SVD-
QR-T FCM chooses the best subset of equivalent parallel
channels so that SNR allocated at each parallel is larger than
that of virtual MIMO as P/σ2 grows larger. Here we em-
ploy QPSK modulation with multiplexing but no space-time
coding (STC). Since no diversity gain is obtained, maximal
multiplexing does exist.

Maximal multiplexing gain is the number of equivalent
multiple parallel spatial channels [22], and also it is referred
to as degrees of freedom to communicate [23], which is re-
lated with the row and column number of H and Hs. It
has been derived in [23] that the maximal multiplexing gain
provided by Mr × Mt MIMO is min(Mt,Mr). However,
the accurate multiplexing gain is r = rank(H) since it is
possible that H is not full rank. As SVD-QR-T FCM select
rt transmitters and all receivers, the maximal multiplexing
gain offered by SVD-QR-T FCM is min(rt, Mr). Note that
rt ≤ r ≤ Mr, therefore the accurate multiplexing gain for
SVD-QR-T FCM is rt. However, this values are applicable
only for no water-filling. If water-filling are applied, less
multiplexing gain will be offered as some singular values
with SNR lower than SNR0 will be cut off.

Under the premise that H is full rank, we obtain the mul-
tiplexing gain on SVD-QR-T FCM and virtual MIMO in
Fig. 5.

67

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:51 from IEEE Xplore.  Restrictions apply. 

734 of 816



0 5 10 15 20
10

−3

10
−2

10
−1

SNR (dB)

B
E

R

4x4 virtual MIMO
SVD−QR−T FCM

Figure 4. BER of SVD-QR-T vs. 4 × 4 virtual
MIMO with water-filling

4.2 Channel Unknown At Transmitter:
Uniform Power Allocation

it is not always the case that both CSIT and CSIR are
known. In case of only CSIR, water-filling power optimiza-
tion can not be applied and people simply allocate equal
power to each transmitters, therefore its capacity becomes

C =
r∑

i=1

B log2(1 +
SNRi

Mt
) (18)

Here we also apply 10,000 time Monte Carlo simulations to
obtain the expectation of capacity for SVD-QR-T FCM and
4× 4 virtual MIMO at different SNR in Fig. 6. It is shown
that SVD-QR-T FCM provides higher capacity than that of
virtual MIMO without channel selection if SNR is less than
10dB.

The BER performance is illustrated in Fig. 7. We can see
that as SNR increase, BER after SVD-QR-T FCM channel
selection become much lower than that of virtual MIMO.

In the mean time, Fig. 8 illustrates that virtual MIMO
can achieve larger multiplexing gain than that of SVD-QR-
T FCM but that implies more transmitters and RF chains
consumption, which is the same situation as in case of
water-filling. As no-water-filling is used, here multiplexing
gain is not associate with SNR.

5 Conclusions

This paper is a preliminary work on virtual MIMO chan-
nel selection problem in practice. SVD-QR-T FCM ap-
proach with concrete example is proposed. We not only
present the channel selection algorithms, but also provide
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Figure 5. Multiplexing gain of SVD-QR-T
FCM vs. virtual MIMO with water-filling at
SNR=20dB
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Figure 6. Capacity of SVD-QR-T FCM vs. vir-
tual MIMO without water-filling

the detailed approach on performance analysis with Monte
Carlo simulations. We demonstrate that with the same total
transmission power constraint, SVD-QR-T FCM can offer
higher capacity at low SNR without waterfilling and much
lower BER at high SNR no matter water-filling is applied or
not. Future research tracks might concern the extension of
the proposed algorithm to integrate with space time coding
(STC) so as to further optimize the system performances.
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Figure 7. BER of SVD-QR-T vs. 4 × 4 virtual
MIMO without water-filling
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Figure 8. Multiplexing gain of SVD-QR-T FCM
vs. virtual MIMO without water-filling
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Abstract

In this paper, considering hidden terminal and exposed
node problems, we make a theoretical analysis on the
performance of commonly used energy detection methods,
such as ideal method, transmitter-independent method and
transmitter/receiver-cooperated method, in terms of detec-
tion probability. Corresponding analytical models are pro-
vided. Performance theoretical curves are acquired to
compare the characteristics for individual energy detec-
tion methods under various scenarios. Moreover the upper
bound for detection probability is achieved and is compared
under various system traffic intensity and sensing capabil-
ity.

1. Introduction

Today’s wireless networks are regulated by a fixed spec-
trum assignment policy. In addition, according to Federal
Communications Commission (FCC)[3], temporal and ge-
ographical variations in the utilization of the assigned spec-
trum range from 15% to 85%. There is a dramatic increase
in the access to the limited spectrum for mobile services in
the recent years. By adapting radios’ operating characteris-
tics to the real-time conditions of the environment, cognitive
radio (CR) enable flexible, efficient and reliable spectrum
use.

In order to ensure cognitive radio network (CRN), which
is consisting of CRs, working smoothly, one of important
requirements is to sense the spectrum holes successfully.
The most efficient detection method is to detect the pri-
mary users that are receiving data within the communica-
tion range of an secondary user. One common method for
detection of unknown signals is energy detection, which
measures the energy in the received waveform over an ob-
servation time window[4][14]. In [11], energy detection
of unknown deterministic signals are studied. Detection

performance in terms of detection probability and false
alarm probability is formulated. In [1] and [13], multi-
band/wavelet approach and blind adaptive minimum output
energy detection were proposed for capturing the AM-FM
components of modulated signals immersed in noise and
for DS/CDMA[8] over multipath fading channel separately.
Performance of energy detection under channel randomness
has been considered in [2] and [5]. In order to improve spec-
trum sensing, several authors have recently proposed col-
laboration among secondary users[6][12]. A group of unli-
censed deices were exploited for spectrum sensing, which
leads to more efficient spectrum utilization from a system-
level point of view while decreasing computational com-
plexity of detection algorithms at individual nodes.

However energy detection has been extensively stud-
ied in the past, hidden terminal and exposed node prob-
lems are ignored through assuming that the environment
is same for transmitters and receivers. While this assump-
tion does not always held, especially in high node-density
scenarios. In this paper, considering hidden terminal and
exposed node problems, we make a theoretical analysis
on the performance of energy detection in terms of de-
tection probability. An analytical model is provided for
ideal energy detection, transmitter-independent energy de-
tection for CSMA[10]/ALOHA[9]/Schedule-based systems
and transmitter/receiver-cooperated energy detection. The-
oretical curves are acquired to compare the characteristics
for individual energy detection methods under various situ-
ations. Moreover the upper bound for detection probability
is achieved and compared under various system traffic and
sensing error. The theoretical results we acquired can sup-
ply a reference on the method selection.

The remainder of this paper is organized as follows. We
summary all definitions used through this paper in Sec-
tion 2. Section 3 and Section 4 describe our theoretical
analysis on different energy detection methods. Simulation
results are given in Section 5. Section 6 concludes this pa-
per.
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2 Main Definitions

We classify the frequency band/channel state into three
categories:

• Idle: When both secondary transmitter and receiver do
not sense any signal, we claim the channel is idle. In
this case, secondary communication pair can utilize the
channel for communications.

• Busy: Once a secondary transmitter senses the beacon
from a primary receiver and/or a secondary receiver
senses the beacon from a primary transmitter, we claim
a channel is busy. In this case, secondary communica-
tion pair should not utilize the busy channel for com-
munications, since their communication might destroy
primary users’ or be destroyed by primary users’.

• Fake Busy: Just a secondary transmitter senses the bea-
con from a primary transmitter and/or a secondary re-
ceiver senses the beacon from a primary receiver, we
claim the channel is fake busy. In this case, secondary
communication pair still can utilize the channel for
communication, since there is no any unacceptable in-
terference among them.

Generally, network topology, traffic type and communi-
cation capability of primary user system determine channel
state. In this paper, we exploit pid, pbs and pfd to express
the chance of channel state might be at certain point of time.
They are always satisfy pid + pbs + pfd = 1. The defini-
tions are: pid is the probability of a channel being Idle; pbs

is the probability of a channel being Busy; and pfd is the
probability of a channel being Fake Busy.

During energy detection, the sensed signal can come
from primary transmitters and, for some cases, primary re-
ceivers, which is not determined. We use ptx and prx to
stand the probability that the sensed signal coming from pri-
mary transmitters and from primary receivers.

The sensing probabilities are defined as:

P{no signal sensed | no signal exsiting} = P00;
P{signal sensed | signal exsiting} = P11;
P{no signal sensed | signal exsiting} = P10; and
P{signal sensed | no signal exsiting} = P01.

The probability of correct decision (Pcd) is the probabil-
ity that a SU makes a correct decision on utilizing or not
utilizing a particular frequency band when sensing a partic-
ular frequency band is Idle/Fake Busy or Busy, defined as:

Pcd = P{transmission blocked|channel Busy}P{channel Busy}
+ P{transmission processed|channel Idle/Fake Busy}

P{channel Idle/Fake Busy} (1)

3 Generic Environment for Secondary
Transmitter and Receiver

While energy detection has been extensively studied in
the past, hidden terminal and exposed node problems are ig-
nored through assuming that the environment is often same
for transmitters and receivers. However, this assumption
can not always hold in the real world. In this section, we
use the generic model, in which the signal sensed by sec-
ondary transmitters (STs) might not be identical for sec-
ondary receivers (SRs). Moreover, in real world, there is
always error for signal sensing, i.e., 0 < P00, P11, P01,
P10 < 1. In this case, for real system design, we eval-
uate the performance in terms of detection probability for
ideal energy detection method, transmitter-independent en-
ergy detection method and transmitter/receiver-cooperated
energy detection method.

3.1 Ideal Energy Detection

In this case, the primary transmitter (PT) and primary re-
ceiver (PR) have the capability to send out special messages
such as beacons to indicate they are doing communications.
Moreover, for energy detection, not only ST but also SR
participate sensing task. Based on the detection results both
from STs and SRs, the secondary communication pairs de-
cide their working frequency bands.

We define a 2×2 matrix (S =
(
sr1 sr2

st1 st2

)
) to express

the detection results for secondary communication pairs.
sr1 and sr2 are the detection results referring to PR and PT
individually at the SR side. Similarly, st1 and st2 are the
detection results referring to PT and PR individually at the
ST side. The value for sr1, sr2, st1 and st2 can be 1 or 0
based on signals detected or not. There are totally 16 sta-
tuses for S (See Table 1). Note that the signal strength st1

and the signal strength sr2 reflect the hidden problem de-
gree and exposed problem degree individually. Therefore,
combining the detection at STs and SRs, the detection er-
rors caused by hidden problem and exposed problem can be
solved successfully at the same time.

Based on the definition on detection probability (Pcd),
we derive (2) as following:

Pcd = (pid + pfbs)p00(γr2)p00(γt1) +
1
9
pbs[p01(γt1)

+ p01(γr2) + p10(γr2)p11(γt1) + p11(γr2)p10(γt1)
+ 3p11(γr2)p00(γt1) + 3p11(γr2)p11(γt1)
+ 3p11(γr2)p11(γt1)] (2)

Note that:

• Even though PT, PR, ST and SR participate spectrum
sensing, incorrect decision is still possible that for
sensing errors of STs and SRs.
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Table 1. Channel state classification accord-
ing to S for ideal energy detection

Channel State S

Idle

(
0 0
0 0

)

Fake Busy

(
0 0
0 1

)
,

(
1 0
0 0

)
,

(
1 0
0 1

)
.

Busy

(
0 0
1 0

)
,

(
0 0
1 1

)
,

(
0 1
0 0

)
,(

0 1
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,(

1 0
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 0

)
,(

1 1
0 1

)
,

(
1 1
1 0

)
,

(
1 1
1 1

)
.

• Although both ST and SR implement energy detection
according to messages exchanged between PTs and
PRs, detection performance in terms of detection prob-
ability Pcd has nothing with p(γr1) and p(γt2). That is,
only the detection capability referring to PRs of STs,
and detection capability referring to PTs of SRs to-
gether determines the performance of this ideal energy
detection method. This implies that, during detection,
to ensure the detection performance the STs only need
to monitor the signal from PRs, and the STs need to
monitor the signal from PTs. Consequently, the over-
head brought by energy detection for STs and STs in
CRNs can be safely reduced through making STs/SRs
ignore the signal from PTs/PRs.

• Moreover, assuming CRs can correctly detect whether
there is transmission processing around them on a par-
ticular frequency band, i.e., p00 = 1, p11 = 1, p01 = 0
and p10 = 0. In this case according to (2), we have
Pcd = 1, which are consisting with our above analy-
sis. For this reason, this ideal energy detection method
is an optimal detection way for CRNs.

However, it is too good to be true in real world since
overhead caused by transmitting beacons both form primary
transmitters and receivers is too heavy to be acceptable or
feasible for some systems that utilize certain MAC methods,
in which there is no confirmation/response from receivers
during data transmission process.

3.2 Transmitter-Independent Energy De-
tection

In transmitter-independent energy detection method,
only STs processes spectrum sensing task. Therefore, the
matrix S is reduced into a scalar whose value can be 0 or
1. When a ST senses there is no primary communication
pairs doing communication, i.e., S = 0, it will decide to
use this channel for its communication, otherwise it will
not. Generally, there are two categories of primary system
based on whether there is confirmation/response from pri-
mary receivers. In CSMA/CA primary systems, since be-
sides RTS control packets and data packets transmitted by
PTs, another control packets - CTS and ACK are transmit-
ted by PRs[7]. The decision can be done according to the
detection with PTs or PRs, in this case, Pcd is modified as
follows.

Pcd = ptx{pidp00(γt2) +
1
3
pfbs[p00(γt2) + 2p10(γt2)]

+
1
2
pbsp11(γt2)} + prx{(pid + pfbs)p00(γt1)

+
2
3
pbsp11(γt1)} (3)

Compared with ideal energy detection methods, follows
are observed:

• Pcd is not only the functions of pγt1 , but also the func-
tions of pγt2 when the detected signal coming from
PTs.

• Assuming CRs can correctly detect whether there is
transmission processing around them on a particular
frequency band, i.e., p00 = 1, p11 = 1, p01 = 0
and p10 = 0. In this specific case, Pcd = ptx(pid +
1
3pfbs + 1

2pbs) + prx(pid + pfbs + 2
3pbs). Since it al-

ways has ptx+prx = 1 hold, the upper bound of Pcd is
Pcd,max = pid + pfbs + 2

3pbs, which is achieved when
the detected signals all come from PRs, i.e., ptx = 0
and prx = 1.

• Even though only STs are exploited for energy de-
tection in CSMA/CA-based primary system, it can
be an optimal energy detection method when chan-
nel status only be Idle or Fake Busy. That is, when
pbs = 0, Pcd,max = 1. Otherwise, the performance
of transmitter-independent energy detection methods
is always 1

3pbs worse than the ideal energy detection
methods.

• For other primary systems, such as TDMA systems,
CSMA systems and ALOHA systems, in which there
is no response/confirmation from receivers during data
transmission processes, i.e., ptx = 1 and prx = 0. In
this case, there is Pcd,max = pid + 1

3pfbs + 1
2pbs.
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3.3 Transmitter/Receiver-Cooperated
Energy Detection

Considering the spectrum environment sensed by re-
ceiver and transmitter due to different location of them, re-
ceiver aiding spectrum sensing method is one of feasible
mechanisms to improve the detection performance. Con-

sequently, the detection matrix S is changed into

(
0
0

)
,(

0
1

)
,

(
1
0

)
and

(
1
1

)
. Only ST doing frequency

sensing, it is impossible to identify the channel is Busy or

Fake Busy when S =
(

0
1

)
/

(
1
0

)
. Hence, there are two

alternative ways to infer the channel state. One is claiming

the channel is Idle when S =
(

0
0

)
, claiming the channel

is Fake Busy when S =
(

0
1

)
,

(
1
0

)
and

(
1
1

)
(See

Table 2). Then, the Pcd is calculated through

Table 2. Channel state classification accord-
ing to S for transmitter/receiver-cooperated
method

Channel State S

Idle

(
0
0

)

Busy

(
0
1

)
,

(
1
0

)
,

(
1
1

)

Pcd = ptx{pidp00(γr2)p00(γt2) +
1
3
pfbs[p00(γr2)p00(γt2)

+ 2p00(γr2)p10(γt2)] +
1
6
pbs[p11(γt2) + 4p11(γr2)

+ 2p10(γr2)p01(γt2) + 2p10(γr2)p11(γt2) + p01(γr2)
+ p00(γr2)p01(γt2)]} + prx{pidp00(γr1)p00(γt1)

+
1
3
pfbs[p00(γr1)p00(γt1) + 2p10(γr1)p00(γt1)]

+
1
6
pbs[4p11(γt1) + p11(γr1) + 2p01(γr1)p10(γt1)

+ 2p11(γr1)p10(γt1) + p10(γr1)p01(γt1)]} (4)

The other is One is claiming the channel is Idle when

S =
(

0
0

)
, claiming the channel is Fake Busy when

S =
(

0
1

)
/

(
1
0

)
, and claiming the channel is Busy

when S =
(

1
0

)
/

(
0
1

)
and

(
1
1

)
(See Table 3).

Table 3. channel state classification accord-
ing to S for transmitter/receiver-cooperated
method

Channel State S

Idle

(
0
0

)

Fake Busy

(
0
1

)
/

(
1
0

)

Busy

(
1
0

)
/

(
0
1

)
,

(
1
1

)

In this case, the Pcd is calculated through

Pcd = ptx{pid[p00(γr2)p00(γt2) + p00(γr2)p01(γt2)]

+
1
3
pfbs[p00(γr2)p00(γt2) + 2p00(γr2)] +

1
3
pbs[2p11(γr2)

+ p01(γr2)]} + prx{pid[p00(γr1)p00(γt1) + p01(γr1)p00(γt1)]

+
1
3
pfbs[p00(γr1)p00(γt1) + 2p00(γt1) +

1
3
pbs[2p11(γt1)

+ p01(γt1)]} (5)

Follows are discussed based above formulas:

• Compared with transmitter-independent energy detec-
tion methods, since both STs and SRs participate
the detection process, the detection performance is
same whatever the detection is based on the signal
from PTs or PRs. It is a good news for CRNs that
are coexisting with primary systems, in which no re-
sponse/confirmation from PRs during data transmis-
sion processes.

• Assuming CRs can correctly detect whether there is
transmission processing around them on a particular
frequency band, i.e., p00 = 1, p11 = 1, p01 = 0 and
p10 = 0. In this specific case, the upper bound for
detection probability are: Pcd,max = pid + 1

3pfbs +
5
6pbs and Pcd,max = pid + pfbs + 2

3pbs. Note that

when pbs < 4pfbs, the performance of treating

(
0
1

)

as Fake Busy is worse than treating

(
0
1

)
as Busy.

• Using transmitter/receiver-cooperated energy detec-
tion methods, it can acquire better performance
for TDMA primary systems, ALOHA systems and
CSMA systems. However, for CSMA/CA systems,
the transmitter/receiver-cooperated energy detection

method treating

(
0
1

)
as Busy achieves better per-
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formance when ptx ≥ 4pfbs−pbs

4pfbspbs
, and treating

(
0
1

)

as Fake Busy can always achieve better performance.

• Even though only PTs and PRs are exploited for en-
ergy detection, it can be an optimal energy detection
method when channel status only be Idle or Fake Busy.
That is, when pbs = 0, Pcd,max = 1. Otherwise, the
performance is always 1

3pbs worse than the one of ideal
energy detection method.

4 Identical Environment for Secondary
Transmitter and Receiver Scenario

When the environment for secondary transmitters and re-
ceivers are same. In this case, all possible values for S are
shown in Table 4. We will obtain Pcd for various energy
detection methods separately.

Table 4. channel state classification accord-
ing to S for ideal method

Channel State S

Idle

(
0 0
0 0

)

Busy

(
0 1
0 1

)
,

(
1 0
1 0

)
,

(
1 1
1 1

)
.

4.1 Ideal Energy Detection

Since the situation for STs and SRs is same, it is vali-
date to make correct decision only according to the detec-
tion by STs or SRs. Moreover, for ideal energy detection,
PTs and PRs have the capability to send message out, which
can be detected by secondary users. In this case, the detec-
tion probability Pcd is as follows.

Pcd = pidp00(γ1)p00(γ2) +
1
3
pbs[p01(γ1) + p11(γ1) + p01(γ2)

+ p00(γ1)p11(γ2) + p10(γ1)p11(γ2) + p11(γ1)p00(γ2)] (6)

pγ1 is the detect probability according to the signal from
PRs, and pγ2 is the detect probability according to the sig-
nal from PTs. Compared with ideal energy detection per-
formance in generic environment, i.e., the situation for SRs
might not be identical with the one for STs, they are same
when there are only Busy or Ideal status existed for channel
(i.e., pfbs = 0) and the detection results at SRs are same as
the one at STs (i.e., p(γr2) = p(γ2) and p(γt1) = p(γ1)).

4.2 Transmitter-Independent Energy De-
tection

When the environment is same for STs and SRs, using
the transmitter-independent detection method the detection
performance is as following:

Pcd = ptx{pidp00(γ2) +
1
3
pbs[2p11(γ2) + p01(γ2)]}

+ prx{pidp00(γ1) +
1
3
pbs[2p11(γ1) + p01(γ1)]}(7)

Following characteristics are observed:

• When the situations for STs and SRs are identical, the
upper bound of detection performance is same. It is
Pcd,max = pid + 2

3pbs.

• Since the situations at STs and SRs are same, it is
unnecessary to exploit both secondary transmitter and
receiver for better detection performance for CRNs.
Therefore, for the special case that there is identical
environment for STs and SRs, traditional energy de-
tection method - transmitter-independent energy detec-
tion - is an optimal choice.

• Since the situations at STs and SRs are same, obvi-
ously, detection probability can be enhanced. How-
ever, compared with the performance in generic envi-
ronment, the upper bound is same as the ones when
only monitoring PRs’ signals for energy detection,
but always better than the ones when only monitor-
ing PTs’ signals. It inspired us that some wrong de-
tections are generated for the difference between STs
and SRs. That is, in that case, traditional transmitter-
independent energy detection is not the best choice. If
more signal from PRs can be detected by STs, even
for different situation for STs and SRs, better detec-
tion performance can be achieved.

5 Simulation and Performance Analysis

5.1 Surface of detection probability Pcd for
ideal energy detection

Assuming STs and SRs own same sensing capability,
that is, p00(γr2) = p11(γr2) and p00(γt1) = p11(γt1).
Moreover, p10(γr2) = p01(γr2) = 1 − p00(γr2) and
p10(γt1) = p01(γt1) = 1 − p00(γt1). Based on (2) and
(6), Fig.1 shows the surfaces for Pcd under various com-
binations of traffic load intensity pbs, sensing capability
of STs/SRs p(γr2)/p(γt1). Here, the range for p(γr2) and
p(γt1) is [0.5 0.6 0.7 0.8 0.9 1.0], as well as the candidates
for pbs are [0.0 0.3 0.5 0.8 1.0]. In those two figures, with
pbs the maximum value and minimal value of Pcd are shown
for each surface. Note that:
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Figure 1. Detection probability Pcd for
ideal energy detection method for (a)
generic environment for secondary trans-
mitters/receivers scenario and (b) identi-
cal environment for secondary transmit-
ters/receivers scenario.

• Fixing the traffic intensity of primary systems (i.e., fix-
ing pbs), with the increase of signal detection capabil-
ity for STs/SRs (i.e., increasing p(γr2)/p(γt1)) there is
higher chance to make correct decision for secondary
users. It inspire us that enhance the detection capabil-
ity for secondary users can reduce the interference to
primary systems and increase the frequency utilization.

• Fixing the signal detection capability of STs/SRs (i.e.,
fixing the value for p(γr2)/p(γt1)), when primary sys-
tem is more often being truly busy (i.e., with higher
value for pbs) there is higher chance to make correct
decision for secondary users. That is, it is more easy
for secondary users to successfully monitor the pri-
mary system, which is busy exchanging information.
Otherwise, more error will be made for detection.

• Identical environment for STs and SRs can improve
the detection performance for CRNs even under same
situation, such as same pbs, p(γr2) and p(γt1), since
there is no chance for channel being Fake Busy. There-
fore, the improvement due to identical environment
is reduced when the detection error caused by ex-
posed node problem is less (i.e., less chance for chan-
nel being Fake Busy). For example, when pbs =
0.0, the minimal successful detection probability is
same as 0.25 for generic scenario and identical sce-
nario, while when pbs = 1.0, the minimal success-
ful detection probability for identical environment is
44.44% ( 0.75−0.4167

0.75 = 44.44%) higher than the one
for generic environment.

5.2 Surface of detection probability Pcd for
transmitter-independent energy de-
tection method

Assuming there is same sensing probability for STs, that
is, p00(γt1) = p11(γt1) and p10(γt1) = p01(γt1) = 1 −
p00(γt1). When sensed signal comes from primary trans-
mitters and receivers both, we assume the sensing probabil-
ity at STs is same. Here, the range for p(γt1) is [0.5 0.6 0.7
0.8 0.9 1.0], as well as the candidates for pbs are [0.0 0.3
0.5 0.8].

According to (3), Fig.2 shows the surfaces for Pcd un-
der various combinations of traffic load intensity pbs, pfbs

and sensing capability of secondary transmitter p(γt1) when
sensed signal come from PTs or PRs. In above two figures,
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Figure 2. Detection Probability of Pcd for
Transmitter Independent Energy Detection
when Sensed Signal from (a) Primary Trans-
mitter only and (b) Primary Transmitter or Re-
ceiver

with pbs, the maximum value and minimal value for Pcd are
shown for each surface. Note that

• From Fig. 2(a), compared with ideal energy detection
method, the more the chance for channel being truly
occupied by primary users is, the more the detection
error becomes both for generic and identical scenar-
ios. It inspires us that the behavior of primary sys-
tems, in which the channel is less often occupied, can
be more easy to be monitored by secondary systems
only through STs.

• Also from Fig. 2(a), since the channel status can not
be accurately monitored only by STs, the chance for
channel being Fake Busy directly impacts on the detec-
tion performance. Fixing the chance for channel being
truly busy, the chance for STs to successfully detect
the channel status is decreased with the detection error
introduced by exposed node problem becoming bigger
(i.e., higher value for Pfbs). While, in this case, the de-
tection performance can be improved through enhance
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the sensing capability for STs (i.e., higher value for
p(γt2)).

• When sensed signal comes from PTs or PRs (See
Fig. 2(b)), it is a negative influence of sensing capa-
bility for STs on the detection performance.

• From Fig. 2(b), if more sensed signal comes from
PRs, the performance for transmitter-independent de-
tection method can be improved when fixing channel
status. Moreover the influence degree of Ptx on Pcd

is changed with the chance for channel being Fake
Busy. That is, the more the chance for channel being
Fake Busy, the less the improvement on detection per-
formance caused by more sensed signal coming from
PRs. Even more, this positive impact becomes a nega-
tive impact when pγ and Pfbs locate in a certain range.
The turning points are: p(γ) ≥ 0.9 when Pfbs = 1.0,
p(γ) ≥ 0.95 when Pfbs = 0.9 and p(γ) = 1.0 when
Pfbs = 0.8.

5.3 Surface of detection probability Pcd for
transmitter/receiver-cooperated en-
ergy detection

Assuming there is same sensing probability for sec-
ondary transmitters and receivers, that is, p00(γt2) =
p11(γt2) and p00(γr2) = p11(γr2). Moreover, p10(γt2) =
p01(γt2) = 1 − p00(γt2) and p10(γr2) = p01(γr2) =
1 − p00(γr2). When sensed signal comes from PRs and
PTs both, we assume the sensing probability at STs is same.
Here, the range for p(γt1) is [0.5 0.6 0.7 0.8 0.9 1.0], as well
as the candidates for pbs are [0.0 0.3 0.5 0.8].

Based on (4), Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show
the surfaces for Pcd under various combinations of traffic
load intensity pbs, pfbs and sensing capability of STs/SRs
p(γt2)/p(γr2) when sensed signal come from PTs/PRs.
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Figure 3. In Generic Scenario, Detection
Probability of Pcd for Transmitter/Receiver-
Cooperated Energy Detection for (a) Pfbs =
0.0, (b) Pfbs = 0.3 and (c) Pfbs = 0.5
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Figure 5. In Identical Scenario, Detection
Probability of Pcd for Transmitter/Receiver-
Cooperated Energy Detection for (a) Pfbs =
0.0, (b) Pfbs = 0.3 and (c) Pfbs = 0.5

• Similarly with ideal energy detection method, the more
the chance for channel being truly occupied by primary
users is, the less the detection error becomes both for
generic and identical scenarios. It inspires us that the
behavior of primary systems, in which the channel is
more often occupied, can be more easy to be monitored
by secondary systems both through STs and SRs.

• Fixing the chance for channel being Busy and Fake
Busy, the chance for secondary users to successfully
detect the channel status is enhanced for utilizing more
sensitive STs (i.e., higher value for p(γt2)).
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Figure 6. In Identical Scenario, Detection
Probability of Pcd for Transmitter/Receiver-
Cooperated Energy Detection for (a) Pfbs =
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• There is a watershed for the influence of sensing ca-
pacity of SRs on detection performance when the en-
vironment for STs and SRs is not identical. When
Pfbs ≤ 0.5, the detection performance can be im-
proved through using more sensitive receivers, other-
wise when Pfbs ≥ 0.5, less sensitive receivers should
be exploited to reduce detection errors. However, this
watershed is disappeared when identical environment
for STs and SRs.

• Both using STs and SRs for detection, it is still impos-
sible to accurately monitor the operation for primary
users for exposed node problem and hidden terminal
problem. Identical environment for secondary trans-
mitters and receivers can improve the detection perfor-
mance

6 Conclusions

While energy detection has been extensively studied in
the past, hidden terminal and exposed node problems are
ignored through assuming that the environment is same
for transmitters and receivers. In this paper, consider-
ing hidden terminal and exposed node problems, we make
a theoretical analysis on the performance of commonly
used energy detection methods, such as ideal method,
transmitter-independent method and transmitter/receiver-
cooperated method, in terms of detection probability. Cor-
responding analytical models are provided. Performance
theoretical curves are acquired to compare the character-
istics for individual energy detection methods under var-
ious scenarios. Moreover the upper bound for detec-
tion probability is achieved and is compared under vari-
ous system traffic intensity and sensing capability. From
the theoretical results, we found that it is easy to cor-
rectly detection the channel status when primary sys-
tems are heavily occupied for ideal energy detection
method and tansmitter/receiver-cooperated energy detec-
tion method. Otherwise, transmitter-independent method
is a better scheme to monitor the primary systems. Com-
monly, increasing the sensitivity of secondary users can up-
grade the detection performance. However, in our analy-
sis, it is not true for transmitter-independent method and
transmitter/receriver-cooperated method under certain situ-
ations. We have concluded those special cases in this paper.
Therefore, the theoretical results can supply a reference on
the choosing of energy detection method according to sys-
tem scenario, such as traffic load, sensing capability, etc..

Acknowledgement

This work was supported by the U.S. Office of Naval
Research (ONR) Young Investigator Program Award un-

der Grant N00014-03-1-0466, and ONR Award under Grant
N00014-07-1-0395.

References

[1] A. C. Bovik, P. Maragos, and T. F. Quatieri. Am-fm energy
detection and separation in noise using multiband energy op-
erators. IEEE Trans. Signal Processing, 41(12):3245–3265,
1993.

[2] F. F. Digham, M. Alouini, and M. K. Simon. On the en-
ergy detection of unknown signals over fading channels. In
Proc. IEEE International Conference on Communications
2003 (ICC’03), pages 3575 – 3579, May 2003.

[3] FCC. Spectrum policy task force report. In ET Docket No.
02-155, Nov. 2002.

[4] G. Ganesan and Y. Li. Cooperative spectrum sensing in
cognitive radio networks. In Proc. First IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access
Networks 2005 (DySPAN2005), pages 137–143, Nov. 2005.

[5] A. Ghasemi and E. S. Sousa. Collaborative spectrum sens-
ing for opportunistic access in fading environments. In Proc.
First IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks 2005 (DySPAN 2005),
pages 131–136, Nov. 2005.

[6] T. Kamakaris, M. M. Buddhikot, and R. Iyer. A case for
coordinated dynamic spectrum access in celluar networks.
In Proc. First IEEE International Symposium on New Fron-
tiers in Dynamic Spectrum Access Networks 2005 (DyS-
PAN2005), pages 289–298, Nov. 2005.

[7] P802.11. Ieee standard for wireless lan medium access con-
trol (mac) and physical layer (phy) specifications. Nov.
1997.

[8] M. Schwartz. Mobile Wireless Communications. Cambridge
University Press, NY, 2005.

[9] B. Sklar. Digital Communications. Prentice-Hall, NJ, 2001.
[10] A. S. Tanenbaun. Comupter Networks. Prentice-Hall, NJ,

1996.
[11] H. Urkowitz. Energy detection of unknown deterministic

signals. Proceedings of the IEEE, 55(4):523–531, 1967.
[12] E. Visotsky, S. Kuffner, and R. Peterson. On collaborative

detection of tv transmissions in support of dynamic spec-
trum sharing. In Proc. First IEEE International Symposium
on New Frontiers in Dynamic Spectrum Access Networks
2005 (DySPAN2005), pages 338–345, Nov. 2005.

[13] J. F. Weng and T. Le-Ngoc. Rake receiver using blind adap-
tive minimum output energy detection for ds/cdma over mul-
tipath fading channels. Proceedings of the IEE, 148(6):385–
392, 2001.

[14] M. P. Wylie-Green. Dynamic spectrum sensing by multi-
band ofdm radio for interference mitigation. In Proc.
First IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks 2005 (DySPAN2005),
pages 619–625, Nov. 2005.

146

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 18, 2009 at 14:53 from IEEE Xplore.  Restrictions apply. 

745 of 816



WE4B-4

Time Synchronization
in Network-Centric Sensor Networks

Sejal Raje and Qilian Liang
Department of Electrical Engineering,

University of Texas at Arlington, 416 Yates Street, Nedderman Hall, Rm 518, Arlington, TX 76019
Email: sejalraje@yahoo.com, liang@uta.edu

Abstract- Time Synchronization is a crucial component of
infrastructure for wireless sensor networks (WSN). The design
of new synchronization methods for WSNs needs to satisfy
the unique requirements and constraints in terms of precision,
lifetime, energy, and scope of the synchronization. In this
paper we have designed and compared three techniques for
achieving synchronization in network centric sensor networks,
using Sequential least squares, Kalman filter and Fuzzy logic
systems. These techniques achieve a highly accurate, long-term
and adaptive synchronization by forming a time conversion scale
between clocks of two nodes in the network. A synchronization
protocol based on any of these techniques will be very energy-
efficient, lightweight, multimodal, tunable, and even scalable.

I. INTRODUCTION

A. Overview
In Wireless Sensor Networks (WSN), time synchronization

is needed by many applications, for e.g., data fusion, temporal
delivery of events, duplicate detection, target detection and
tracking etc. Although many solutions have been designed
and implemented for problem of time synchronization in
traditional networks, many factors in sensor networks, such as
energy constraint, dynamic topology, variety of applications
and cost andform factor, make traditional methods unsuitable
for WSNs. After these observations, some design requirements
have been formulated to address the challenging task of WSN
time-synchronization [1], wherein it is better for any scheme
suggested to be energy efficient, adaptive to application's
needs, robust and scalable, and provide only the necessary
and sufficient synchronization.
The many factors causing errors in clocks of sensor nodes

or in synchronization algorithm can be divided into two
categories: 1. Oscillator Characteristics: Since sensor nodes'
clocks run on very cheap oscillators, the two characteristics of
clock oscillators that are the main sources of error are accuracy
(or resolution), which is a measure of difference between
oscillator's expected (ideal) frequency and actual frequency,
and stability, which is oscillator's tendency to stay at the same
frequency over time. 2. System and Network issues: These
sources of non-determinism in the message delivery latency
have been categorized in four type of delays [4]: 'Send Time',
'Access Time', 'Propagation Time' and 'Receive Time'. All the
above factors finally result in time or phase offset, frequency
bias (skew) and frequency drift between the clocks of two
nodes. In this paper, we mainly consider the resulting factors
due to oscillator problems.

B. Outline ofA Synchronization Protocol
Our interests in synchronization arise from a recently sug-

gested approach of synchronizing sensor nodes by forming
a time conversion scale between them [2] [3] [4]. As found
in many applications, consider a sensor network consisting
of many small clusters of nodes; each of them consisting of
a clusterhead and many nodes that are within the broadcast
range (single hop distance) from it. The goals here is to get
all the nodes in a cluster to synchronize with the clusterhead.
In this scenario, the clusterhead, also referred to as the sender
(S) node, will broadcast timestamps - containing time in it's
own clock - at regular intervals to all other nodes in its cluster,
which are the receivers (R). Then, using these timestamps
and one of the methods suitable for existing conditions, each
receiver forms a time-conversion-scale between itself and
sender node according to its own clock, and thus predicts the
time in the senders clock at any point of time. By having such
a reference scale, a node is synchronized with sender, because
it can convert the time in it's own clock into other node's time.
Even though similar approaches have been tried before

for WSN, the problem with these techniques is that they
do not take into account the frequency drift of clocks or
environmental effects, which can affect the accuracy of syn-
chronization, especially over a longer period of time. We have
tried designing methods that can address these issues while
fulfilling the other requirements of WSN time-synch problem.

In the rest of the paper, section II, III, and IV respectively
present the designs of Sequential least squares, Kalman filter
and Fuzzy logic approaches. Simulations and observations
shown in section V and section VI concludes the paper.

II. SEQUENTIAL LEAST SQUARES APPROACH

Assume that the clocks of S and R are of the same type, so
under ideal conditions, they should run at the same frequency,
without any initial phase error. But in reality, each clock will
drift from its ideal conditions. From [7], [5], an approximation
characterizing a clock oscillator, and the resulting eq for drift
of a single clock from ideal conditions, are given as:

f = fnom + AfO + fd-(t to) + Afn(t) + Afe(t) (1)

AD(t) Ai1(to) + Afo.(t -to) + fd .(t -to )2 + Afn(t)2
Jt

+ Afe (T) (2)

1-4244-0445-2/07/$20.00 ©2007 IEEE 333
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where to = starting time ; fd = frequency drift or aging rate;
fnom = ideal frequency; Afo = initial frequency error;
Afn = short-term frequency instability (noise) term;
Afe = environmental term.
From the above equations, we can derive the relative clock

drift (or time offset) between clocks of two nodes as referred
to an ideal clock (Atl2(t)). Using that expression the offset
between the receiver's clock and the sender's clock (AtSR),
at time tR in the receiver's clock is given as,

AtSR (tR) (tos -tOR) + (tR- tOR) + 4'n(tR)
fnom

+ 2fd (tR -tOR) + A\teSR(tR) (3)

and tRO can be assumed to be 0. Thus, the phase or time
offset between two clocks at any given time results from a
combination of initial phase offset, frequency bias, frequency
drift, noise due to the environmental terms, and the random
clock jitter. The clock jitter does not lead to accumulated time
errors. But as more time passes from the synchronization point,
the drift and environmental terms become more significant.

Here, the SLS estimates the clock parameters between a
sender and a receiver node, and using those predicts the time-
offset between them at the next time step. So node R seeks
to predict AtSR, given past m observations of time-offset,
AtSR1, ..., tSR from consecutive timestamps received from
sender node. In this design, effect of clock drift is considered,
but not the environmental terms. Refereing to equation 3, our
model for this sequential least squares approach is of the form,

Ysck H=Hkx + Vk (4)

where, Yk = AtSR denotes the klh measurement,
Hk [1 tk t2] is the basis function matrix,
and x = [xi x2 X3] [(tos tOR) AfSR fdSf. 2f<

is the parameter matrix. Clock parameters in estimation are
initial offset, frequency bias, and frequency drift respectively.
The clock jitter term, 'IPn(tR), is assumed to be zero mean,
white gaussian noise and is used as the measurement noise,
v, at any instance of time. Hence the measurement error
covariance is given as, R- 1 COV{fn(tR)}. The basis
functions are independent, and weight matrix remains block
diagonal, because the samples AtSR at various times tk are
i.i.d. So as a new timestamp is available, we calculate an
updated (k + i)th estimate of clock parameters, using the
kth estimates of them and the (k + 1) measurements and
associated side calculations. We use the covariance recursion
form of SLS algorithm. Reader can refer to [9] for further
details on working of SLS. The sequential process can be
started at any step by initial values for clock parameters -
taken either from theory or previous experiments or derived
from batch estimation of a few initial measurement samples -

i.e., an a priori estimate xo, and the a priori estimation error
covariance matrix Po = Q = cov(w), w being the errors in
a priori estimates. Since this design is a minimum-variance
(MV) estimator, we get an unbiased estimates of the clock
parameters.

III. KALMAN FILTER ALGORITHM

Viewed as an extension to the SLS algorithm, Kalman
filter approach with it's dynamic system parameters, model
for system state estimation and it's predictor-corrector form,
can prove useful to make the synchronization adaptive to the
environmental noise and the dynamic clock drift. Our approach
is motivated from various attempts in past of using Kalman
filter as a tool in the formation of stable timescales like GPS
composite clocks [6]; but the time-synch problem worsens in
case of WSN due to cheap oscillators of sensor nodes and
severe environmental conditions.
The problem formation is same as that of SLS. For simulat-

ing a sensor-network scenario, we have assumed that the clock
drift changes after every few seconds due the environmental
and other noise. The measurement model will be given as,

Yk = XS (tk) - XR(tk) = H.Xk + Vk (5)
where Yk is the phase or time offset between S and R, and
XS(tk) and XR(tk) are the phase states of the sender and the
receiver respectively, at time tk. Even though these expressions
are in terms of phase offset, they can be easily converted
in terms of time offset, by dividing each term by the ideal
frequency of nodes' clocks. Doing so will not change the
nature of the problem. For the system model, let XSR be the
phase-offset state, YSR the frequency bias state and ZSR as the
relative drift state between the clocks of sender and receiver.
Here, XSR(t) is same as Xk in the equation 5, and YSR(t)
should not be confused with Yk. Then the evolution of this
offset between S & R from time step (t- T) to t is given by
following equations:

XSR(t) = XSR(t-T)+T.YSR(t-T)+ T .ZSR(t T)+WXSR(t)2
(6)

YSR(t) = YSR(t- T) +T.ZSR(t- T) + WYSR(t) (7)

ZSR(t) = ZSR(t- T) + WZsi(t) (8)
where the process noise vector, which specify the level of
relative noise components between the two clocks, is given as

(9)

This leads us to a basis vector: H = [ 1 0 0 ]
The random clock jitter is used as the measurement noise,

v, at any instance of time. Hence the measurement error
covariance is given as, R`1 = COV{4'(tR)} which is assumed
to be a zero-mean Gaussian random variable. Hence the state
vector is: Xk = [ XSR(t) YSR(t) ZSR(t) ] which is updated
at every re-synchronization instance, using Jb and W. The
transition matrix, showing the transition of states from time
step tk to tk+1 is,

0 1 T
7

0= 0 1 I

Thus the next value of the relative drift between two nodes
is obtained by adding some noise to it's previous value;
which affects the frequency bias between the two clocks,

334
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which in turn changes the phase offset between them. Here,
a multiplication factor, T, which reflects the change in drift
over a short time, is taken as the time between subsequent
synch pulses. The sources of all the noises lie well in the
environmental effects, aging of the oscillator, etc. and it also
accounts for the errors in system model. The vector W is
derived from the Hadamard and Allan variances - the complete
description of which are out of the scope of this work. For a
detailed working of Kalman filter, readers can refer to [9].

IV. FUZZY LOGIC ALGORITHM

The rule-based Fuzzy logic systems (FLS) are extensively
used for forecasting of time-series [8] [10]. For the FLS
solution, first the trend is calculated by a sliding window
technique and data is detrended, which is then fed as input to
the FLS. Given a collection of these N data points, they are
first partitioned into a training data subset - used for learning
period of FLS - with D data points, x(1), x(2), ..., x (D), and
a testing data subset - for actual prediction - with (N -D)
data points, x(D+ 1), ..., x(N). For both these subsets, we use
the previous 4 data samples as antecedents for forecasting the
next sample of data (consequent). I.e. x (k -3), x (k -2), x(k-
1), x(k) were used to predict x (k + 1). Number of training
points were about 30 to 50 for a dataset of 100 samples.
We have chosen singleton fuzzification, product implication

and Height Defuzzifier. Each antecedent has two membership
functions (MFs) - High and Low, chosen to be Gaussian. The
number of rules are 24 = 16. Now, if x, is an input value
from input set X1, Fl is MF of rule 1 that is of type p, * and
T are the chosen t-norm, and G' is rule output fuzzy set. Then
the rules are designed as:
R': IFx(k -3) is Fl and x(k -2) is F2 and x(k -1) is

Fl and x(k) is F2, THEN x(k + 1) is G'.
For singleton fuzzification, the firing level of 1th rule is,

HFt ( 1) * PF2 (2). * Ft (p) = T/- 1F/i (Xi) (10)

and the output fuzzy set Bl for rule R' is such that

PB1 (y) = IT-1PP (Xi )] * PG1(Y)(11)

The output of the height defuzzifier, which replaces each G'
by a crisp value at the point, y-1, having maximum membership
grade (height) in 1th output set, is given as:

Yh(X) = I M B1(91) (12)
1=1 1B1(y1)

For the antecedent MFs, initial mean for 'High' MF was
mt + (7t and that for 'Low' MF was mt-t, and the std for
both MFs was ot, where mt and ort are the mean and std of
training data set. The initial consequent fuzzy set comprises
of random numbers in the given data range. So, we have total
144 parameters. After setting up the initial design, a steepest
descent (back-propagation) algorithm was used to train these
parameters using the training data. After training, the rules are
fixed and then this FL forecaster is used for the testing subset.

3

2

15

05

x 10

0 500 1000 1500
Time (sec)

2000 2500 3000

Fig. 1. Mean square synchronization error for dataset 2

The design described above works well with batch mode
of prediction; but a better online performance is obtained in
this case by a sequential design. For sequential design, after
setting the architecture and initial rules, when stored samples
are equal to the number of antecedents, it is fed to FLS to
predict the next sample. When the next data sample is actually
received, the error between predicted and measured value of
data is used in the back-propagation algorithm to train the
parameters of FLS online, which are then used for prediction
at the next time-step.

V. SIMULATIONS AND COMPARISONS

We have tested and compared the performances of all the
three algorithms, on various datasets, which comprise of the
time offset between the sender node and a single receiver
node, taken at the sampling rate of 60 to 360 seconds. The
first set has constant clock parameters and no environmental
noise. In the second dataset, the clock parameters are made
dynamic, but environmental noise term is kept low. Both these
datasets can be considered to be similar to an indoor-scenario,
where the clock parameters and hence the offset between 2
nodes' clock will vary in a non-linear pattern, yet without any

drastic random changes. In the third dataset, both variation in
the clock parameters and environmental noise are high, which
results in highly random changes in clock drift. This dataset
is an ideal example of time-offset variation in an outdoor
scenario. The mean squared error (mse), i.e. synchronization
error, between the predicted value of time-offset and the actual
measurement is calculated and plotted for all three approaches.
(But due to constraints of space, only few are presented here).

All the methods achieve very good precision on most
datasets. The mse is in the range of 10-12 or lower, which
means that the nodes will be synchronized within an accu-

racy of less than 10 microseconds. All methods achieved a

much higher sampling period (360 seconds) as compared to
that obtained from short-term timescale formation of current
techniques (10 to 60 seconds). The broadcast nature of the
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Fig. 2. Mean square synchronization error for dataset 3

Fig. 3. Measured and estimated values of time offset between Sender and
Receiver for Dataset 3

protocol provides a uniform precision over the cluster. All
the methods converge very fast, which leaves us room for
approximate choice of the initial conditions. FLS and Kalman
filter are adaptive to environmental effects on nodes' clocks
and hence preserve the accuracy under dynamic conditions.
The advantage of FLS over the other two is in its model-free
nature, which is very useful when the offset between clocks
vary in a highly random fashion. The storage requirement of
all techniques is very small, a few samples, though FLS needs
more space than other two. SLS and FLS have much less
complexity and processing time than Kalman filter approach.

Since the synch pulses are coming after a considerable
duration of time, the nodes can sleep in this time and wake-
up just to receive the pulses, thus saving a lot of energy. The
S-R nature of protocol and a minimum window size keeps
the messaging overhead very less. The protocol is flexible and
it can adapt easily to provide the 'necessary and sufficient'
synchronization for a given application. It is possible to tune
it to required accuracy by choosing appropriate values of

parameters such as, transition matrix, covariance matrices,
mean and std of membership function, window size, and
sampling period. The prediction of sender's clock can go on
even in the sleep mode, so it will always assure some accuracy
in case of both 'Always On' and 'Post-facto' synchronization.
The performance of these techniques does not depend on the
number of nodes in the cluster (density), node failures, or a
change of clusterhead. Also, nodes can be synchronized to
physical time without much stress on resources, by incorpo-
rating only the clusterhead with a GPS receiver.

VI. CONCLUSION

All the three approaches have been successful in achieving
high accuracy of a few microseconds even at a high sam-
pling interval for synchronization beacons, at the same time
making the synchronization scheme adaptive to the environ-
mental effects. Owing to it's simpler design, the Sequential
Least Squares algorithm can be more useful in an indoor-
scenario, whereas because of their recursive and dynamic
nature, Kalman Filter and Fuzzy Logic algorithms yield a
very good performance for an outdoor-scenario. The nature
of the algorithms also provides many other advantages such
as: energy-efficiency, multimodal and tunable to the needs of
application, scalability, and low overhead. These factors make
our schemes applicable in a variety of applications. We suggest
some future research to provide in-depth analysis of issues
like network-wide synchronization, or adding a correction for
network delays, combined with these techniques.
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Abstract- Interferences due to the hostile environment
(e.g. jammer) and the Multi-User Access are critical factors
affecting performance of the wireless sensor networks. In
this paper, we study a hybrid Frequency Hopping/Time
Hopping-Pulse Position Modulated (FHITH-PPM) UWB for
wireless sensor networks in hostile environment with partial-
band(PB) tone interference. FH and TH are both used to
get as much diversity gain as possible. Theoretical analysis
is made for the bit error rates performance in the presence
of multitone/pulse (tone in frequency domain and pulse in
time domain) interference and Multi-User Interference. We
also derived theoretical performance formula when the low
duty-cycle in UWB system and the large number of sensor
nodes in a wireless sensor networks are considered.

Index Terms- Time Hopping, Frequency Hopping, PPM,
Wireless sensor networks, UWB, BER

I. INTRODUCTION

Wireless sensor networks are becoming more popular
for an ever increasing range of applications with improve-
ments in device size, power control, communications and
computing technology. Since 2002 there has been great
increasing popularity of commercial applications based
on Ultra WideBand. This in turn has ignited interest in
the use of this technology for sensor networks. Actually,
UWB systems have potentially low complexity and low
cost; have a very good time domain resolution, which
facilitates location and tracking applications. So, UWB
wireless sensor networks are promising.
The rest of this paper is organized as follows. The

system models, including the transmission, channel and
receiver, will be introduced in Section II. The MUI and
hostile interference will be studied in Section III and Sec-
tion IV respectively, and the SINR and closed-form BER
will be derived as well. Numerical results and comparisons
will be present in Section V; and conclusions are made in
Section VI.

II. SYSTEM MODELS
In the proposed system, there are NF non-overlapping

FH bands, each with bandwidth Bh where Bh is the

bandwidth required to transmit a TH-PPM signal in the
absence of FH. Let sk(t) denotes the k-th user's signal at
time t in this FH/TH-PPM UWB system with totally Nt,
users, and it takes the form

/E +00sk t /N cf (k)p[t-d f-: (k)Tc-dj (k)6] )

(1)
where p(t)is a chip waveform. NS is the number of pulses
used to transmit a single information bit. Tf is the time
duration of a frame. Eb is the energy per information bit.

/ is the normalized energy in each symbol. ch (k)Tc
is the time shift introduced by the TH code. Tc is the
chip duration. c'h(k) is the j-th coefficient of the TH
sequence used by user k. The dj (k)6 term represents
the time shift introduced by PPM modulation. ch (k)

(2)cos(27fkj) is the k-th user's spreading code during
j-th frame.

In WSN, sensor nodes have two states, i.e., active
communication status and idle status. In order to save
energy, sensor nodes choose to be idle for most of the
time. The number of nodes which are actually in the status
of active communication is unknown. However, the total
number of sensor nodes in the network and the access rate
A, i.e., the rate that a node in the communication status,
for each node are assumed to be known. Clearly, the event
of status of sensor node is a Bernoulli distribution with
mean as A and variance as A(1 -A). Assume there are
Nu sensor nodes in a network, each one of them chooses
to be idle or active independently. Therefore, the number
of sensor nodes which are in active communication status,
NT, can be seen as the sum of Nu independent, identically
distributed Bernoulli random variable, which is a Binomial
distribution. Usually Nu is very large, we can approximate
the Binomial distribution to a Gaussian random variable
with the mean NuA and variance NuA(1 -A), as

fN(K 1 e(nt -NuA)2/2NuA(1 A)
22wNuA (1 A)

(2)
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For the Nf users, they randomly choose one of the sub-
bands to transmit the signal according to c3h (k) symbol
by symbol. It is also a Binomial random variable with the
coefficient 1/NF. To simplify the problem, we assume that
the users are distributed optimally, so the number of users
share the same channel, Nu, should be expressed as

Let SNRref denotes the equivalent signal to noise and
MUI ratio over one symbol, it can be written as

SNRref (SNR 1 + SIRm i)-1 (10)

where SNR, are the signal to noise ratio over one symbol.
Hence,

Nu = N[/NF- (3)
SNRref

III. MULTI-USER INTERFERENCE ANALYSIS

In this section, we will first focus on the analysis of
MUI with the absence of hostile jammer interference. We
assume there is no inter-channel-interference. Therefore,
the received signal of 1-st user's j-th symbol can be
expressed as:

rj(t) = r "' (t) + rj,mui(t) + n1(t) (4)

where rj,mui(t) is the MUI contribution at the receiver
input. If the users are many and have comparable powers,
we can approximate the MUI as a white Gaussian process
by the central limit theorem [5] and, as such, it can be
lumped into the additive Gaussian Noise,

Wtot (t) = rj,mui (t) + n2(t) (5)

and wtot (t) is still a white Gaussian process. Since the
system is asynchronous, we need to consider all cases
where a pulse originated by any of the transmitters but
TX1, is detected by the receiver. First of all we need to
analyze the noise provoked by the presence of one alien
pulse at the output of the receiver by using the similar
method as in[l],

pT
mvi(k) (T(k) ) /t pto(k) )vtdt (6)

where, E}(k) = a(k) (Eb/N,), and here we suppose a(k)
1 Vk.

Since T(k) is uniformly distributed over [0, Tf), and
identically distributed for different T[1], under the hypoth-
esis of perfect power control, e.g., E(k) = ERX Vk, theRX
total MUI energy is

N. Tf
2 ERX Jf

Dfin 7Tf kas

Define CM2 as

2

we get

JTf / T,

{ / ~p(t([To

T 2

-T)V(t)dt dT

a2 = ERX(NU )
mull Tf (9)

(JOp(t-T)V(t)dt dT)

(7)

__1 I1
((ERX) + ( T

Tf (EbA

NsTf + (Nu -i)o(2Eb ) VNoJ

1 -1

(1 1)

where Eb/Nois the system SNR.

IV. PERFORMANCE ANALYSIS WITH
MULTITONE/PULSE INTERFERENCE

In this section, the SIR for the hostile interference part
is obtained. We make the following assumptions: The
multitone/pulse interference has a total power Pj, which
is transmitted in a total of q equal power interfering tones
spread randomly over the spread spectrum bandwidth. The
time duration for the interference pulse is the same as the
time duration of the transmitted signal pulse p(t), which
is denoted as Tp. To simplify the problem, we suppose
T, = 2Tp and d = Tp. The hop period of the interference is
also Tp, and each hop is independent. The multitone/pulse
interference can catch the signal pulse with the perfect
timing. We consider the scenario that there is at most
one interference per FH sub-band. Hence, in one hop,
the probability that a FH band contains an interference
tone/pulse is q/NF. Observe the transmitted signal as in
(1), the signal hops both in the frequency domain and in
the time domain symbol by symbol. Therefore, our analysis
will first focus on one symbol.
We partition the symbol duration as two time slots,

hence, for the multitone/pulse interference, there are two
hops. In each hop, the interference is independently dis-
tributed. There are totally four cases with regard to the
jammer interference for each symbol: There is no jammer
interference in either of two slots, with the probability as
P{casel} (1-q ) * (1NFq); there is jammer inter-
ference in each slot, with the probability as P {case2}
q- * q there is one and only one jammer interferenceNF NF'~

pulse, and it is at the same slot as the signal pulse. The
probability of case3 is P {case3} = (1 -NF ) * q ; there
is one and only one jammer interference pulse, and it is
not at the same slot as the signal pulse. The probability of
case4 is P{case4} = (1 NF ) NF

The received signal of the j-th symbol of I-st user can
be expressed as:

r' (t) = rJ (t) + Ijammer (t) + wtot (t); (12)
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where rj (t) and Ijammer(t) are the jammer interference
contributions at the receiver input, and wtot (t) accounts for
both the thermal and MUI noise contributions, and is still
a white Gaussian process as proved in Section III. Hence,
a maximum a posteriori (MAP) approach can be adopted
here to get the minimum error probability. For different
cases of the jammer interference, the detection boundaries
are shown in Fig. 1.

casel

(rIH ) f(r 1)

zO zi r

0 E/

case2

Considering only Nt, is a random variable, we should
take ( 2) and ( 3) into ( 16),

1 RNu
Pr, =' Prl

NF 27NUA(1 -A) Ji

e- (no -NuA)2/2NuA(1-A)dnr (17)
After we got the symbol error rate Pr5, it is easy for us

to obtain the bit error rate Prb by majority law.

N,

Prb = C sPr(1-Prs)N k

k ]Ns
1

(18)

where F 1 is the ceiling operation, and Ck is an NS-
choose-k Binomial coefficient, i.e., Ck s = k!?N kk)!

CN NN!
V. NUMERICAL RESULTS AND COMPARISONS

case3

f(rIH f rH

0 E12+t(P/q)1/2

case4

f rI H f(r1 )

(P /q)1/2 E1/2

TABLE I
PARAMETERS OF THE EXAMPLE FH/TH-PPM UWB SYSTEM

Parameter Notation || 2nd-order mono-cycle
shaping factor for the pulse ce 0.25ns

time shift introduced by PPM 6 0.5ns
pulse duration TP__ 0.5ns
frame duration Tf 8ns
chip duration T_ Ins

number of hops Nh 6

Fig. 1. The MAP detection rule for all the cases.

Hence, we can get the SINRjammer straigh

SINRj as12= ERXSNjammerlcasel,2 No

SINRjammerIcase3

SINRjammerIcase4

,ERX+ q)2
NoE

(_I-RX_ Li)2
No'

Since the error probability of 2-PPM signal is
Q( SNRspec), and after removing the condi
cases, we get

P'rI = (( g )+ (N ))Q(\

F NF)

((4 EL)2 )7Eb- L"-)

tforwardly. The parameters of the example UWB systems are listed
in Table I. System performances are evaluated according

(13) different values of the pivotal parameters, including N,
EB/PJ, q, and A. The results are shown through Figure. 2
to Figure. 5. We can get following conclusions through

-(14) the simulations: the more symbols we used to transmit one
(14) information bit, and the larger Eb/PJ can both guarantee

better performance. However, there are floors in both
Figure. 2 and Figure. 3. The curves in Figure. 2 after 15dB

-. (15) being flat is caused by jammer interference. The reason

i [1], Pr for the limited performance gain from Eb/PJ = 5dB to

itioning on Eb/PJ = lOdB is is when Eb/PJ is higher than some

better threshold, the jammer interference is too weak to
give any impact to the system. Because large q means not

Eb 0 only the probability that a jammer interference bumps the
NX ) ) information signal is higher, but also means the energy
No'°Jof the jammer interference for each sub-band is less, the

worst and best performances are get at q = 2 and q = 8
+ q

2 respectively as shown in Figure. 4. Figure. 5 shows though
with the same Nu, the difference in A would yield totally

No' different performance.

(16)
VI. CONCLUSIONS

In this paper, we make an performance analysis with
the presence of the multi-tone/pulse jammer interference
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Fig. 3. The average BER for different Eb/Pj.

and multi-user interference based on the hybrid FH/TH-
PPM-UWB system. We get an accurate expressions of SER
and BER with the presence of MUI and hostile jammer
interference. We evaluate the performances for different
number of symbols to carry one information bit Ns; the
signal to jammer interference ratio Eb/PJ; the number of
tones q of the jammer interference; and the access rate for
each sensor nodes A, in terms of BER so as to show how
these parameters affect to the FH/TH-PPM UWB system.
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Abstract- In this paper, we consider the decision fusion of
Rayleigh fluctuating targets in multi-radar sensor networks. Deci-
sion fusion and data fusion in Wireless Sensor Networks (WSNs)
has been widely studied in order to save energy. Radar system
as a special sensor network, when implemented for battlefield
surveillance, faces bandwidth constraint in real-time applications
instead of energy restriction. In this work, we study the decision
fusion rules of multiple fluctuating targets in multi-radar (MT-
MR) sensor networks. The MT-MR decision fusion problem
is modeled as a multi-input multi-output (MIMO) system. We
assume that each radar makes binary decision for each target
from the observation. We derive our MIMO fusion rules based
on the target fluctuation model and compare against the optimal
likelihood ratio method (LR), maximum ratio combiner (MRC)
and equal gain combiner (EGC). Simulation results show that the
MIMO fusion rules approach the optimal-LR and outperforms
MRC and EGC at high signal to noise ratio (SNR).

I. INTRODUCTION

Wireless sensor networks (WSN) have attracted growing
interest in various applications. Radar as a powerful sensor
system, has been employed for the detection and location of
reflecting objects such as aircraft, ships, vehicles, people and
natural environment. By comparing the received echo signal
with the transmitted signal, the location of a target can be
determined along with other target related information [1].
Conventional radar system operates as a pure independent
entity. While in a resource-constrained WSN, such detached
operation may lead to deteriorated performance and waste
of limited resources. Collaborative signal and information
processing over the network is a very promising area of
research and is related to distributed information fusion [2].
A lot of prior research in data fusion are based on the

assumption of lossless communication, i.e., the information
sent from local sensors is perfectly recovered at the fusion
center. For example, in [3] and [4], Vashney et. al investigated
the optimum fusion rules under the conditional independence
assumption. Other papers [5], [6] addressed the problem of
distributed detection with constrained system resources, most
of which provided the solutions to optimize sensor selection.
However, this lossless communication assumption is not prac-
tical for many WSNs where the transmitted data suffers from
channel fading and multi-user interference. In another hand,
decision fusion with non-ideal communication channels are
studied at both fusion center level [7], [8] and at the sensor

level [9], [10]. Later, Lin et. al [1 1] have extended the channel
aware decision fusion rules to more realistic WSN models that
involve multi-hop transmissions. The above results, however,
are mostly obtained based on one target or one event detection
which is not applicable to multi-target situations.
The objective of this work is to derive the decision fusion

rules of multiple fluctuating targets in multi-radar (MT-MR)
sensor networks. The MT-MR decision fusion is modeled as a
multi-input multi-output (MIMO) system. We present the the-
oretical formulation of the MIMO decision fusion problems.
Rayleigh target fluctuation model and Gaussian noise are used
in our first stage study.
The remainder of this paper is organized as follows. In the

next section, we introduce the concept of target fluctuation
model in radar sensor system. In Section III, we briefly
overview the previous work on fusion rules. In Section IV,
we present our MIMO decision fusion model for multi-target
multi-radar sensor networks. Simulation and performance
analysis are presented in Section V. Section VI concludes this
paper.

II. TARGET DETECTION IN RADAR SENSOR SYSTEM

Antenna
Transmnitted sional

IEchou signal T arget

Fig. 1. Basic Principle of Radar System

The basic principle of radar [1] is illustrated in Fig. 1. In
active radar sensor networks, the received data usually consists
of three parts: white thermal noise, clutter scattered by the land
environment, and if a target is present, a reflected or reradiated
version of the transmitted signal [12]. That is, we have

y(t) = a (t)s(t) + n(t) + wo(t) (1)

in which s(t) and y(t) are the transmitted and received
signals, respectively. a(t) is the target cross section or radar

1-4244-0445-2/07/$20.00 ©2007 IEEE
129

information extracti(

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 6, 2010 at 16:13 from IEEE Xplore.  Restrictions apply. 

754 of 816



cross section (RCS). It is assumed that n(t) is additive noise
and w (t) is the returned clutter, a distorted version of the
transmitted signal s(t).

Classical radar equation takes target cross section or radar
cross section (RCS) to determine the power density returned
to the radar for a particular power density incident on the
target. It has been advantageous to model the target RCSs
as a random variable. Some common fluctuation models are
now available in the open literature, i.e. Swerling chi , lognor-
mal, Rayleigh, Weibull as a compound Rayleigh distribution,
Shadowed Rice target etc. In this work, we treat the target
fluctuation as Rayleigh distribution which has the probability
density function (pdf) as fJ (v) = '2 exp (-'2) Where 2(7Q2
is the mean square value of the envelope v.

III. REVIEW OF PREVIOUS DECISION FUSION RULES

In a single target, single hop sensor network, the typical
parallel fusion structure in a flat fading channel is depicted
in Fig. 2. The received signal at the fusion center from kth
sensor is Yk = hkUk + nk, where hk is the channel fading
envelope and nrk is the zero-mean additive Gaussian noise with
variance c72. K sensors collect data generated according to
either Ho (there is no target present) or H1 (there is target
present) and transmit these decisions over fading and noisy
channels to a fusion center. The fusion center tries to decide
which hypothesis is true based on the received data Yk from
all k.

K 1 Pfk4F<+) + (1

where T(+) 1 + V2~ye2
1-V2WY78Yk/2) Q(Y') and=
with 2(72 being the mean square
channel, or is the noise variance.
A two-stage approximation using
fusion rule.

AEs)= g1
Yk<O Pfk +Y>O ( k

Pdk>) k

Ppfk (-) (3)

2)Q(- YT), ,f(-) =

= (o/nvo + or)
value of the fading

the Chair-Varshney

(4)

. Fusion statistics using a maximum ratio combiner
(MRC). A(s) = =1hkyk

. Fusion statistics using an equal gain combiner (EGC).
A4s) kZkiYK5 K Ek= 1 Yk

IV. DECISION FUSION IN A MULTI-TARGET RADAR
SENSOR SYSTEM

In our scenario, we assumed that there are multiple radar
sensors and multiple stationary targets in the field. In a multi-
hop radar sensor network, the decision data is relayed via
several radars to reach the fusion center. When there are
multiple radar sensors and multiple targets in the field, the
data fusion problem can be roughly modeled as a Multi-Input
Multi-Output (MIMO) fusion problem. Fig. 3 illustrates an
example of single-hop decision fusion problem.

Fig. 2. Single-target, single-hop decision fusion model

Assume that the kth local sensor makes a binary decision
Uk C {+1, -1}, with false alarm and detection probability Pfk
and Pdk respectively. That is, we have Pfk = P [Uk = 1 Ho]
and Pdk = P [Uk = H1H]. Several decision fusion rules have
been developed based on the above model in [11]. Throughout
this work, we use AW to denote the fusion statistics for the
single hop, single target transmission model.

. Optimal LR-based fusion statistic using complete prior
knowledge.

K
A~5 k7- Pfk)Oyk (2)

k =1 IIPfkO + ) + (I 1 Pk) (2

where Y [Yi , .Yk]T is a vector containing ob-
servations received from all K sensors, (+)
e-((Yk -hk)2 22) and - -((Yk+hk)2/2 2)

. LR-based fusion rules using only fading statistics for
Rayleigh fading channel. Implementing the optimal LR
test as in (2) requires that all a priori information,
including the instantaneous channel gains.

Fig. 3. MIMO fusion model

Let M denote the number of radar sensors and N be the
number of targets. The received signal y(t) at the fusion center
at time t is a N xM matrix. We assume that the radar sensors
are geographically dispersed, detection decisions are made at
each separate local radar. The element y (t) is the decision
(target present or absent ) of the jth target from the ith radar
sensor. y,) can be represented as y4) (t) + ij
We next derive the MIMO decision fusion rules for the

multi-target radar sensor networks starting from the single-
hop radar sensor networks.We use Pf as the fixed false alarm
rate and Pdi to denote the distinct probability of detection at
radar sensor i throughout this work.
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A. Decision fusion rule in multi-target, single-hop radar sen-
sor networks

* Assume we have complete knowledge of the target fluc-
tuation coefficients, the optimal LR-based fusion rule for
the jth target was derived as

2t1 iI Pai; o (I
j= 1, ..., l

Complete decision vector for N targets are denoted
A() = [Al, Al, ...,1AN]T and

pc~i2~ 1 2Mi (HM 1 aik)
d 2 (

'

)Mi
(

1)
2J

18
2J

1 2M (Hmo aik) (p0
2+ (/-2w7)MiM V V

(9)

(10)

Assume there are M radar sensors in the last hop, Mi is
TV the number of hops at the ith radar. aik is RCS value at

the kth relay of radar i.
(5) The optimum LR-based fusion rule for multi-target radar

I as sensor networks can be written as

- e (yilTai )2/2U2

'o eF))=

Le-(YiN TaiN )2 /2U2

A(') =f Pdi
+(

A 17i=l f + (1

where

* LR-based fusion rules using only target fluctuation statis-
tics.

e-(2yiiaii)M)

L -(2YiNoaiN)"i 1U2

i=1, ...,M (12)

rf4 ) + (1

PdiKij
Pf )qfi.

j =1, ...,N

(7)
where = (or/onr 2+ o2) with 2(J2 being the mean
square value of the target fluctuation model, 72 is the
noise variance.

1 i A2yyije(>2yh2/2)Q(Ty1ily)

-i+) = . (8)

L1i V27YiYNe YCYiN 2)Q(T+yiN) i

where i 1,...,M.
* Fusion statistics using a maximum ratio combiner

(MRC). A.j)=M M1 i i = 1, .. ., N
* Fusion statistics using an equal gain combiner (EGC).
A(4) 1 Y j = 1, ...,N

B. Decision fusion for multi-target multi-radar sensor net-
works

Implementing the decision rules for single target, multi-
hop WSNs in [11] to our multi-target, multi-hop radar sensor
networks, we get the decision fusion rules as follows.

* Optimal LR-based Fusion Rule
In multi-hop radar sensor network, we assume only the
first hop radar sensors are CFAR with false alarm Po and
probability of detection Po1. Let Pdi be the probability
of detection at the ith radar in the last relay, [ll] has
proved that for one given target detection, Pd1i r P1P and
Py = Po at high signal to clutter ratio (SCR). At low
SCR, Pdi and Plcan be approximated as

* Denote A(2) as the LR rule that corresponds to the case
when only the target RCS statistics are known. A(2) can
be derived for the multi-hop MT-MR sensor networks.

2)_1d+[Pd Q Yij)]2y1/e2Yiij)2 /2

i=1 + [PC -Q(YYij)] 2w/_ e(vyj j)2 2/21f
(13)

where y. = [Yii, Yi2, YiN] is a vector containing all N
decision data from radar i. Pdi and PY are denoted as in
(9) and (10).
Decision fusion rules of Maximum ratio combiner (MRC)
and equal gain combiner (EGC) have the identical format
as the single hop case because for both of them, the
decision fusion only depends on the last hop.

V. SIMULATION RESULTS

For multi-target, single-hop radar sensor network and multi-
target, multi-hop radar sensor network, we are interested to
compare the four decision fusion rules:

* Optimal LR-based rule
* LR-based rule with target RCS statistics only
* MRC rule
* EGC rule
Fig.4 gives the probability of miss detection vs. the SCR for

multi-target, single-hop radar sensor network. There are total
two stationary targets, three radar sensors in the field. The
optimal LR- based fusion rule provides the most powerful
detection performance but it requires complete target RCS
knowledge. The LR-based rule with target RCS statistics
approaches the optimal LR-based rule in low SCR and have
about IdB loss in higher SCR. MRC and EGC have similar
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Pdi)Oij
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performance. Both are little worse than the LR-based rule with
target RCS statistics.
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Fig. 6. Multi-hop, unequal hops

Fig. 4. Single hop

Fig.5 and Fig.6 are the performance for multi-target, multi-
hop radar sensor networks. Fig.5 shows the probability of miss
detection when each of the three radar sensors reaches the
fusion center in two hops. Fig.6 shows the performance when
the three radar sensors reach the fusion center in unequal hops.
In our simulation, we assume that one radar sensor reaches the
fusion center in two hops while the others in single hop. As
expected, the probability of detection for the single-hop case

outperforms the one for multi-hop.

10o1 0 .. ......... ...... .. ......=.LR
EGC

-CHANNEL

X._

I
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Signal to Clutter Ratio in dB
10 12

Fig. 5. Multi-hop, equal hops

VI. CONCLUSIONS

In this paper, we presented the MIMO decision fusion rules
for multi-target, multi-hop radar sensor networks under the
assumption that the target RCS is Rayleigh model. We derived
the optimum LR-based fusion rule and a sub-optimal LR-based
fusion rule with the target RCS statistics only. Simulation
results show that the MIMO fusion rules approach the optimal-
LR and outperforms MRC and EGC at high signal to noise
ratio (SNR).

In many cases, two or more local radars may share a

common relay node on their way to the fusion center. Under

this circumstances, the independent assumption made toward
the target RCS may not be held. It is actually a very interesting
space correlation issue. As the radar observations always
demonstrate time correlation, further research will be focused
on this space-time correlation of radar sensor networks.
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Abstract— In this paper, we design a network of small un-
manned aerial vehicles (SUAVs) for passive location of RF
emitters. Each small UAV is equipped with multiple electronic
surveillance (ES) sensors to provide local mean distance estima-
tion based on received signal strength indicator (RSSI). Fusion
center will determine the location of the target through UAV tri-
angulation. Different with previous existing studies, our method
is on a basis of an empirical path loss and log-normal shadowing
model, from a wireless communication and signal processing
vision to offer an effective solution. The performance degradation
between UAVs and fusion center is taken into consideration other
than assume lossless communication. We analyze the geolocation
error and the error probability of distance based on the proposed
system. The result shows that this approach provides robust
performance for high frequency RF emitters.

I. INTRODUCTION AND MOTIVATION

Currently, there is a developing trend to use passive location
approach for RF emitters. Unmanned aerial vehicle (UAVs)
is of most interest owing to better grazing angles closer to
the target than large dedicated manned surveillance platforms
[1]. In addition, UAVs are capable of continuous 24-hour
surveillance coverage. As a result, they had been developed
for battlefield reconnaissance beginning in the 1950s. To this
date, UAV is not only limited to an unpiloted aircraft, but
unmanned aerial systems (UAS) including ground stations and
other elements as well.

Small unmanned aerial systems (SUAS) are rapidly gaining
popularity due to the miniaturization of RF components and
processors. In particular, given the cutting-edge technology
in modern remote sensing (RS), SUAS can be equipped
with electronic surveillance (ES) sensors in place of bulky
active radars, which result in smaller, lighter and lower-cost
counterparts. These types of SUAS are generally classified
as having a wing-span of less than 4 meters [2] and a gross
vehicle weight less than 15 pounds [3]. A number of UAV
manufacturers have developed low-cost TDMA data links that
support the cooperative team work of multiple UAVs, which
provides higher mobility, survivability and closer proximity to
the targeting emitters.

In the present work, [3] and [4] are based on a team of
UAVs working cooperatively with on-board camera systems.
The location of an object is determined by the fusion of camera
images. However, the visual feature can become vulnerable

in the following cases: 1)when telemetry and image streams
are not synchronized, the target coordinates read by UAV
can be particularly misleading; 2)when weather is severe
and visibility is low, the image based geolocation may not
provide day-or-night, all-weather surveillance; 3)target is well
protected and hidden, such as deeply beneath the foliage.

Besides visual feature, the time difference of arrival (TDOA)
technique has been adopted in the current work [5]-[9]. In
these investigations, a network of at least three UAVs has
been employed with on-board ES sensors, a global positioning
system (GPS) receiver and a precision clock. When the target
is detected by the sensor, the time of arrival would be
transmitted to a fusion center, which would finally estimate
the emitter location based on their TDOA. Also, Kalman
filters is used to track the object. However, TDOA, like other
methods including Angle of Arrival (AOA), Frequency of
Arrival (FOA), Frequency Difference of Arrival (FDOA) and
Phase Difference of Arrival (PDOA) etc., is well known for
difficult synchronization issues, such as fine synchronization
for location algorithms and coarse synchronization for the
coordinating data collected within the area of interest at a
common time.

In this paper, we apply netcentric SUAS with on-board
multiple ES sensors for RF emitter location. Different from
previous work described above, our work describes about
a complete system design and analyze the performance in
detail. Our method is on a basis of an empirical pass loss
and log-normal shadowing model, which has been adopted
for reliable high-speed wireless communications for moving
users in dynamic environment, but has never been used in
the SUAS before, to the best of our knowledge. Also, the
performance of multiple ES sensors will be considered for the
system as a whole. In addition, we will provide a confidence
assessment through error bounding, which has not been seen
in the existing approaches.

The rest of paper is organized as follows. Section II presents
the system design based on path loss and log-normal shad-
owing model. Section III analyzes performance of netcentric
decision. Section IV presents simulation results and illustrate
the characteristics of the approach. Finally, section V draws
the conclusion.
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II. PATH LOSS AND LOG-NORMAL SHADOWING
APPROACH

In our work, we assume the SUAS is composed of R(R ≥
3) small UAVs. Each UAV is equipped with N(N ≥ 1)
ES sensors, whose task is to provide received signal strength
indicator (RSSI) of RF emitters. A processor is also on-
board to compute the current distance from the RF emitter
to the sensors based on RSSI. Notice that even though the
computation can be achieved in a very fast time on a basis
of detected RSSI, estimated distance poses drifts from the
real distance due to the relative motion between the UAV
and the RF emitter as well as wind gusts during the mo-
ment of computation. Thus multiple sensors are employed
to provide the receiver diversity. Later we will show that
multiple sensors help reduce the distance error and improve
the geolocation performance. The processor also applies Equal
Gain Combining (EGC) to average out local spatial variations
within a UAV. EGC is adopted due to its simplicity and fast
computation. Additionally, each UAV works independently
and knows its own position either by a GPS receiver or pre-
planned paths. Also, it is capable of communicating with a
fusion center, which makes a final geolocation decision based
on the information given by multiple UAVs.

Assume an emitter is sending out RF signal and a UAV
d distance away from it detected the signal at this moment.
The signal propagating between these two points with no
attenuation or reflection follows the free-space propagation law
[11]. This commonly adopted path loss model as a function
of distance is expressed as

P (d)
P (d0)

= γ(
d

d0
)−β (1)

where d0 is a close-in distance used as a known received
power reference point; β is the path-loss exponent depending
on the propagation environment. γ is a unitless constant that
depends on the antenna characteristics and the average channel
attenuation, which can be defined as

γdB = 20 lg
C

4πfd0
(lg = log10) (2)

where C is the speed of light and f denotes the frequency. This
definition is supported by empirical data for free-space path
loss at a transmission distance of 100m [12]. Based on this
free-space model, the power in dB form is linearly decreasing
with the increase of log(d).

However, in practice, the reflecting surfaces and scattering
objects will typically contribute to the random variation of
RF signal transmission. The most common model for this
additional attenuation is log-normal shadowing, which has
been empirically confirmed to model accurately the variation
in received power in both outdoor [13] and indoor [14]
environments. In this case, the difference between the value
predicted by the path loss model and the actual power is a
log-normal random variable, i.e., normally distributed in dB,

which is denoted by

[
P (d)
P (d0)

]dB = [
P̂ (d)
P (d0)

]dB + X (3)

where X is a Gaussian random variable, with mean m and
variance σ2.

We will use the combined path loss and log-normal shad-
owing model to estimate the distance between RF emitter and
a UAV through RSSI. This model is illustrated in Fig. ?? with
a dotted curve. The power in dB is given by

[
Pri

P (d0)
]dB = 10lgγ − 10βlg(

d̂i

d0
) + X (4)

where Pri is the RSSI of ES sensor i. Based on (4), when Pri

is detected, the processor can easily compute d̂i in a dB form,
which is

d̂idB =
1
β
{γdB + βd0dB − [

Pri

P (d0)
]dB}+

X

β
(5)

Notice that didB = 1
β {γdB + βd0dB − [ Pri

P (d0)
]dB}, therefore

d̂idB − didB =
X

β
(6)

Then it is obvious that the expectation of distance mean
square error based on sensor i is

E{(d̂idB − didB)2} =
m2 + σ2

β2
(7)

N sensors equipped on a UAV are applied to compute the
local mean distance that average the local spatial variations.
The estimated local mean distance is

D̂ =
1
N

N∑

i=1

d̂idB (8)

This value is obtained based on dB measurement due to the
smaller estimation error compared to the linear form [15].

Notice that D = ddB . At the detection moment, UAV is d
distance away from the RF target, i.e., didB = ddB . Also, each
sensor independently obtains the d̂idB , i.e., d̂idB − didB can
be considered independent for different i, thus the expectation
of distance mean square error for each UAV can be expressed
as

E{(D̂ −D)2} =
m2 + σ2

N2β2
(9)

This shows that based on path loss and log-normal model, the
larger number of sensor N , the smaller distance mean square
error will be achieved for each UAV.

As each UAV geolocates RF emitter only based on RSSI
and there is no any information about phase, in this situation
the current detected area at the moment can be denoted by
a = πd2. If a is denoted by dB form, then A = 10lgπ + 2D,
therefore the expectation of area mean square error for each
UAV is

PA = E{(A− Â)2} = 4E{(D− D̂)2} =
4(m2 + σ2)

N2β2
(10)
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Finally the upper bound of geolocation area mean square
error of a UAV network can be denoted by

Pe = P (
R⋃

i=1

Ai) ≤
R∑

i=1

PAi =
4R(m2 + σ2)

N2β2
(11)

We show this upper bound in Fig. 1, where R = 3,m =
0, β = 2 are used for illustration.
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Fig. 1. Upper bound of geolocation area mean square error for a UAV
network.

Apart from geolocation performance, we also define dis-
tance range probability as the probability that the estimated
local mean distance D̂ falls within D1 ≤ D̂ ≤ D2, where
D1 < D2 and D1, D2 are also in dB form. The corresponding
linear form of D̂, D1 and D2 are d̂, d1 and d2 respectively.

In order to simplify the expression, we would like to denote

Si =
1
σ
{γdB +[

P (d0)
Pr

]dB−βDi +βd0dB}, i = 1, 2 (12)

It’s obvious that S2 < S1. Therefore the distance range
probability P (D1 ≤ D̂ ≤ D2) (for simplicity, denoted by
P (D1, D2)) turns out to be

{
Q(S2)−Q(−S1) if (a)S1 ≤ 0 or (b)0 < S1 < −S2

Q(−S1)−Q(S2) if (c)0 ≤ −S2 < S1 or (d) S2 > 0
(13)

where the Q-function is defined as the probability that a
Gaussian random Z is greater than x:

Q(x) = p(Z > x) =
∫ ∞

x

1√
2π

e−
y2

2 dy (14)

The (a)-(d) situations are illustrated in the Fig. 2. It’s worth
mentioning that P (D1, D2) = P (d1, d2). When D1 and D2

are set to be values pretty close to D, (13) turns out to be the
probability of correct distance range.

Based on our previous analysis, it’s obvious that

D̂ = D +
X

Nβ
(15)

When the relative motion between UAV and the emitter is
very slow, the mean of X

Nβ , i.e., l = m
Nβ can be considered zero

Fig. 2. Distance range probability illustration based on Q function: (a)S1 ≤ 0
(b)0 < S1 < −S2 (c)0 ≤ −S2 < S1 (d) S2 > 0.

because the mean may be considered to describe the average
discrepancies in real and estimated distance between the RF
emitter and the UAV during the moment of computation. Also,
for simplicity and clarity, we use η to denote the variance of
X

Nβ , which is σ2

N2β2 . Therefore, the probability of estimation
that RF emitter locate in the range [D1, D2] by a single UAV
becomes

Pcs(D1, D2) (16)

=
∫ D2

D1

P (D1, D2)fN (u)du

=
∫ D2

D1

P (D1, D2)
1√
2πη

e
−(u−D)2

2η2 dD̂

= P (D1, D2)[Q(
D1 −D

η
)−Q(

D2 −D

η
)]

When the relative motion between the UAV and the RF
emitter is obvious, due to the random variation, even the
mean can be considered as a variable which follows uniform
distribution in the range [L1, L2](in dB form), where L1 <
D1 − D and L2 > D2 − D. In this case, the probability of
RF emitter locating in the range [D1, D2] by a single UAV
becomes

Pcm(D1, D2) (17)

=
∫ D2

D1

P (D1, D2)
∫ L2

L1

1√
2πη

e
−(u−D−v)2

2η2 · 1
L2 − L1

dvdu

=
P (D1, D2)
L2 − L1

[
∫ L2

L1

Q(
D1 −D − v

η
)−

∫ l2

l1

Q(
D2 −D − v

η
)]dv

III. NETCENTRIC DECISION

As soon as each UAV obtains its distance from the RF
emitter, this data will immediately be sent to a fusion center
through TDMA data links. The fusion center can be a ground
station or even mounted on one of the UAVs. Due to the
shadowing and multiparth, the signal sent by a UAV will en-
counter fading before arriving at the fusion center. Assume the
instantaneous signal-to-noise ratio (SNR) is y, the statistical
averaging probability of error over the fading distribution [16]
is

Pe m f =
∫ ∞

0

Pm(y)pf (y)dy (18)
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where Pm(y) is the probability of symbol error in AWGN
based on a certain modulation scheme and pf (y) denotes the
PDF of the fading amplitude.

Apply the moment generating function (MGF)
Mf (s) =

∫∞
0

pf (y)esydy and alternate Q-function

Q(x) = 1
π

∫ π/2

0
e

−x2

2 sin2 ϕ dϕ, we derive the probability of
symbol error for the UAV network using 4 most common
modulation schemes: phase-shift keying (MPSK), pulse
amplitude modulation (MPAM), quadrature amplitude
modulation (MQAM) and noncoherent frequent-shit keying
(MFSK) respectively as follows:

Pe MPSK f =
1
π

∫ (M−1)π
M

0

Mf (− sin2(π/M)
sin2 ϕ

)dϕ (19)

Pe MPAM f =
2(M − 1)

πM

∫ π
2

0

Mf (
−3

sin2 ϕ(M2 − 1)
)dϕ

(20)

Pe MQAM f (21)

=
4
π

(
√

M − 1√
M

)
∫ π

2

0

Mf (− 3
2(M − 1) sin2 ϕ

)dϕ

− 4
π

(
√

M − 1√
M

)2
∫ π

4

0

Mf (− 3
2(M − 1) sin2 ϕ

)dϕ

Pe MFSK f =
M−1∑
n=1

(
M−1
n )

1
n + 1

Mf (− n

n + 1
) (22)

Assume Rician fading with factor K. Two extreme cases
are taken into account. If K → 0, it becomes Rayleigh dis-
tribution, therefore (19)-(22) can be denoted using following
expressions in this case:

Pe MPSK Ray = 1−
√

y sin2( π
M )

1 + y sin2( π
M )

(23)

Pe MPAM Ray =
M − 1

M
· (1−

√√√√
3y

M2−1

1 + 3y
M2−1

) (24)

Pe MQAM Ray (25)

=
2(
√

M − 1)√
M

(1−
√√√√

3y
2(M−1)

1 + 3y
2(M−1)

)− 4(
√

M − 1√
M

)2

·[ 1
4
− 1

π

√√√√
3y

2(M−1)

1 + 3y
2(M−1)

arctg

√√√√1 + 3y
2(M−1)

3y
2(M−1)

]

Pe MFSK Ray =
M−1∑
n=1

(−1)n+1(
M−1
n )

1
n + 1

(1 +
n

n + 1
y)−1

(26)
When K →∞, the Rician fading channel becomes AWGN

channel. In this situation, the probability of symbol error based
on above modulation schemes have been well studied and the
result is provided in [11], Table 6.1.

(a) (b)

Fig. 3. RF emitter Geolocation by SUAS (a) Relative movement between
RF emitter and UAVs are slow (b) Relative movement between RF emitter
and mini UAVs are obvious.

According to these performance, the best modulation
scheme can be chosen to reduce the probability of error. This
will be further illustrated in Section IV by simulations.

For simplicity and clarity, we assume the RF emitter is on
the ground surface. In the case that the relative motion between
the RF emitter and UAVs are quite slow, the UAV a is able
to be aware that the RF emitter is somewhere on a circle, of
which the center is itself and the radius is da, as illustrated in
Fig. 3(a). Another UAV b can also identify that there is a RF
emitter on a circumference with radius db. After combining
the information from both a and b, the fusion center will be
aware that the target either locates at the position A or B.
With the help of a third UAV c, the fusion center will have the
knowledge that the RF emitter is at the position A. Therefore
with the triangulation, 3 UAVs are able to locate the RF emitter
on the ground. In the case that the target is above the ground, 4
UAVs are necessary with one more member providing altitude
geolocation information.

When the relative movement between the target and UAVs
are obvious, a and b will aware that the RF emitter is moving
within a ring area, and the fusion system will understand that
the the target is within the intersection of 2 rings. Suppose
the intersection area is âbc (the intersection can also be
2 independent areas, here we use one case for illustration
without loss of generality), shown in Fig. 3(b). When the
data from c is obtained, its detected range ring will intersect
with âbc in a line DE. Therefore, the trace of the RF emitter
DE will be successfully obtained. After a few numbers of
measurement, the motion speed, acceleration of the target can
be calculated based on range and time difference.

Due to the independence of the distance estimation by
each UAV and the transmission of data to the fusion center,
the probability that a single UAV accurately provides the
location information to the fusion center is Pcs(D1, D2) · (1−
Pe MPSK f ) or Pcm(d1, d2) · (1 − Pe MPSK f ) for different
relative motion situations. Thus the probability of error for the
netcentric SUAS made up of R UAVs can be denoted as

Pes Modulation ≤ 1− [Pcs(D1, D2) · (1− Pe Modulation f )]R

(27)
Pem Modulation ≤ 1− [Pcm(d1, d2) · (1− Pe Modulation f )]R

(28)
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where Modulation stands for the modulation scheme. The
above expressions are error upper bound, this is because
the netcentric decision provides much more resilience than
a single UAV. For example, in Fig. 3(a) assume UAV a and
b accurately geolocate the target while c has a large location
error and believes the target is far away from the pint A and
B, the whole system may still provide accurate estimation
if c determines that the target is closer to A compared with
B. Demanding every UAV to provide accurate information to
fusion center is a stringent rule, therefore (27) and (28) are
upper bounds.

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

Simulations on a basis of mathematical expressions in
Section II and III are presented in this Section for better
analysis and illustration about SUAS performance. In the
simulation, we assume d = 100m, d0 = 0.1d, β = 2 and
R = 3.
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Fig. 4. Error probability of distance range vs. frequency for a single UAV.

Fig. 4 describes about error probability of distance range vs.
frequency for a single UAV, where d1 = 0.99d and d2 = 1.01d
have been used. The curves show that given the same σ (see
(3)), the error probability of distance range will be reduced
as the frequency increases. However, when the frequency is
higher than a certain threshold value, such as 108 for σ = 10,
the error probability becomes a constant. This phenomenon
is the result of nonlinearity of the Q function. Therefore, this
UAV system is more appropriate for geolocate an emitter with
higher frequency.

Fig. 5 shows the contribution of another important factor
power-rate-to-noise ratio (PRNR) to the correct probability of
distance range for a single UAV. We define PRNR as P (d0)

σPr
.

It is easy to observe that similar to Fig. 4, there is also a
threshold value in correct probability of distance range. The
larger the η (see (15)), the smaller the threshold value as well
as the probability correctness.

Fig. 6-9 illustrate upper bound error probability for netcen-
tric UAVs based on (27) and (28). Fig. 6 and 7 are in the
environment of AWGN while Fig. 8 and 9 are for Rayleigh
fading. In the case that relative motion between the RF emitter
and UAVs are slow, d1 = 0.99d, d2 = 1.01d and η = 1;
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Fig. 5. Correct probability of distance range vs. power-rate-to-noise ratio
(PRNR) for a single UAV.
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Fig. 6. Upper error bound of the netcentric UAVs in AWGN when relative
movement between the RF emitter and UAVs are slow.

when the relative motion is obvious we apply l1 = −0.1d,
l2 = 0.1d and η = 1, therefore Pcs(D1, D2) = 0.9876
and Pcm(D1, D2) = 0.94. In Figs. 6 and 8, modulation
schemes MFSK, MPAM, MPSK and MQAM with M = 4
are applied for illustration. This does not mean M = 2 can
not be used. Actually, the smaller M , the smaller probability
of symbol error rate for the same modulation scheme. That
partially contributes to the smaller probability of error in Fig.
7. Moreover, the resilience of netcentric design makes the
probability of error using BFSK and BPSK much smaller
compared to that of 4-FSK and QPSK. This is the same
situation while comparing Fig. 9 with 8.

These figures show that no matter the wireless radio channel
between UAVS and fusion center is AWGN or Rayleigh,
MQAM will provide the smallest probability of error at
low SNR while MPSK will provide the smallest probability
of error at moderate to high SNR. Therefore MQAM and
MPSK can be applied for adaptive modulation for data fusion
depending on how large the SNR is at the receiver of fusion
center.

V. CONCLUSIONS

In this work, we propose a passive geolocation approach
to locate RF emitter using a netcentric small UAV systems
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Fig. 7. Upper error bound of the netcentric UAVs in AWGN when relative
movement between the RF emitter and UAVs are obvious.
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Fig. 8. Upper error bound of the netcentric UAVs in Rayleigh fading when
relative movement between the RF emitter and UAVs are slow.

(SUAS) equipped with ES sensors. This approach is based
on log-normal shadowing model, which has been empirically
confirmed to model accurately the variation in received power
in propagation environments. We show that the geolocation
error is essentially a log-normal random variable. The larger
number of ES sensors, the smaller geolocation area upper
bound error. We also analyze the error probability of distance
range for the system. We demonstrate that when the emitter
frequency is higher than a certain threshold value, the error
probability becomes a constant. The situation is similar for
power-rate-to-noise ratio (PRNR). Regardless what the wire-
less radio channel between UAVS and fusion center is, for
example AWGN, Rayleigh or Rician, at low SNR MQAM
modulation is applied while MPSK will be chosen at moderate
to high SNR due to the smallest performance error of the
whole system.
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Abstract

Interferences due to the hostile environment (e.g. jammer) and the Multi-User Access

are critical factors affecting performance of the wireless sensor networks. In this paper,

we study a hybrid Frequency Hopping/Time Hopping-Pulse Position Modulated (FH/TH-

PPM) UWB for wireless sensor networks in hostile environment with partial-band(PB) tone

interference. FH and TH are both used to get as much diversity gain as possible. Theoret-

ical analysis is made for the bit error rates performance in the presence of multitone/pulse

(tone in frequency domain and pulse in time domain) interference and Multi-User Interfer-

ence. We also derived theoretical performance formula when the low duty-cycle in UWB

system and the large number of sensor nodes in a wireless sensor networks are considered.

Index Terms : Time Hopping, Frequency Hopping, PPM, Wireless sensor networks,

UWB, BER
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1 Introduction

Wireless sensor networks are becoming more popular for an ever increasing range of applications

with improvements in device size, power control, communications and computing technology.

Since 2002 there has been great increasing popularity of commercial applications based on

Ultra WideBand. This in turn has ignited interest in the use of this technology for sensor

networks. Actually, UWB systems have potentially low complexity and low cost; have a very

good time domain resolution, which facilitates location and tracking applications. So, UWB

wireless sensor networks are promising.

The rest of this paper is organized as follows. The system models, including the transmis-

sion, channel and receiver, will be introduced in Section 2. The MUI and hostile interference

will be studied in Section 3 and Section 4 respectively, and the SINR and closed-form BER

will be derived as well. Numerical results and comparisons will be present in Section 5; and

conclusions are made in Section 6.

2 System Models

In the proposed system, there are NF non-overlapping FH bands, each with bandwidth Bh

where Bh is the bandwidth required to transmit a TH-PPM signal in the absence of FH. Let

sk(t) denotes the k-th user’s signal at time t in this FH/TH-PPM UWB system with totally

Nu users, and it takes the form

sk(t) =
√

Eb

Ns

+∞∑

j=−∞
cfh
j (k)p[t− jTf − cth

j (k)Tc − dj(k)δ]) (1)

where p(t)is a chip waveform, which can take arbitrary time-limited pulse shapes proposed

specifically for UWB communication systems, and is normalized to satisfy
∫ +∞
−∞ p2(t)dt = 1.

The notations and parameters are:

• Ns is the number of pulses used to transmit a single information bit. Tf is the time

2
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duration of a frame. In general case, Ns ≥ 1 pulses carry the information of one bit. The

bit duration Tb should satisfy, Tb ≥ TfNs.

• Eb is the energy per information bit.
√

Eb
Ns

is the normalized energy in each symbol.

• cth
j (k)Tc is the time shift introduced by the TH code. Tc is the chip duration. cth

j (k) is the

j-th coefficient of the TH sequence used by user k; it is pseudo-random with each element

take an integral in the range [0, Nh − 1], where Nh is the number of hops. Tc ≤ Tf/Nh

should be satisfied.

• The dj(k)δ term represents the time shift introduced by PPM modulation. In our system,

2PPM is only considered. Therefore, dj(k) represents the j-th binary data bit (0 or 1)

transmitted by the k-th user; δ is the PPM shift.

• cfh
j (k) =

√
2cos(2πfkj) is the k-th user’s spreading code during j-th frame.

Notice that each symbol chooses one of the NF sub-bands to transmit the signal, however, in

each sub-band, the transmitted signal is TH-2PPM.

In WSN, sensor nodes have two states, i.e., active communication status and idle status.

In order to save energy, sensor nodes choose to be idle for most of the time. The number of

nodes which are actually in the status of active communication is unknown. However, the total

number of sensor nodes in the network and the access rate λ, i.e., the rate that a node in the

communication status, for each node are assumed to be known. Clearly, the event of status of

sensor node is a Bernoulli distribution with mean as λ and variance as λ(1−λ). Assume there

are NU sensor nodes in a network, each one of them chooses to be idle or active independently.

Therefore, the number of sensor nodes which are in active communication status, NT
u , can

be seen as the sum of NU independent, identically distributed Bernoulli random variable,

which is a Binomial distribution. Usually NU is very large, we can approximate the Binomial

3
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distribution to a Gaussian random variable with the mean NUλ and variance NUλ(1− λ), as

fNT
u
(nt

u) =
1√

2πNUλ(1− λ)
e−(nt

u−NUλ)2/2NUλ(1−λ) (2)

For the NT
u users, they randomly choose one of the sub-bands to transmit the signal

according to cfh
j (k) symbol by symbol. It is also a Binomial random variable with the coefficient

1/NF . To simplify the problem, we assume that the users are distributed optimally, so the

number of users share the same channel, Nu, should be expressed as

Nu = NT
u /NF . (3)

3 Multi-User Interference Analysis

In this section, we will first focus on the analysis of MUI with the absence of hostile jammer

interference. We assume there is no inter-channel-interference. Therefore, the received signal

of 1-st user’s j-th symbol can be expressed as:

rj(t) = r
(1)
j (t) + rj,mui(t) + n(t) (4)

where rj,mui(t) is the MUI contribution at the receiver input. If the users are many and have

comparable powers, we can approximate the MUI as a white Gaussian process by the central

limit theorem [5] and, as such, it can be lumped into the additive Gaussian Noise,

wtot(t) = rj,mui(t) + n(t) (5)

and wtot(t) is still a white Gaussian process. Since the system is asynchronous, we need to

consider all cases where a pulse originated by any of the transmitters but TX1, is detected by

the receiver. First of all we need to analyze the noise provoked by the presence of one alien

pulse at the output of the receiver by using the similar method as in[1],

mui(k)(τ (k)) =
√

E
(k)
RX

∫ Tc

0
p(t− τ (k))vtdt (6)

4
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where, E
(k)
RX = α(k)(Eb/Ns), and here we suppose α(k) = 1 ∀k.

Since τ (k) is uniformly distributed over [0, Tf ), and identically distributed for different τ [1],

under the hypothesis of perfect power control, e.g., E
(k)
RX = ERX ∀k, the total MUI energy is

σ2
mui =

ERX

Tf

Nu∑

k=2

(∫ Tf

0

(∫ Tc

0
p(t− τ)v(t)dt

)2

dτ

)
(7)

Define σ2
M as

σ2
M =

∫ Tf

0

(∫ Tc

0
p(t− τ)v(t)dt

)2

dτ (8)

we get

σ2
mui =

ERX

Tf
(Nu − 1)σ2

M (9)

Let SNRref denotes the equivalent signal to noise and MUI ratio over one symbol, it can

be written as

SNRref = (SNR−1
n + SIR−1

mui)
−1 (10)

where SNRn are the signal to noise ratio over one symbol.

Hence,

SNRref =

((
ERX

N0

)−1

+
(

Tf

(Nu − 1)σ2
M

)−1
)−1

=
Tf

NsTf + (Nu − 1)σ2
M

(
Eb
N0

)
(

Eb

N0

)
(11)

where Eb/N0is the system SNR.

4 Performance Analysis with Multitone/pulse Interference

In this section, the SIR for the hostile interference part is obtained. We make the following

assumptions: The multitone/pulse interference has a total power PJ , which is transmitted in a

total of q equal power interfering tones spread randomly over the spread spectrum bandwidth.

The time duration for the interference pulse is the same as the time duration of the transmitted
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signal pulse p(t), which is denoted as Tp. To simplify the problem, we suppose Tc = 2Tp and

δ = Tp. The hop period of the interference is also Tp, and each hop is independent. The

multitone/pulse interference can catch the signal pulse with the perfect timing. We consider

the scenario that there is at most one interference per FH sub-band. Hence, in one hop,

the probability that a FH band contains an interference tone/pulse is q/NF . Observe the

transmitted signal as in (1), the signal hops both in the frequency domain and in the time

domain symbol by symbol. Therefore, our analysis will first focus on one symbol.

We partition the symbol duration as two time slots, hence, for the multitone/pulse interfer-

ence, there are two hops. In each hop, the interference is independently distributed. There are

totally four cases with regard to the jammer interference for each symbol: There is no jammer

interference in either of two slots, with the probability as P {case1} = (1 − q
NF

) · (1 − q
NF

);

there is jammer interference in each slot, with the probability as P {case2} = q
NF

· q
NF

; there

is one and only one jammer interference pulse, and it is at the same slot as the signal pulse.

The probability of case3 is P {case3} = (1 − q
NF

) · q
NF

; there is one and only one jammer

interference pulse, and it is not at the same slot as the signal pulse. The probability of case4

is P {case4} = (1− q
NF

) · q
NF

.

The received signal of the j-th symbol of 1-st user can be expressed as:

r′j(t) = r1
j (t) + Ijammer(t) + wtot(t); (12)

where rk
j (t) and Ijammer(t) are the jammer interference contributions at the receiver input,

and wtot(t) accounts for both the thermal and MUI noise contributions, and is still a white

Gaussian process as proved in Section 3. Hence, a maximum a posteriori (MAP) approach

can be adopted here to get the minimum error probability. For different cases of the jammer

interference, the detection boundaries are shown in Fig. 2.

Hence, we can get the SINRjammer straightforwardly.

SINRjammer|case1,2 =
ERX

N ′
0

. (13)
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SINRjammer|case3 =
(
√

ERX +
√

PJ
q )2

N ′
0

. (14)

SINRjammer|case4 =
(
√

ERX −
√

PJ
q )2

N ′
0

. (15)

Since the error probability of 2-PPM signal is [1], Pr = Q(
√

SNRspec), and after removing

the conditioning on cases, we get

Pr′s =

((
NF − q

NF

)2

+
(

q

NF

)2
)

Q(

√√√√
(

Eb
Ns

N ′
0

)
)

+
(

NF − q

NF

)(
q

NF

)
(Q(

√√√√√√




(
√

Eb
Ns

+
√

PJ
q )2

N ′
0


)

+ Q(

√√√√√√




(
√

Eb
Ns
−

√
PJ
q )2

N ′
0

)


)). (16)

Considering only Nu is a random variable, we should take ( 2) and ( 3) into ( 16),

Prs =
1

NF

√
2πNUλ(1− λ)

∫ NU

1
Pr′se

−(nu−NUλ)2/2NUλ(1−λ)dnu (17)

After we got the symbol error rate Prs, it is easy for us to obtain the bit error rate Prb by

majority law.

Prb =
Ns∑

k=dNs
2 e

Ck
NsPrk

s (1− Prs)Ns−k (18)

where d e is the ceiling operation, and Ck
Ns is an Ns-choose-k Binomial coefficient, i.e., Ck

Ns =

k!(Ns−k)!
Ns!

.

5 Numerical Results and Comparisons

• The discussion on Ns;

We fix NF = 20, q = 8, Nu = 10 and the energy of the signal and jammer interference

ratio Eb/PJ = 5dB, and compare the Symbol Error Rate (SER) and Bit Error Rate
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Table 1: Parameters of the example FH/TH-PPM UWB system

Parameter Notation 2nd-order mono-cycle

shaping factor for the pulse ε 0.25ns

time shift introduced by PPM δ 0.5ns

pulse duration Tp 0.5ns

frame duration Tf 8ns

chip duration Tc 1ns

number of hops Nh 6

(BER) among Ns = 1, 3, 5, 7. The results are shown in Figure. 3 and Figure. 4 respec-

tively. For SER, because, the more symbols used to transmit one bit, the energy for

each symbol is less, SER is increasing when the Ns increases. However, BER is more

meaningful here, and obviously, the more symbols we used to transmit one information

bit, the better performance we can achieve. The curves drop quickly from SNR = 0dB

to 15dB, however, after 15dB, become flat, which caused by the jammer interference.

• The discussion on Eb/PJ ;

We set NF = 20, Ns = 3, q = 8, and Nu = 10, and compare the SER and BER among

Eb/PJ = 0, 5, 10dB. Figure. 5 and Figure 6 show the results. For both SER and BER,

larger Eb/PJ can guarantee better performance. From Eb/PJ = 5dB to Eb/PJ = 10dB,

the performance gain is very limited, the reason of which is when Eb/PJ is higher than

some better threshold, the jammer interference is too weak to give any impact to the

system.

• The discussion on q;

NF , Ns, Nu and Eb/PJ are fixed at 20, 5, 10 and 5dB respectively.We try to evaluate
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the performance for q = 2, 8, 18. At the first glance, larger q may be thought to yield

worse performance, because large q means the probability that a jammer interference

bumps the information signal is higher. However, we need to notice, high q also means

the energy of the jammer interference for each sub-band is less, because the total jammer

interference power is fixed. We can get the same conclusion in the Figure. 7 and Figure. 8.

The worst and best performances are get at q = 2 and q = 8 respectively.

• The discussion on NF ;

We evaluate the performance for NF = 1, 5, 10, 20 when Ns = 1, and the number of users

who are at communication status is 100. We need to evaluate how partitioning NF can

decrease the MUI, therefore, we set it as a jammer interference free channel. Obviously,

Figure. 9 shows that we can get better performance when NF is larger. Considering,

more sub-bands partitioned means more cost, the NF should be set at an appropriate

value as long as the Quality of Service (QoS) is satisfying.

• The discussion on Nu;

We set NF = 20, q = 8, Ns = 5 and Eb/PJ = 5dB. Nu is equal to 5, 10, 15, 20 respectively

to get different performance, which are shown in Figure. 10 and Figure. 11. At high SNR,

the performance is degraded quickly when Nu becomes larger. That is because the MUI

is related with Eb under the assumption that each user has comparable power.

• The discussion on λ;

We proved in Section 2 that the Nu is approximately a Gaussian RV.With known NU , the

number of sensor nodes in the WSN, but unknown Nu, the number of users that would

share the same sub-band, we need to calculate the SER as in (17). We set NU = 10, 000,

NF is set as 20 and we assume the users are optimally distributed. For different access

rate, λ = 0.01 and λ = 0.02, the performances are shown in Figure 12 and Figure. 13,

we can see though the NU are the same, the difference in λ would yield totally different
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performance.

6 Conclusions

In this paper, we make an performance analysis with the presence of the multi-tone/pulse

jammer interference and multi-user interference based on the hybrid FH/TH-PPM-UWB sys-

tem. We get an accurate expressions of SER and BER with the presence of MUI and hostile

jammer interference. We evaluate the performances for different number of symbols to carry

one information bit Ns; the signal to jammer interference ratio Eb/PJ ; the number of tones q

of the jammer interference; and the access rate for each sensor nodes λ, in terms of BER so as

to show how these parameters affect to the FH/TH-PPM UWB system.
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Figure 1: An example of the waveform of a 2-PPM signal.
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Abstract— Motivated by recent advances on Compressive
Sensing (CS) and high data redundancy among radars in radar
sensor networks, we study CS for radar sensor networks. We
demonstrate that the sense-through-foliage UWB radar signals
are very sparse, which means CS could be applied to radar
sensor networks to tremendously reduce the sampling rate. We
propose to apply SVD-QR and maximum likelihood algorithms
to CS for radar sensor networks. SVD-QR could vastly reduce
the number of radar sensors, and CS is applied to the selected
radar sensors for data compression. Simulations are performed
and our compression ratio could be 192:1 overall.

Index Terms : Compressive sensing, radar sensor networks,
sense-through-foliage, UWB, sparsity.

I. INTRODUCTION

Compressive sensing (CS) is a new method to capture and
represent compressible signals at a rate significantly below
the Nyquist rate. It employs nonadaptive linear projections
that preserve the structure of the signal; the signal is then
reconstructed from these projections using an optimization
process. This leads immediately to new signal reconstruction
methods that are successful with surprisingly few measure-
ments, which in turn leads to signal acquisition methods
that effect compression as part of the measurement process
(hence “compressive sensing”). These recent realizations
(though built upon prior work exploiting signal sparsity)
have spawned an explosion of research yielding exciting
results in a wide range of topics, encompassing algorithms,
theory, and applications.

So far, no work has been reported on CS for radar sensor
networks. In CS for radar signals, very few works have
been reported. In [1], it shows that matched filter could
be eliminated if CS is used for radar. In [2], SAR radar
image was processed using wavelets basis. In [13], a stylized
compressed sensing radar is proposed in which the time-
frequency plane is discretized into an N×N grid. In [15], a
joint basis selection and sparse parameter estimation (called
fast Bayesian mathcing pursuit) algorithm was proposed. In
[17], a heuristic, graph-structured, sparse signal represen-
tation algorithm for overcomplete dictionaries that can be
decomposed into subdictionaries was proposed and applied
to SAR imaging. In [3][4], passive radar using OFDM was
applied to target signature detection.

The rest of this paper is organized as follows. In Section
II, we give an overview of compressive sensing. In Section
III, we study the sparsity of narrowband and UWB radar

signals. In Section V, we present our results on compressive
sensing for UWB radar signals. Section VI concludes this
paper.

II. COMPRESSIVE SENSING: AN OVERVIEW

CS provides a framework for integrated sensing and
compression of discrete-time signals that are sparse or
compressible in a known basis or frame. Let z denote a
signal of interest, and Ψ denote a sparsifying basis (or called
transform domain), such that z = Ψθ, with θ ∈ R

N being
a K-sparse vector, i.e. ‖θ‖0 = K . Traditional transform
coding compression techniques acquire first z in its entirety,
and then calculate its sparse representation θ in order to
encode its nonzero values and their locations, but CS aims
to preclude the full signal acquisition by measuring a set y
of linear projections of z into vectors φi, 1 ≤ i ≤ M . By
stacking these vectors as rows of a matrix Φ (measurement
matrix), we can represent the measurements as y = Φz =
ΦΨθ. The main result in CS states that when the matrix ΦΨ
holds the restricted isometry property (RIP) [7][10], then the
original sparse representation θ is the unique solution to the
linear program

θ̂ = arg min
θ∈RN

‖θ‖�1
(1)

s.t. y = ΦΨθ, (2)

known as Basis Pursuit, where �1–norm is defined as
(‖θ‖�1

≡ ∑
i |θi|). Thus, the original signal z can be re-

covered from the measurement vector y in polynomial time.
Furthermore, choosing Φ to be a matrix with independent
gaussian-distribtued entries satisfies the RIP for ΦΨ when
Ψ is a basis or tight frame and M = O(K log(N/K)).

III. SPARSITY OF NARROWBAND AND UWB RADAR

SIGNALS

Recently, we studied UWB radar sensor signals in a
foliage environment and observed that it is very sparse,
which satisfies the requirement for compressive sensing. Our
work is based on the data collected by AFRL in radar-
based sense-through-foliage experiment in late summer and
fall. Late summer foliage, because of the limited rainfall,
involved foliage with decreased water content. Late fall
and winter measurements involved largely defoliated but
dense forest, providing a rich scattering environment. Be-
cause of wind or different temperatures in dense forest,
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it’s also a time-varying environment. The sense-through-
foliage experiment was constructed on a seven-ton man lift
(as shown in Fig. 1a), which had a total lifting capacity
of 450 kg. The limit of the lifting capacity was reached
during the experiment as essentially the entire measuring
apparatus was placed on the lift. The principle pieces of
equipment secured on the lift are: Barth pulser, Tektronix
model 7704 B oscilloscope, dual antenna mounting stand,
two antennas, rack system, IBM laptop, HP signal Generator,
Custom RF switch and power supply and Weather shield
(small hut). The target is a trihedral reflector (as shown
in Fig. 1b). Throughout this work, a Barth pulse source
(Barth Electronics, Inc. model 732 GL) was used. The
pulse generator uses a coaxial reed switch to discharge a
charge line for a very fast rise time pulse outputs. The
model 732 pulse generator provides pulses of less than 50
picoseconds (ps) rise time, with amplitude from 150 V to
greater than 2 KV into any load impedance through a 50
ohm coaxial line. The generator is capable of producing
pulses with a minimum width of 750 ps and a maximum
of 1 microsecond. This output pulse width is determined by
charge line length for rectangular pulses, or by capacitors
for 1/e decay pulses. For the data we used, each sample is
spaced at 50 picosecond interval, and 16,000 samples were
collected for each collection for a total time duration of 0.8
microseconds at a rate of approximately 20 Hz. The Barth
pulse source was operated at low amplitude and 35 pulses
reflected signal were averaged for each collection.

We applied the CLEAN algorithm to obtain the channel
model based on the transmitted pulses and received echos.
The CLEAN algorithm was first introduced in [14] and
has been applied to UWB measurements [8][16] and it
assumes that the channel is a series of impulses which is
consistent with the tapped-delay line channel model. This
algorithm searches the received echos iteratively with the
transmit pulse to find the maximum correlation [6]. Based on
the CLEAN method, we successfully obtained the channel
impulse responses based on transmit pulses and receive
echoes. For illustration purposes, in Fig. 2, we plot the
channel impulse responses for UWB channels using CLEAN
method based on one experiment.

Observe Fig. 2c, the channel impulse response θ =
[θ1, θ2, · · · , θn] has very few nonzero taps out of 32,000
sample index). Let ψ(i) denote the transmit pulse, The
received echo could be represented as (if no noise)

z(i) = θ ∗ ψ(i) =
n∑

j=1

θjψ(i− j) = Ψθ (3)

where ∗ stands for convolution, and Ψ = [ψ1, ψ2, · · · , ψn]
are transform domain functions (different time-shifts of
transmit pulse). Since most θj’s are zeroes under the trans-
form basis Ψ, so the UWB radar signals z(i) are very sparse,
which validates that CS could be used to reduce the number
of samples to collect.

 

(a)

 

(b)

Fig. 1. (a) The lift in the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment
from the elements. (b) The target (a trihedral reflector) is shown on the
stand at 300 feet from the lift.

IV. COMPRESSIVE SENSING FOR RADAR SENSOR

NETWORKS USING SVD-QR ALGORITHM

We propose to use SVD-QR algorithm [11] [12] to com-
pressive sensing for radar sensor networks. SVD-QR selects
a set of independent data sets that minimize the residual
error in a least-squares sense:

• Given P ∈ RN×M (assuming N > M ), and
rank(P ) = r ≤ M . Determine a numerical estimate
r
′

of the rank of the data sets matrix P by calculating
the singular value decomposition

P = U

[
Σ 0
0 0

]
V T , (4)

where, U is an N × N matrix of orthonormalized
eigenvectors of PP T , V is an M × M matrix of
orthonormalized eigenvectors of P TP , and Σ is the
diagonal matrix Σ = diag(σ1, σ2, . . . , σr), where σi

denotes the ith singular value of P , and σ1 ≥ σ2 ≥
· · · ≥ σr > 0. Select r̂ ≤ r

′
.

• Calculate a permutation matrix Π such that the columns
of the matrix Γ1 ∈ RN×r̂ in

PΠ = [Γ1,Γ2] (5)
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Fig. 2. UWB radar transmitted pulse, received echo, and channel impulse
response in one experiment. (a) Transmitted pulse. (b) Received echo. (c)
UWB channel impulse responses using CLEAN method.

are independent. The permutation matrix Π is obtained
from the QR decomposition of the submatrix comprised
of the right singular vectors, which correspond to the r̂
ordered most-significant singular values.

Our procedures of CS for RSN are as follows:

1) Construct matrix P ∈ RN×M (assuming N > M )
where N is the number of time samples and M is the
number of radars.

2) Take SVD-QR to matrix P , and determine the prin-
cipal radar sensors to be used for CS based on the
following steps:

• Decomposes P , from the SVD of P , save V .
• Observe Σ. Select an appropriate r̂.

• Partition

V =
[
V11 V12

V21 V22

]
(6)

where V11 ∈ Rr̂×r̂, V12 ∈ Rr̂×(M−r̂), V21 ∈
R(M−r̂)×r̂ , and V22 ∈ R(M−r̂)×(M−r̂). In many
practical cases, σ1 is much larger than σr′ ; thus r̂
can be chosen much smaller than the estimate r

′

of rank(P ), even 1.
• Using QR decomposition with column pivoting,

determine Π such that

QT [V T
11, V

T
21]Π = [R11, R12], (7)

where Q is a unitary matrix, and R11 and R12

form an upper triangular matrix; and Π is the
permutation matrix, the column permutation Π
is chosen so that abs(diag(R)) is decreasing.
In short, Π corresponds to the r̂ ordered most-
significant sets, i.e., a sub-set of r̂ most important
radar sensors are chosen.

3) Perform CS to the r̂ most important radar sensors
jointly. Explore the redundancy among different sen-
sors in radar sensor network would tremendously re-
duce the sample sizes. Equation (2) could be extended
into matrix format,

Θ̂ = arg min
θ∈RN

‖Θ‖F s.t. y = ΦΨΘ, (8)

where Θ and y are matrix, and each column is
correpsonding to each sensor; ‖Θ‖F is Frobenius norm
for matrix, which is defined as

‖Θ‖F =
√
tr(ΘH · Θ) =

√
tr(Θ · ΘT ) (9)

If AWGN is added, the constraint can be written as

y = ΦΨΘ + N (10)

Since y, ΦΨ are known, and N is AWGN matrix, we
use maximal likelihood method to determine Θ.

V. SIMULATIONS AND PERFORMANCE ANALYSIS

We chose an iid Gaussian random matrix as sensing
matrix Φ. ΦΨ is also iid Gaussian for various orthonor-
mal bases Ψ such as spikes, sinusoids, wavelets, Gabor
functions, curvelets, and so on [10], so we chose ψ j(i) =
n−1/2 cos(2πji/n), i = 0, 1, · · · , n−1. ΦΨ is shown to have
satisfied RIP with high probability, if M ≥ cK log (N/K),
where c is a small constant and hence stable reconstruction
is possible with high probability [10]. Note that it is not
known in advance which coefficients of Θ are zeroes, or
which samples of z are not needed.

We ran simulations based on the above algorithm for a
radar sensor networks with 30 radar sensors. Based on the
radar sensor network data for 100 collections, we applied
SVD-QR to select r̂ most important radar sensors, and
observed that r̂ has mean value 5.23, and std 2.11. For
each subset of selected sensors, we performed joint CS, and
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it turned that we could used only 500 samples to recover
the original 16,000 samples, so the compression ratio is
32:1. Combining the spatial reduction (from 30 sensors to
around 5 sensors), we could achieved compression ratio
about 192:1 overall. For illustration purpose, in Fig. 3(a),
we plot 16,000 samples sense-through-foliage signals in one
collection of sense-through-foliage UWB radar sensors. In
Fig. 3(b), we plot one column of sparse signals Θ (received
echo z projected to cosine basis functions ψj(i)) and the
recovered sparse signals (obtained via (2)). Observe that the
original signals could be perfectly recovered.
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Fig. 3. (a) Original sense-through-foliage received echos (16,000 samples),
and (b) �1-norm recovered sparse signals and the original sparse signals
(origianl 16,000 samples projected to the cosine basis functions).

VI. CONCLUSIONS

Motivated by recent advances on Compressive Sensing
(CS) and high data redundancy among radars in radar
sensor networks, we studied CS for radar sensor networks.
We demonstrated that the sense-through-foliage UWB radar
signals are very sparse, which means CS could be applied to

radar sensor networks to tremendously reduce the sampling
rate. We proposed to apply SVD-QR and maximum likeli-
hood algorithms to CS for radar sensor networks. SVD-QR
could vastly reduce the number of radar sensors, and CS was
applied to the selected radar sensors for data compression.
Simulations are performed and our compression ratio could
be 192:1 overall.
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ABSTRACT

UWB noise radar is one of the novel techniques which are
widely used in various sensing-through-wall applications
such as emergency rescues and military operations. One of
the most challenging problems in UWB noise radar is data
storage. In this paper, we apply compressive sampling to
UWB noise radar to represent the original signal with far
fewer samples. Choosing an iid Gaussian random matrix as
measurement matrix is sufficient to capture the information
in the UWB noise radar signal, no knowledge of UWB signal
is known in advance. Simulation results indicate only 1/5 of
original samples are need to perfectly recover the UWB noise
radar signal.

Index Terms— compressive sampling, UWB noise radar,
Gaussian random matrix

1. INTRODUCTION

Sensing-through-wall techniques have attracted so many in-
terests due to a broad range of military and civilian appli-
cations. It will be useful in locating weapons caches dur-
ing military operations, searching and rescuing people from
natural disaster such as earthquakes and providing sustain-
ability assessment of bridges and buildings. Current sense-
through-wall systems are mainly based on short-pulse wave-
forms, which require special antennas to avoid unwanted sig-
nal coupling. In addition, periodically transmitted pulses will
be easily intercepted by others.

In recent years, UWB waveforms are frequently em-
ployed for indoor wireless propagation systems due to its ex-
ceptional range resolution and strong penetrating capability.
Since UWB radars used for sense-through-wall applications
are usually in UHF range (500-1000MHz) for good pene-
tration through walls and building materials. The 500MHz
bandwidth will yield a 30cm range resolution. Systems
building on existing technology for through-wall sensing
are typically heavy and inconvenient to deploy. The major
challenge is to develop a simplified architecture which will
reduce cost without sacrificing performance. Chip-based ar-
bitrary signal generators can be used as noise sources and
field programmable gate array (FPGA) technology can be

used for time delay and cross-correlation in UWB noise radar
implementation.

Major advantages of UWB noise radar are [1] [2]:
• Immunity from jamming and interference: Unwanted

signals caused by jammers or other interfering trans-
mitters will not correlated with the time-delayed trans-
mit replica and hence yield zero at the correlated out-
put.

• Immunity from detection: Since the waveform is not
repeatable and spread over a wide band, it cannot be
recognized as the intentional signal on other’s receiver.

• Frequency diversity: Since the instantaneous noise
waveform is spread over a wide frequency range, it
achieves the necessary diversity to reduce the clutter
and multipath effects.

• Spectral efficiency: Many noise radars can occupy the
same spectral band, with negligible cross-interference
as the signals will not be correlated with each other.

• Cost-effectiveness: Since thermal noise is easy to
generate, expensive modulators and antennas are not
needed.

• Thumbtack range-Doppler ambiguity function: Noise
radars can achieve high resolution in both range and
Doppler and these can be independently controlled by
varying the bandwidth and integration time, respec-
tively. It is a unique feature that is present only in noise
radars.

Since the UWB signal is usually in UHF range (500-
1000MHz), sampling rate should be more than 1GHz/s
(Nyquist rate) for alias-free signal sampling which requires
plenty of space to store received signal. In this paper, we ap-
ply compressive sampling to UWB noise radar signal, which
asserts that one can recover it from far fewer samples than
traditional Nyquist rate. It also enhances the operational
feasibility of UWB noise radar.

The remainder of this paper is organized as follows. In
Section 2, we summarize characteristics of UWB noise radar
signal and its time-frequency representation. In Section 3, we
introduce principles of compressive sampling and its applica-
tion in data compression. We propose an alternative algorithm
to solve the linear program efficiently in (9) in Section 4. We
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show final simulation results in Section 5. Conclusions are
given in Section 6.

2. UWB NOISE RADAR SIGNAL FUNDAMENTALS

Since UWB noise radar signal is stochastic, it can only be
described by its statistics. The UWB noise radar signal x(t)
can be described by its following properties:

• Auto-correlation Rxx(τ): impulse or impulse–like at
τ = 0.

• Probability density function (PDF) px(X): can be char-
acterized as Gaussian distribution.

• Power spectral density (PSD) Sxx(f): assumed uni-
form and bandlimited.

From the above-statistics we can propose the time-
frequency model for the UWB noise radar signal as below:

x(t) = a(t) cos {[ω0 + δω(t)]t}, (1)

where a(t) is the Rayleigh distributed amplitude which
describes amplitude fluctuations and δω(t) is the uniformly
distributed frequency fluctuations over the ±Δω range, i.e.,
[−Δω ≤ δω ≤ +Δω] [3]. Assuming that the random vari-
ables a(t) and δω(t) are uncorrelated, we can show that the
average power of the signal x is

〈
a2(t)

〉
/2R0, where 〈·〉 de-

notes time average and R0 is the system impedance. The
center frequency f0 and the bandwidth B can be derived as
ω0/2π and Δω/π, respectively.

An alternative time–frequency representation of UWB
noise radar signal is given by:

s(t) = sI(t) cos(ω0t) − sQ(t) sin(ω0t), (2)

where sI(t) and sQ(t) are zero-mean Gaussian processes
and f0 = ω0/2π is the center frequency. This can also be
written as:

s(t) = a(t) cos[ω0t+ φ(t)], (3)

where a(t) =
√
s2I(t) + s2Q(t) is the Rayleigh distributed

amplitude and φ(t) = tan−1(sQ(t)/sI(t)) is the uniformly
distributed phase.

3. COMPRESSIVE SAMPLING BACKGROUND

Compressive sampling (CS) provides a framework for inte-
grated sensing and compression of discrete-time signals that
are sparse or compressible in a known basis or frame. Many
natural signals have concise representations when expressed
in the proper basis [4]. Mathematically speaking, consider
a discrete signal f ∈ RN which can be expanded in an or-
thonormal basis Ψ = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
N∑

i=1

xiψi(t), (4)

where x is the coefficient sequence of f that can be com-
puted from signal f :

xi = 〈f, ψi〉 , i = 1, 2, · · · , N. (5)

It will be convenient to express f as Ψx (where Ψ is the
n× n matrix with ψ1ψ2 · · ·ψn as columns). We can say the
discrete signal f is K-sparse in the domain Ψ, K << N , if
only K out of N coefficients in the sequence x are nonzero.
Sparsity of signal is a fundamental principle used in the com-
pressive sampling as well as in most modern lossy coders
such as JPEG-2000 and many others, since a simple way for
image compression would be to compute x from f and then
only encode the values and locations of the largest K coef-
ficients. Examples in [5] show that perceptual loss is hardly
noticeable from a megapixel image to its approximation ob-
tained by throwing away 97.5% of the coefficients. Unfor-
tunately, this compression process requires computing all N
coefficients of signal f and the locations of the significant co-
efficients, which may not be known in advance.

Compressive sampling suggests this relevant information
in the signal f can be captured using a small number of non-
adaptive (even random) measurements of the signal. Note that
there are only K coefficients are nonzero, so we can remove
this “sampling redundancy” by acquiring only M samples of
signal f , where K < M << N . The new M -length obser-
vation vector y can be represented as equation below:

y = Φf, (6)

where Φ is an M × N measurement matrix. The above
equation can be written as

y = ΦΨx = Θx, (7)

where Θ is given by:

Θ = ΦΨ, (8)

The signal f can be perfectly recovered fromM equals to
or a little bit more than measurementsK , if Θ satisfies the so-
called restricted isometry property (RIP)[6]. It suggests that
Θ is sufficiently incoherent and Φ cannot sparsely represented
basic vectors of matrix Ψ and vice versa.

It has been shown in [4] that choosing an iid Gaussian
random matrix as sensing matrix Φ, Θ is also iid Gaus-
sian for various orthonormal bases Ψ such as spikes, si-
nusoids, wavelets, Gabor functions, curvelets, and so on.
Θ is shown to have satisfied RIP with high probability, if
M ≥ cK log (N/K), where c is a small constant and hence
stable reconstruction is possible with high probability[7].
Note that it is not known in advance which coefficients of f
are zeroes, or which samples are not needed.

With the new observation vector y, we decide to recover
the signal f by �1–norm minimization; the proposed recon-
struction f ∗ is given by f ∗ = Ψx∗, where x∗ is the solution
to the convex optimization program(‖x‖ �1

≡∑i |x|)
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min
x̃∈RN

‖x̃‖�1
subject to y = ΦΨx̃, (9)

That is, among all the objects f̃ = Ψx̃ consistent with the
data, we choose the one whose coefficient sequence has mini-
mal �1–norm. As is well known, minimizing �1 subject to lin-
ear equality constraints can easily be reformulated as a linear
program of O(N 3) complexity. However, �1–minimization is
not the only way to recover sparse solutions; other methods,
such as greedy algorithm [8], has also been proposed.

4. COMPRESSIVE SAMPLING ALGORITHM IN
UWB NOISE RADAR SIGNAL

In this section, we propose an alternative method for dealing
with absolute values in linear program problem in (9), which
introduces new variables x+, x−, constrained to be nonneg-
ative, and let xi = x+

i − x−i [9].(Our intention is to have
xi = x+

i or xi = −x−i , depending on whether xi is posi-
tive or negative.) We then replace the occurrence of |x| with
x+

i + x−i and obtain the alternative formulation

min
N∑

i=1

(x+
i + x−i ) (10)

subject to ΦΨx+
i − ΦΨx−i = y (11)

x+, x− ≥ 0, (12)

where x+ = (x+
1 , x

+
2 , · · · , x+

n ), x− = (x−1 , x
−
2 , · · · , x−n ).

The relations xi = x+
i − x−i , x+ ≥ 0 , x− ≥ 0, are not

enough to guarantee that |x| = x+
i + x−i , and the validity of

this reformulation may not be entirely obvious. At an opti-
mal solution to the reformulated problem, and for each i, we
must have either x+

i = 0 or x−i = 0, because otherwise we
could reduce both x+

i and x−i by the same amount and pre-
serve feasibility, while reducing the cost, in contradiction of
optimality. Having guaranteed that either x+

i = 0 or x−i = 0,
the desired relation |x| = x+

i + x−i now follows.
Let A be the m by 2n matrix [ΦΨ − ΦΨ]. (11) can be

written as:

Az = y, z ≥ 0. (13)

It has a solution z∗, says, a vector in R2n which can be
partitioned as z∗ = [u∗ v∗], u∗ and v∗ are solution to x+

i and
x−i respectively; then x∗ = u∗ − v∗ solves (9). The recon-
struction signal f ∗ = Ψx∗. This linear program is typically
considered computationally tractable [6].

Intuitively, we can represent UWB noise radar signal in
cosine basis based on its representation in (1). The algorithm
we used is as follows:

1. Expand the signal in cosine basis Ψ
ψj(t) = n−1/2 cos(2πjt/n), t = 0, 1, · · · , n− 1 and obtain
coefficient vector x.

2. Choose the parameter M to obtain a new observation
vector y by correlating the signal with iid Gaussian matrix
with dimensionM ×N .

3. Create a new sensing matrix A and solve the linear
program described in equation (13).

4. Get the estimated coefficient vector x∗ and the recov-
ered signal f ∗.

5. Compare f ∗ with f to check whether the reconstruction
is exact.

6. If not, go back to step 2 and increase the number ofM .
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Fig. 1. UWB noise waveforms of received signal

5. SIMULATION RESULTS

The frequency of the received signal is 400-700 MHz and the
sampling rate is 1.5GHz/s. The property and waveform of
UWB noise radar signal are illustrated in Fig.1. Our goal is to
use M random measurements to exactly recover the original
signal.

Fig.2 (a) illustrates the sparse form of UWB noise radar
signal in cosine basis. We can see that only a small amount of
coefficients are nonzero. In other words, we can say the UWB
signal is sparse when expressed in cosine basis (K << N ).
Hence, we can apply the algorithm we proposed in Section 4
to UWB noise radar signal. Fig.2 (b) shows its exactly recon-
struction from a new observation vector y with length of 200
samples. It suggests that we can use only 1/5 samples of the
original data to represent the UWB noise radar signal without
any loss.

In the second experiment, we study the dependence of
probability of recovery (Pr) on the number of random mea-
surementsM . For each number ofM , we performed a Monte
Carlo simulation involving 500 realizations of a uniformly
random measurements. The role played by probability in
compressive sampling is demonstrated in Fig.3. When the
random measurementsM is less than 177, no algorithm what-
soever would of course be able to reconstruct the signal. The
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Fig. 2. (a) Sparse UWB noise radar signal in cosine basis (b)
its reconstruction by �1 minimization. The reconstruction is
exact.
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Fig. 3. UWB noise radar signal recovery from M random
measurements. The probability of successful recovery de-
pends on the measurements M.

probability of exact reconstruction increases while the num-
ber of M increases. The probability of exact recovery does
not occur is truly negligible when M ≥ 200.

6. CONCLUSION

We have applied the novel concept of compressive sampling
on a practical problem of sampling UWB noise radar signal.
From our investigation, we could draw the following con-
clusion: 1) The UWB noise radar signal is sparse when ex-
pressed in cosine basis Ψ. 2) Gaussian random matrices are
largely incoherent with any fixed basis, which can efficiently
acquiring the information in the original signal. 3) With 200
random measurements we can reconstruct the signal with neg-
ligible probability to fail.
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Abstract—Compressive sampling(CS) is an emerging filed
based on the revelation that a small collection of linear projec-
tions of a sparse signal contains enough information for stable,
sub-Nyquist signal acquisition. UWB noise radar is one of the
novel techniques which are widely used in various applications
such as emergence rescues and military operations.Compressive
sampling could be applied to UWB noise radar signal due
to its sparsity in cosine waveform domain. In this paper, we
apply amplitude based approach to compress data without any
knowledge in advance. Simulation results indicate that fewer
measurements are needed to fully recover original data compared
with conventional compressive sampling.

I. INTRODUCTION

Compressive sensing (CS) is a new method to capture and
represent compressible signals at a rate significantly below
the Nyquist rate. It employs nonadaptive linear projections
that preserve the structure of the signal; the signal is then
reconstructed from these projections using an optimization
process. This leads immediately to new signal reconstruction
methods that are successful with surprisingly few measure-
ments, which in turn leads to signal acquisition methods that
effect compression as part of the measurement process (hence
“compressive sensing”). These recent realizations (though built
upon prior work exploiting signal sparsity)have spawned an
explosion of research yielding exciting results in a wide range
of topics, encompassing algorithms,theory, and applications.

Since the UWB signal is usually in UHF range (500-
1000MHz), sampling rate should be more than 1GHz/s
(Nyquist rate) for alias-free signal sampling which requires
plenty of space to store received signal. In this paper, we
apply amplitude based compressive sampling in UWB noise
radar signal, which asserts that one can recover it from far
fewer samples than traditional Nyquist rate. It also enhances
the operational feasibility of UWB noise radar.

II. OVERVIEW OF COMPRESSIVE SAMPLING

A. Sparsity and undersampled signal recovery

Many natural signals have concise representations when
expressed in the proper basis [12]. Mathematically speaking,
consider a discrete signal f ∈ RN which can be expanded in
an orthonormal basis Ψ = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
N∑

i=1

xiψi(t), (1)

where x is the coefficient sequence of f that can be
computed from the signal f :

xi = 〈f, ψi〉 , i = 1, 2, · · · , N. (2)

It will be convenient to express f as Ψx (where Ψ is the
n× n matrix with ψ1ψ2 · · ·ψn as columns). We can say the
discrete signal f is K-sparse in the domain Ψ, K << N , if
only K out of N coefficients in the sequence x are nonzero.
Sparsity of signal is a fundamental principle used in the
compressive sampling as well as in most modern lossy coders
such as JPEG-2000 and many others, since a simple way
for image compression would be to compute x from f and
then only encode the values and locations of the largest K
coefficients.Examples in [10] show that perceptual loss is
hardly noticeable from a megapixel image to its approximation
obtained by throwing away 97.5% of the coefficients.

Unfortunately, this compression process requires computing
all N coefficients of signal f and the locations of the significant
coefficients, which may not be known in advance. Compres-
sive Sampling suggests this relevant information in the signal
f can be captured using a small number of nonadaptive (even
random) measurements of the signal. It provides us a potential
way to acquire the sparse data efficiently, or equivalently,
highly accurate recovery of sparse data from undersampled
measurements.

Note that there are only K coefficients are nonzero, so we
can remove this “sampling redundancy” by acquiring only M
samples of the signal f , where K < M << N . The new
M-length observation vector y can be represented as equation
below:

y = Φf, (3)

where Φ is an M × N measurement matrix. The above
equation can be written as

y = ΦΨx = Θx, (4)
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where Θ is given by:

Θ = ΦΨ, (5)

The signal f can be perfectly recovered from M equals to
or a little bit more than measurements K , if Θ satisfies the so-
called restricted isometry property (RIP)[8]that we will further
investigate. It suggests that Θ is sufficiently incoherent and Φ
cannot sparsely represented basic vectors of matrix Ψ and vice
versa.

It has been shown [12] that choosing an iid Gaussian
random matrix as sensing matrix Φ, Θ is also iid Gaussian
for various orthonormal bases Ψ such as spikes, sinusoids,
wavelets, Gabor functions, curvelets, and so on. Note that it
is not known in advance which coefficients of f are zeroes,
or which samples are not needed.

With the new observation matrix y, we decide to recover
the signal f by �1–norm minimization; the proposed recon-
struction f ∗ is given by f ∗ = Ψx∗, where x∗ is the solution
to the convex optimization program(‖x‖ �1

≡∑i |x|)

min
x̃∈RN

‖x̃‖�1
subject to y = ΦΨx̃, (6)

That is, among all the objects f̃ = Ψx̃ consistent with
the data, we choose the one whose coefficient sequence has
minimal �1–norm. As is well known, minimizing �1 subject to
linear equality constraints can easily be reformulated as a lin-
ear program of O(N 3) complexity. However, �1–minimization
is not the only way to recover sparse solutions; other methods,
such as greedy algorithm [7], has also been proposed.

B. Partial measurement of compressive sampling

We already know how to recover signal from far fewer sam-
ples. The remaining question is that how many measurements
we need to have to get original signal fully recovered. It is
critical since we need to guarantee the recovery is perfect
otherwise the algorithm is meanless, meanwhile; we also want
to minimize the number of measurements in order to achieve
higher compression ratio to make this algorithm more efficient.

[12] shows that for a fixed signal support T of size |T | = S,
the program

min
x∈RN

‖x‖�1
subject to y = ΘΩx, (7)

recovers the overwhelming majority of x supported on T
and observation subsets Ω of size

‖Ω‖ ≥ C · μ2(Θ) · S · logn, (8)

where μ(Θ) is simply the largest magnitude among the
entries in Θ:

μ(Θ) = max
k,j

‖Θk,j‖ . (9)

It is important to understand the relevance of the parameter
μ(Θ) in (8). μ(Θ)can interpreted as a rough measure of how
concentrated the rows of Θ are. Since each row (or column)
of Θ necessarily has an �2–norm equal to

√
n, μ will take a

value between 1 and
√
n. When the rows of Θ are perfectly

flat: ‖Θk,j‖ = 1 for each k, j , as in the case when Θ is the
discrete Fourier transform, we will have μ(Θ) = 1, and (8) is
essentially as good as follows.

‖Ω‖ ≥ C · S · logn, (10)

If a row of Θ is maximally concentrated– all the row
entries but one vanish– then μ2(Θ) = n, and (8) offers us
no guarantees for recovery from a limited number of samples.
This result is very intuitive. Suppose indeed that Θk0,j0 =

√
n

and x is 1-sparse with a nonzero entry in the j0th location.
To reconstruct x, we need to observe the k0th entry of Θx
as otherwise, the data vector y will vanish. In other words, to
reconstruct x with probability greater than 1 − 1/n, we will
need to see all the components of Θx, which is just about the
content of (8).This shows informally that (8) is fairly tight on
both ends of the range of the parameter μ.

In our signal processing application, Θ can be decomposed
as a product of a sparsity basis Ψ, and an orthogonal mea-
surement system Φ.Where

Θ = ΦΨ, (11)

Ψ∗Ψ = I, (12)

Φ∗Φ = nI. (13)

Result in (8) then tells us how the relationship between the
sensingmodality (Φ) and signal model (Ψ) affects the number
of measurements required to reconstruct a sparse signal. The
parameter μ can be rewritten as

μ(Φ Ψ) = max
k,j

|〈φk, ψj〉| , (14)

and serves as a rough characterization of the degree of
similarity between the sparsity and measurement systems.
For μ to be close to its minimum value of 1, each of the
measuremen vectors (rows of Φ)must be ‘spread out’in the Ψ
domain. To emphasize this relationship μ(Θ) is often referred
to as the mutual coherence [15]. The bound (8) tells us that a
S-sparse signal can be reconstructed from ∼ S logn samples
in any domain in which the test vectors are ‘flat’, i.e. the
coherence parameter is O(1).

III. LINEAR PROGRAMMING IN COMPRESSIVE SAMPLING

An alternative method for dealing with absolute values in
linear program problem in (6) is to introduce new variables
x+, x−, constrained to be nonnegative, and let x i = x+

i +
x−i [14].(Our intention is to have xi = x+

i or xi = −x−i ,
depending on whether xi is positive or negative.) We then
replace the occurrence of |x| with x+

i + x−i and obtain the
alternative formulation

min
N∑

i=1

(x+

i + x−i ) (15)

subject to ΦΨx+

i − ΦΨx−i = y (16)
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x+, x− ≥ 0, (17)

where x+ = (x+

1
, x+

2
, · · · , x+

n ) and x− =
(x−

1
, x−

2
, · · · , x−n ).

The relations xi = x+

i + x−i , x+ ≥ 0 , x− ≥ 0, are not
enough to guarantee that |x| = x+

i + x−i , and the validity
of this reformulation may not be entirely obvious. At an
optimal solution to the reformulated problem, and for each
i, we must have either x+

i = 0 or x−i = 0, because otherwise
we could reduce both x+

i and x−i by the same amount and
preserve feasibility, while reducing the cost, in contradiction of
optimality. Having guaranteed that either x+

i = 0 or x−i = 0,
the desired relation |x| = x+

i + x−i now follows.
Let A be the m by 2n matrix [Θ − Θ]. (8) can be written

as:

Az = y, z ≥ 0. (18)

It has a solution z∗, says, a vector in R2n which can be
partitioned as z∗ = [u∗ v∗]; then x∗ = u∗−v∗ solves (6). The
reconstruction f ∗ = Ψx∗. This linear program is typically
considered computationally tractable [8].

IV. ADAPTIVE COMPRESSIVE SAMPLING ALGORITHM

According to UWB indoor multi-path channel model (IEEE
802.15.SG3a,2003), the average power delay profile(PDP) is
characterized by an exponential decay of the amplitude of
the clusters [11]. Therefore, we may roughly consider the
amplitude of received UWB signal as

ŷ =
{

Ae−Bx, if y > 0
−Ae−Bx, if y < 0

where ŷ is the amplitude of estimated received echo, x is
sample index and y is the amplitude of original measured
data. A and B are constants. These two parameters should
be carefully chosen so that ŷ is as close as y as possible. In
our simulation, we use A = 35000 and B = 0.00025.

From our investigation, we find that the sparsity of received
signal(nonzero coefficients) has a linear relationship with the
sample index. If we compress data with every 2000 samples.
Then, this relationship can be roughly described as

U = 410 −K · I (19)

where U is the sparsity of UWB radar signal, I is the first
sample index of every 2000 samples. K is a constant,here we
use K = 30/2000.

From the above relationships, we can apply adaptive com-
pressive sampling algorithm to process the UWB radar data
based on the amplitude and the signal and its sparsity. When
receiving the signal, we pass it through an envelop detector
and an amplifier which coefficient is K = 1/A = 1/35000.
Hence we get the new signal

ỹ = e−Bx (20)

where B = 0.00025.

we sum up 2000 samples of ỹ

Sn =
∫ n+2000

n

ỹdy =
∫ n+2000

n

e−Bxdx (21)

= e−Bn − e−B(n+2000) (22)

where n is index of the first samples of every 2000
samples. Its value can be 0,2000,4000, . . . ,12000. Where
S0 = 1 − e−2000BandB = 0.00025, so we can get all the
value of Sn, n = 0, 1, . . . , 6. When we compress the data,
we only need to sum up 2000 samples to get(Srec)value and
compare it with Sn,find n to minimize |Srec − Sn|. Then we
can plug n in (19) to get the sparsity of the signal. Based on
(10), we can adaptively choose the number of measurement in
order to achieve higher compression ratio. Note that we can
initiate receiving signal at any sample index, what we need to
do is to obtain successive16000 successive samples and sum
every 2000 samples, hence we can get all the values of Sn

and then we could do the compression with the algorithm we
mentioned above. The first 16000 can be treated as a kind of
taring sequence.
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Fig. 1. UWB noise waveforms of transmitted signal

V. SIMULATION RESULTS

Fig.2 (a) illustrates the sparse form of UWB noise radar
signal in cosine basis. We can see that only a small amount of
coefficients are nonzero. In other words, we can say the UWB
signal is sparse when expressed in cosine basis (K << N ).
Hence, we can apply the compressive sampling in UWB noise
radar signal. Fig. 2 (b) shows its exactly reconstruction using
adaptive compressive sampling from a new observation vector
y.

The role played by probability in compressive sampling is
demonstrated in Fig.3. When the random measurements M is
less than 2000, no algorithm whatsoever would of course be
able to reconstruct the signal. The probability of exact recon-
struction increases while the number of M increases. From
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Fig. 2. (a) Sparse UWB noise radar signal in cosine basis (b) its reconstruc-
tion by �1 minimization. The reconstruction is exact.
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Fig. 3. UWB noise radar signal recovery from M random measurements.
The probability of successful recovery depends on the measurements M.

this fig, we can conclude that using our new algorithm, 2600
samples are sufficient to recover the signal with probability
almost equal to 1, while using the conventional CS we need
around 3000 samples. The probability of exact recovery does
not occur is truly negligible when M ≥ 2600. Thus, we only
have to tolerate a probability of failure that is extremely small.

VI. CONCLUSION

We have applied the novel concept of compressive sam-
pling on a practical problem of sampling UWB noise radar
signal. From our investigation, we could draw the following
conclusion: 1) The UWB noise radar signal is sparse signal
when expressed in convenient basis Ψ. 2) Random Gaussian
matrices are largely incoherent with any fixed basis, which can
efficiently acquiring the information from the original signal.
3) Our proposed algorithm could achieve better compression
ratio than conventional CS algorithm; with same number of
measurements, we could get higher probability to get original
signal fully recovered.
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ABSTRACT

We investigate the use of information theory to design wave-
forms for the measurement of extended radar targets in radar
sensor networks (RSN). The different channel gains for trans-
mitting signals from different radar sensors are introduced to
model the radar system channel. We optimized the estimation
waveforms that maximize the mutual information between a tar-
get ensemble and the received signal in additive Gaussian noise
given the transmitting signals so that characteristics of the target
could be well recgonized. We also study the maximum mutual
information with the constraints on the number of radar sensors,
waveform energy and duration, which could be taken into con-
sideration when waveforms are designed for RSN.

Index Terms— Waveform design, Mutual information, RSN

1. INTRODUCTION

Information theory has been applied to investigating radar sys-
tem by Woodwar and Davies[1]-[2]. For these works, the infor-
mation theory is particulary used in the area of radar detection.
Considering the application of information theory in radar de-
tection problem, it is summarized to gain information from a
mixture of signal and unwanted noise by obtaining as large a
signal-to-noise ratio as possible on the grounds in[3].

Meanwhile, much time and efforts has been put into wave-
form design problem radar system. Wilcox[4] studied the prob-
lem of designing waveforms from the radar ambiguity function
for narrowband signals. Naparst[5] considered the problem of
wideband waveform design and processing to resolve targets in
dense target environments. It is not until 1993 when Bell[6] first
used mutual information in the design of single radar waveforms
and processing to conclude that distributing energy is a good
choice to better detect targets..

Radar sensor network (RSN) is a newly studied topic that
multiple radar sensors can be combined to form a multiradar sys-
tem to overcome performance degradation of single radar along
with waveform optimization. In [7], Liang studied constant fre-
quency (CF) pulse waveform design and proposed maximum-
likelihood (ML) automatic target recognition (ATR) approach
for both nonfluctuating and fluctuating targets in a network of
multiple radar sensors. In [8], RSN design based on linear
frequency modulation (LFM) waveform was studied and LFM
waveform design was applied to RSN with application to ATR
with delay-Doppler uncertainty by Liang as well. Nevertheless,
none of the works have considered the use of information theory
in radar waveform design for RSN.

In this paper, we studied the problems of designing a set
of radar waveforms for optimal target information extraction in
RSN. Here, the radar targets are modeled as extended radar tar-
gets of significant physical extent but not the simple point targets
for the purpose of extracting information about a target. The
problem is modeled to design of radar waveforms which maxi-
mize the mutual information between the extended target and the
receiver output. Close formula has been derived for the wave-
form and an example has been illustrated to further study it.

The rest of the paper is organized as follows. In Section
2, we analyze and formulate the problem of waveform design
for target estimation in RSN. We further study the estimation
waveform problem for target recognition in RSN and derive a
close formula for the maximum mutual information between the
extended target and the receiver output in Section 3. Section 4,
we present an example of performance of waveforms for optimal
target estimation problem in RSN. In Section 5, conclusions are
drawn on waveform design in application of information theory
in RSN .

2. PROBLEM ANALYSIS

In a radar system, we make measurements of a target in order
to determine unknown characteristics of it. In other words, we
make measurements of a target in order to decrease the a pri-
ori uncertainty about the target. From the view of informa-
tion theory, it makes sense that if greater accuracy is required
in the measurements, more information must be provided about
the object being measured. Thus, it is easy to understand that
the greater the mutual information between the target and the
received radar signal when the transmitting signal is given, the
greater the quantity of information describing the object and the
greater the reduction in the a priori uncertainty about the target.
The waveforms solved for maximizing such mutual information
is called information extraction waveforms or estimation wave-
form which is studied in this paper.

The radar sensor network channel model is shown in Fig. 1.
Here, x1(t), ..., xN (t) are a set of N finite-energy deterministic
waveforms with the total energyEx transmitted by the transmit-
ter in order to make a measurement of the radar target. Each
waveform is assumed to be of the same duration T and confined
to the symmetric time interval [−T/2, T/2].

Ex =
N∑

i=1

∫ T/2

−T/2

|xi(t)|2dt (1)
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Fig. 1. Radar sensor network channel model

The average power Px, which satisfies the relation Ex =
NPxT , is introduced, since most real radar systems have the en-
ergy constraint on the average power of the waveform instead of
the total energy. We also assume that each waveform is confined
to a frequency interval w = [f0, f0 +W ] so that only negligible
energy resides outside the frequency interval w.

The target has a scattering characteristic modeled by the ran-
dom impulse response g(t). The resulting scattered

z(t) =
N∑

i=1

∫ T/2

−T/2

g(τ)xi(t− τ)dt (2)

The noise process at the receiver is the zero-mean additive
Gaussian noise process n(t) which is assumed to be station-
ary and ergodic, and to have one-sided power spectral density
Pnn(f) = 2Snn(f) for f > 0. n(t) is also statistically inde-
pendent of both the transmitted waveforms and the target im-
pulse response. he ideal linear time-invariant bandpass filter
B(f) is included so that the transmitted signal has no signifi-
cant energy outside the frequency interval w, neither does z(t)
which is the summation of responses of a linear time-invariant
system to the transmitted signal. According to the Fig. 1, the
problem of Radar Sensor Network can be stated as following.
Given a Gaussian target ensemble with random impulse response
g(t) having spectral variance σ2

G(f), find the set of waveforms
x1(t), ..., xN (t) each confined to the symmetric time interval
[−T/2, T/2] and having all but a negligible fraction of their en-
ergy confined in (one-sided) frequency to w = [f 0, f0 +W ] that
maximize the mutual information I(y(t); g(t)|x1(t), ..., xN (t))
in additive Gaussian noise with one-sided power spectral density
Pnn(f).

3. WAVEFORMS FOR ESTIMATION IN RADAR
SENSOR NETWORK

We are interested in finding the set of waveformsx1(t), ..., xN (t)
that maximize the mutual information I(y(t); g(t)|x1(t), ..., xN (t))
between the random target impulse response and the received
radar waveform under constraints on their energy and band-
width. Since it could be shown that I(y(t); g(t)|x1(t), ..., xN (t))
could be maximized when I(z(t); g(t)|x1(t), ..., xN (t)) is max-
imized, we will find the functions x1(t), ..., xN (t) that maxi-
mize I(z(t); g(t)|x1(t), ..., xN (t)). We could easily obtain that
for the class of functions xi(t) x1(t), ..., xN (t) that maximize
I(y(t); z(t)|x1(t), ..., xN (t)), I(y(t); g(t)|x1(t), ...,
xN (t)) = I(y(t); z(t)|x1(t), ..., xN (t)). We do not provide the

proof here because of the space limit, but [6] could be referred
to for the proving method.

According to the chain rule for mutual information in infor-
mation theory,

I(z(t); g(t)|x1(t), x2(t), ..., xN (t)) (3)

chain rule=
N∑

i=1

I(z(t); g(t)|xi(t))

Then, we consider the small frequency intervalFk = [fk, fk+
∆f ] of bandwidth ∆f small enough such that for all f ∈
Fk, X(f) ≈ X(fk), Z(f) ≈ Z(fk), and Y (f) ≈ Y (fk). If
ẑk(t) correspond to the component of z(t) with frequency com-
ponents in Fk, and ŷk(t) correspond to the component of y(t)
with frequency components in Fk, the mutual information be-
tween ẑk(t) and ŷk(t), given that xi(t) is transmitted, could be
expressed as [6]

I(ŷk(t); ẑk(t)|xi(t)) (4)

= T̃∆f ln[1 +
2|hiXi(fk)|2σ2

G(fk)
Pnn(fk)T̃

]

Here, the observing time interval is T = [t0, t0 + T̃ ].
We partition the frequency bandwidth into M disjoint fre-

quency intervals Fk, with ŷk(t), ẑk(t) and n̂k(t) in the compo-
nent in Fk . According to [9], when it is made up of Gaussian
random processes with disjoint power spectral densities, such
processes corresponding to each Fk are known to be statistically
independent. Therefore, the mutual information given that x(t)
is transmitted is equal to the sum of each mutual information
between ŷk(t) and ẑk(t) given that x(t) is transmitted:

I(y(t); z(t)|xi(t)) =
M∑

k=1

I(ŷk(t); ẑk(t)|xi(t)) (5)

If we enlarge the number M of disjoint intervals of band-
width ∆f in the frequency bandwidth w = [f0, f0 + W ], then
∆f → 0. In the limit, we achieve an integral for the mutual
information I(y(t); z(t)|xi(t)) :

I(y(t); z(t)|xi(t)) (6)

= T̃

∫
w

ln[1 +
2|hiXi(f)|2σ2

G(f)
Pnn(f)T̃

]df

Take equations (3) and (6) into consideration, we could eas-
ily get:

I(y(t); z(t)|x1(t), x2(t), ..., xN (t)) (7)

=
N∑

i=1

T̃

∫
w

ln[1 +
2|hiXi(f)|2σ2

G(f)
Pnn(f)T̃

]df

We assume that

Ex =
N∑

i=1

∫
w

|Xi(f)|2df, (8)

and the resulting maximum value of I(y(t); z(t)|x1(t), ..., xN (t))
is

NT̃

∫
w

max[0, ln(
2σ2

G(f)
NPnn(f)λ

N∑
i=1

|hi|2)]df (9)
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Proof : According to Jenson’s Inequality[10]

I(y(t); z(t)|x1(t), x2(t), ..., xN (t)) (10)

≥ (
N∑

i=1

T̃ )[
∫

w

ln(1 +
2σ2

G(f)
∑N

i=1 |hiXi(f)|2∑N
i=1 Pnn(f)T̃

)df ]

Based (8) and (8), we use the Lagrange multiplier technique
[11] to form a function

Φ(|Xi(f)|2) =
N∑

i=1

T̃

∫
w

ln[1 +
2|hiXi(f)|2σ2

G(f)
Pnn(f)T̃

]df

−λ(
N∑

i=1

∫
w

|Xi(f)|2df − EX) (11)

The equation (11) is equivalent to maximizing ϕ(|X i(f)|2)
with respect to |Xi(f)|2, where

ϕ(|Xi(f)|2) =
N∑

i=1

T̃ ln[1 +
2|hiXi(f)|2σ2

G(f)
Pnn(f)T̃

]

−λ
N∑

i=1

|Xi(f)|2 (12)

Here, λ is the Lagrange multiplier which could be deter-
mined by the constraint of (8). Thus, maximizing Φ(|X i(f)|2),
the |Xi(f)|2 that maximizes ϕ(|Xi(f)|2) is

|Xi(f)|2 = T̃ /λ− Pnn(f)T̃
2σ2

G(f)|hi|2 (13)

Since the magnitude-square spectrum should be no less than
zero, we could further rewrite the equation (13) as

|Xi(f)|2 = max[0, T̃ /λ− Pnn(f)T̃
2σ2

G(f)|hi|2 ]. (14)

We take (14) into (11), and the result could be easily proved.
In addition, substituting the (13) into the constraint of (8),

we obtain

N∑
i=1

∫
w

|Xi(f)|2df =
N∑

i=1

∫
w

(T̃ /λ− Pnn(f)T̃
2σ2

G(f)|hi|2 )df

= Ex (15)

Solving it, we have

λ =
T̃Nw

Ex +
∑N

i=1

∫
w

Pnn(f)T̃
2σ2

G(f)|hi|2 df
(16)

As a result, I(y(t); z(t)|x1(t), ..., xN (t)) could be maximized
by the |Xi(f)|2 that

|Xi(f)|2 =
Ex +

∑N
i=1

∫
w

Pnn(f)T̃
2σ2

G(f)|hi|2 df

Nw
− Pnn(f)T̃

2σ2
G(f)|hi|2 (17)

Observing the equation (14), we see that |X i(f)|2 is a func-
tion of several factors such as T̃ , λ, Pnn(f) and |hi|. |Xi(f)|2
gets larger as Pnn(f) gets smaller if all the other factors are held

constant for f ∈ w. Oppositely, |Xi(f)|2 gets larger as the vari-
ance of G(f) σ2

G(f) or the pulse duration T̃ get larger if all the
other factors are held constant. Since we have different channels
for different transmitting sensor in a RSN, the effect of differ-
ent channel gain hi for each transmitter should be of importance
here. If all the other factors are held constant for f ∈ w, we show
an interesting interpretation of the relationship between |X i(f)|2
and |hi| in Fig. 1.
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Fig. 2. Waterfilling interpretation of magnitude-squared spec-
trum |Xi(f)|2

The Fig. 2 is a ”waterfilling ” strategy which is widely used
in problems dealing with power or energy allocation in informa-
tion theory [12]. As a result, Fig. 2 gives a pictorial view of opti-
mal power allocation strategy for RNS if each channel gain could
be properly estimated. The transmitter allocates more power to
the stronger channel, taking advantage of the better channel con-
ditions and less or even no power to the weaker ones.

4. RESULTS AND COMPARISON

We will illustrate an example to examine the optimal transmitted
signals’ spectrum characteristics and the amount of information
obtained. From (9), the maximum mutual information is given

Imax(y(t); z(t)|x1(t), ..., xN (t))

= NT̃

∫
w

max[0, ln(
2σ2

G(f)
NPnn(f)λ

N∑
i=1

|hi|2)]df (18)

The Fig. 3 will display the results of numerical solutions of (16)
and (18) for the mutual information Imax(y(t); z(t)|x1(t), ..., xN (t))
as a function of both the pulse duration T (here, since we
assume T >> 1/w, then T = T̃ ) and average power Px.
The value of T equals to 10µs, 100µs, 1ms10ms and 100ms,
while average power Px varies over the range from 1W to
1000W for each T value. And the number of radar sensors
in the RSN is 8. Fig. 3 shows that the mutual information
Imax(y(t); z(t)|x1(t), ..., xN (t)) is proportional to transmitted
pulse duration T . In the practical RSN, the duration of the
transmitted signal T is often referred to as the ”time-on-target”
in radar target-recognition problems. It makes sense that if all
other factors are equal, the longer the ”time-on-target”, the bet-
ter the target could be recognized. This point also well matches

797 of 816



10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Average Power for Radar Sensors P
x
, Watts

I m
ax

, n
at

s

 

 

T=10 µs
T=100 µs
T=1 ms
T=10 ms
T=100 ms

Fig. 3. Maximum mutual information as a function of T and P x

10
0

10
1

10
2

10
310

1

10
2

10
3

10
4

10
5

10
6

Average Power for Radar Sensors P
x
, Watts

I m
ax

, n
at

s

 

 

N=1
N=10
N=20
N=30

(a) A function of N and Px

10
−5

10
−4

10
−3

10
−2

10
−110

2

10
4

10
6

10
8

10
10

10
12

The pulse duration, s

I m
ax

, n
at

s

 

 

N=1
N=10
N=20
N=30

(b) A function of N and T

Fig. 4. Maximum mutual information

up to the expression in (18). In addition, it is easy to see and un-
derstand that the more average power allocated on transmitting
signals the more mutual information we get at the receiver, as
well as the better performance of the target recognition system.

Since RSN is constructed by a number of radar sensors, it is
necessary to study the maximum mutual information as a func-
tion of the number of radars in RSN N and average power Px

and a function of N and T . The resulting maximum values of
I(y(t); z(t)|x1(t), ..., xN (t)) is plotted in Fig. 4(a). The solu-
tion is carried out for values of N equals to 1, 10, 20 and 30,
Px varies from 1W to 1000W and T varies over the range from
10µs to 100ms. Though the number of radar senors are chang-
ing here, we assume the total power allocated on the transmit-
ting sensors are equal in order to compare the target recognition
performance. Observing Fig. fig:subfig:a1, the maximum mu-
tual information is proportional to the number of radars in RSN
N . Large number of radar sensor such as N ≥ 10 the increase
of the maximum mutual information is not as distinct as when
N increase form 1 to 10. The same story happens to the the
maximum mutual information as a function of N and T . In
a word, the more radar sensors, the better the target could be
recognized. However, all three factors N,T and Px should be
carefully decided between the balance of optimizing recogniz-
ing performance and the industry implementation cost.

5. CONCLUSION

In this paper, we studied the waveforms design for the measure-
ment of extended radar targets in radar sensor networks (RSN)
in the view of information theory. Considering the effect of dif-
ferent channel gains, we investigated the estimation waveforms
that maximize the mutual information between a target ensem-
ble and the received signal in additive Gaussian noise given the
transmitting signals so that characteristics of the target could be
well recgonized. From the study of the maximum mutual in-
formation with the constraints on the number of radar sensors,
waveform energy and duration, which could be taken into con-
sideration when waveforms are designed for RSN, some useful
conclusions for waveforms design in RSN could be drawn. If the
channel could be well estimated, the transmitter could allocate
more power to the stronger channel to gain better performance.
Considering the factors such as the number of radars in RSN N ,
the signal duration T , and average power Px, and their relations
the corresponding maximum mutual information as a function of
them could be used.

6. REFERENCES

[1] P. Woodward and I. Davis, “A theory of radar information,”
Phil. Mag., vol. 41, pp. 1101–1117, October 1951.

[2] I. Davis, in On determining the presence of signals in noise,
vol. 99. Proc. IEE, 1952, pp. 45–51.

[3] P. Woodward, Probability and Information Theory with Ap-
plications to Radars. London: England: Pergamon, 1953.

[4] R. Blahut, W. Miller, and C. Wilcox, Radar and Sonar.
New York: Springer-Verlag, 1991.

[5] H. Naparst, “Dense target signal processing,” IEEE Trans.
Inform, Theory, vol. IT-37, pp. 317–327, March 1991.

[6] M. Bell, “Information theory and radar: Mutual infor-
mation and the design and analysis of radar waveforms
and systems,” Ph.D. Dissertation, California Inst. Tech-
nol., 1988.

[7] Q. Liang, in Waveform Design and Diversity in Radar Sen-
sor Networks: Theoretical Analysis and Application to Au-
tomatic Target Recognition, vol. 2. Sensor and Ad Hoc
Communications and Networks, 2006. SECON’06, 2006,
pp. 684–689.

[8] ——, in Radar Sensor Networks for Automatic Target
Recognition with Delay-Doppler Uncertainty, vol. 23-25.
Military Communications Conference, 2006. MILCOM
2006, 2006, pp. 1–7.

[9] A. Papoulis, Probability, Random Variables, and Stochas-
tic Processes. New York: McGraw-Hill, 1965.

[10] T. Cover and J. Thomas, Elements of Information Theory.
2nd ed. John Wiley & Sons, Inc, 2006.

[11] F. Hildebrand, Advanced Calculus for Applications. NJ:
Prentice-Hall: 2nd ed. Englewood Cliffs, 1976.

[12] R. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

798 of 816



Outdoor Propagation Channel Modeling in Foliage
Environment

Jing Liang and Qilian Liang
Department of Electrical Engineering

University of Texas at Arlington
E-mail: jliang@wcn.uta.edu, liang@uta.edu

Abstract— In this paper, we study the statistical modeling for
outdoor non line-of-sight (NLOS) channels in rich scattering
and time-varying foliage environment based on extensive data
collected by both narrowband and ultra-wideband (UWB) radar
sensors. The multipath contributions arrive at the receiver are
grouped into clusters. The time of arrival of clusters can be
modeled as a Poisson arrival process, while within each cluster,
subsequent multipath contributions or rays also arrive according
to a Poisson process. However, the parameters are quite different
along with the frequency. We also observe that the amplitude
of channel coefficient at each path can be more accurately
characterized as log-logistic distribution (LLD) other than log-
normal, Weibull or Rayleigh due to the best goodness-of-fit and
smallest root-mean-square error (RMSE).

I. INTRODUCTION

Forest has been an asymmetric threat environment due to a
limited sensing capability of a warfighter. Understanding the
signal propagation channels in foliage will assist a range of
applications such as target detection, situation monitoring and
wireless communications.

There have been many efforts into investigating outdoor
propagation channels. In narrowband mobile radio channels,
Rayleigh, Rician and Nakagami distributions have been com-
monly used for the flat fading modeling. For wideband chan-
nels, the Ultra-Wideband (UWB) signal is of most interest due
to the exceptional range resolution coupled with penetrating
capability and low power. [1] has applied UWB radar-like
test apparatus to obtain propagation delays, which serves as a
preliminary investigation into UWB channel for rural terrain,
but more extensive measurements and further analysis are ab-
sent for statistical characterization; [2] has characterized UWB
channels for outdoor office environment by S-V model with
modifications on the ray arrival times and amplitude statistics
to fit the empirical data. However, these parameters may not
fit foliage environment as trees and branches provide different
scattering compared to indoor situation. Some experimental
outdoor studies other than UWB are presented in [3][4]. [3]
proposes that instead of Rayleigh, Weibull provides better fit
to spatially and temporally extended spiking data; [4] shows
that the foliage is impulsively corrupted with multipath fading,
which leads to inaccuracy of the K-distribution model.

Like indoor environment, the foliage contains a wealth of
multiple scattering other than LOS free space. In addition,
the movement of leaves, branches and even the tree trunks
contribute to the time-variance fading phenomenon. Since the
foliage medium can be completely described by its time and

space varying feature, one can investigate the channel model
based on characterization of the channel impulse response
(CIR).

In our investigation, we will apply both narrowband and
ultra-wide band (UWB) radar sensors to model the propagation
channels, as we believe that foliage is composed of intervening
materials that are electromagnetically dispersive, which con-
tributes to the strong frequency dependence of foliage, and
thus a narrowband-wideband study would assist with the better
understanding of statistic property of the channel. Narrowband
signals have been tried at 200, 400 and 600 megahertz respec-
tively, while UWB pulse generator is capable of producing
pulses with width 750ps. Each frequency component in a radar
signal will sense the foliage in a slightly different manner,
therefore provides differences in multipath.

One can easily identify that this work is different from
[6]. [6] solely described amplitude of back scattered clutter
signals using UWB radars, while the current work analyze
temporal property as well as amplitude characterization for
both narrowband and UWB CIR.

The rest of this paper is organized as follows. In Section
II, we apply CLEAN algorithm to extract CIR for 200MHz,
400MHZ, 600MHz and UWB signals. Section III presents the
channel model in view of temporal characterization as well as
statistic model comparison. We conclude our work in Section
IV.

II. CHANNEL IMPULSE RESPONSE BASED ON THE
MEASURED DATA AND CLEAN ALGORITHM

For detailed measurement setup, readers please refer to [6].
The average transmitted and received pulses at position 4 for
different frequencies have been illustrated from Figs. 1 - 4. The
purpose of average is to remove white Gaussian noise. Note
that at a different position the result will be slightly different.
However, illustration at one position is sufficient enough to
describe the characterization.

The complicated multipath and time-varying CIR can be
modeled as follows [7]

r(t) ≈
∑

n

anpn(t− τn) (1)

where an and τn is referred to as the amplitude and delay of
the nth propagation path. In order to extract the CIR from our
measurement, the CLEAN algorithm has been used. It was
initially introduced in [8] to enhance radio astronomical maps
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Fig. 1. Measurement of 200MHz and 35 pulses average : (a) transmitted
pulse (b) received echoes

of the sky, and has also been employed in narrowband channel
modeling [9][10]and UWB channel characterization problems
[7][11].

Our steps involved [11] are:
1) Calculate the autocorrelation of the transmitted signal

Rss(t) and the cross-correlation of the transmitted with
the received waveform Rsy(t).

2) Find the largest correlation peak in Rsy(t), record the
normalized amplitudes αk and the relative time delay τk

of the correlation peak.
3) Subtract Rss(t) scaled by αk from Rsy(t) at the time

delay τk.
4) If a stopping criterion (a minimum threshold) on the

peak correlation is not met, go step 2. otherwise stop.
Given the transmission, reception and the CLEAN process-

ing described above, the obtained CIR are illustrated from Fig.
5 to Fig. 8. Note that we plot the absolute value of the UWB
channel for the comparison between the outdoor UWB channel
with the indoor S-V model [12] (see Fig. 9). It is shown that

1) Both narrowband and UWB channels are made up of
multipath components. The time-varying path magnitude
implies that fading generally exists, therefore the re-
ceived pulses are fairly random from one time to another.

2) The UWB channel we obtained looks similar as the
CIR in S-V model shown in Fig. 9. However, they are
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Fig. 2. Measurement of 400MHz and 35 pulses average: (a) transmitted
pulse (b) received echoes

different in the arrival of cluster, subsequent rays and
envelope decay.

3) In outdoor environment, the largest scattering, i.e., the
highest magnitude does not always appear at the first
path. This phenomenon is clearly illustrated in Fig. 5
and 8.

4) Channels are frequency dependent. It has been observed
that the intervening materials, such as foliage and soil,
have dielectric properties that are strongly frequency
dependent. This in part explains the difference among
those channels. We will further analyze the detail in the
following section.

III. OUTDOOR CHANNEL MODELING

A. Temporal Characterization

In the S-V model, the arrival of clusters is modelled as
a Poisson arrival process with a rate Λ, while within each
cluster, subsequent multipath contributions or rays also arrive
according to a Poisson process with a rate λ (see Fig. 10).
Observe Fig. 5∼8, like in S-V model, multipath contributions
arrive at the receiver grouped into clusters and therefore
similar methodology used in S-V model studies may be also
applied to 200MHz, 400MHz, 600MHz and UWB CIR.

We define:
• Tl = the arrival time of the first path of the l-th cluster;
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Fig. 3. Measurement of 600MHz and 35 pulses average: (a) transmitted
pulse (b) received echoes

• τk,l = the delay of the k-th path within the l-th cluster
relative to the first path arrival time Tl;

• Λ = the cluster arrival rate;
• λ = the ray arrival rate, i.e., the arrival rate of the paths

within each cluster.
By definition, we have τ0l = Tl. The distributions of the
cluster arrival time and the ray arrival time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0
p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (2)

Specifically, we also observed that the Λ and λ are quite
different for 200MHz, 400MHz, 600MHz and UWB CIR. We
listed observed parameters in Table I. As for indoor UWB
data, we refer [14]. The higher Λ and λ of UWB implies its
exceptional range resolution. Lower Λ and λ of outdoor UWB
than those of indoor means outdoor environment typically
more sparse multiple scattering than that of indoor.

B. Statistical Distribution of Channel Amplitude

In the S-V model, the average Power Decay Profile (PDP)
is characterized by an exponential decay of the clusters and a
different exponential decay for the pulses within each cluster.
In other words, the amplitude follows rayleigh distribution.
In the IEEE UWB indoor channel model [13], the clutter
approach was adopted (same as S-V model), but a log-normal
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Fig. 4. Measurement of UWB and 35 pulses average: (a)transmitted pulse
(b) received echoes

TABLE I
TEMPORAL PARAMETERS FOR CHANNEL MODELS

Scenario Λ(1/ns) λ(1/ns)
200MHz 0.012 0.4
400MHz 0.004 0.128
600MHz 0.002 0.06

Outdoor UWB 0.04 0.8
Indoor UWB Extreme NLOS 0.0667 2.1

distribution was suggested for characterizing the multipath
gain amplitude, and an additional log-normal variable was in-
troduced for representing the fluctuations of the total multipath
gain. In this Section we propose that log-logistic model may
better characterize amplitude of the multipath for both outdoor
NLOS narrowband and UWB signals in foliage.

1) Statistic Models: In spite of intensive application in
precipitation and stream-flow data, so far Log-logistic distrib-
ution (LLD) [15] statistical model has never been applied to
foliage channel model to the best our knowledge. This model
is intended to be employed on a basis of higher kurtosis and
longer tails, as well as its shape similarity to log-normal and
Weibull distributions.

The PDF for this distribution is given by

f(x) =
e

lnx−µ
σ

σx(1 + e
lnx−µ

σ )2
, x > 0, σ > 0 (3)
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Fig. 6. 400MHz Channel

where µ is scale parameter and σ is shape parameter. The
mean of the the LLD is

E{x} = eµΓ(1 + σ)Γ(1− σ) (4)

where Γ(·) is Gamma function. The variance is given by

V ar{x} = e2µ{Γ(1 + 2σ)Γ(1− 2σ)− [Γ(1 + σ)Γ(1− σ)]2}
(5)

while the moment of order k is

E{xk} = σeµB(kσ, 1− kσ), k <
1
σ

(6)

where

B(m,n) =
∫ 1

0

xm−1(1− x)n−1dx (7)

Similarly, the log-normal distribution [16] is a two-
parameter distribution with parameters µ and σ. The PDF for
this distribution is given by

f(x) =
1

xσ
√

2π
e−

(lnx−µ)2

2σ2 , x > 0, σ > 0 (8)

where µ is the scale parameter and σ is the shape parameter.
The Weibull distribution can be made to fit measurements

that lie between the Rayleigh and log-normal distribution [17].
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The Weibull distribution is also a two-parameter distribution
with parameters a and b. The PDF for this distribution is given
by

f(x) = ba−bxb−1e−(x/a)b

, x > 0, a > 0, b > 0 (9)

where b is the shape parameter and a is the scale parameter.
The Rayleigh distribution, whose real and imaginary com-

ponents are Gaussian, has the PDF as follows:

f(x) =
x

b2
e−

x2

2b2 , b > 0 (10)

Path Magnitude

TimeCluster 0

3rd path in
1st cluster

Fig. 9. An illustration of the channel impulse in S-V model.
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Fig. 10. An illustration of the double exponential decay of the mean cluster
power and the ray power within clusters in S-V model.

2) Goodness-of-fit in curve and RMSE: On a basis of
CIR cluster amplitude from 12 different positions, we apply
Maximum Likelihood Estimation (MLE) approach to estimate
the parameters. We obtain µ̂ and σ̂ for log-logistic, µ̂ and σ̂ for
log-normal, â and b̂ for weibull and b̂ for Rayleigh respectively,
which are shown in table II. Note that due to the very small
amount of channel sample of 600MHz, its analysis have to be
ignored. We also explore the standard deviation (STD) error of
each parameter. These descriptions are also shown in table II
in the form of εx, where x denotes different parameter for each
model. It is obvious that log-logistic model provides smaller
STD errors than those of log-normal.

TABLE II
ESTIMATED PARAMETERS FOR STATISTIC MODEL

PDF Log-Logistic Log-normal

200MHz

µ̂ = −3.79907
σ̂ = 0.43948

εµ = 0.0517626
εσ = 0.0250518

µ̂ = −3.69473
σ̂ = 0.811659

εµ = 0.0550099
εσ = 0.0390963

400MHz

µ̂ = −3.75666
σ̂ = 0.482505
εµ = 0.071783
εσ = 0.035901

µ̂ = −3.61265
σ̂ = 0.917049

εµ = 0.0795182
εσ = 0.0565477

Outdoor UWB

µ̂ = −3.30616
σ̂ = 0.590192
εµ = 0.202988
εσ = 0.101636

µ̂ = −3.13344
σ̂ = 1.12623

εµ = 0.225245
εσ = 0.164277

PDF Weibull Rayleigh

200MHz

â = 0.0388139

b̂ = 1.00543
εa = 0.0027934
εb = 0.00456447

b̂=0.0474046

400MHz

â = 0.0447926

b̂ = 0.903163
εa = 0.00458706
εb = 0.0536079

b̂=0.0609159

Outdoor UWB

â = 0.080002

b̂ = 0.765597
εa = 0.0222858
εb = 0.106023

b̂=0.141188

We may also observe that to what extend does the PDF
curve of the statistic model match that of CIR cluster ampli-
tude by root mean square error (RMSE). Let i (i=1, 2, · · · , n)
be the sample index of CIR amplitude, ci is the corresponding
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Fig. 11. Goodness-of-fit (a)200MHz (b)400MHz (c)UWB

PDF value whereas ĉi is the PDF value of the statistical
model with estimated parameters by means of MSE. RMSE
is obtained through

RMSE =

√√√√ 1
n

n∑

i=1

(ci − ĉi)2 (11)

where n is the amount of sample index. The RMSE for
200MHz, 400Hz and UWB have been listed in Table III. It
demonstrates that LLD turns out to be the model that fits the
channel data best.

One may also draw the above conclusion from the Fig. 11,
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TABLE III
ROOT MEAN SQUARE ERROR (RMSE) COMPARISON BETWEEN STATISTIC

MODELS

PDF Log-Logistic Log-normal Weibull Rayleigh
200MHz 5.7016 6.2850 8.8810 9.7562
400MHz 5.9023 6.5635 9.7056 10.3359

UWB 2.1867 2.4756 3.0136 4.8975

which describes the the goodness-of-fit in curve. The absolute
amplitude of clusters have been plotted in terms of histogram.
It can be easily seen that Rayleigh model provides the worst
goodness-of-fit compared to LLD, log-normal and Weibull, so
that exponential PDP of the clusters adopted in S-V model can
not be applied in outdoor NLOS environment. Also, Weibull
is not a good choice due to the inaccurate kurtosis and high
tails. Compare LLD with log-normal, it is obvious that LLD
is able to provide shaper kurtosis, shaper slope, and lower tail.
In other word, LLD provides better goodness-of-fit than that
of log-normal.

Since the above investigations have shown that LLD can
better characterize the multipath gain amplitude for outdoor
NLOS narrowband and UWB channels in foliage other than
log-normal, we may suggest an additional LLD variable to
represent the fluctuations of the total multipath gain. Moreover,
similar to the IEEE UWB model, the phase of each path in
outdoor NLOS environment may assumed to be either 0 or π
with equal probability.

IV. CONCLUSION

In our investigation, we accomplished following conclu-
sions: 1) Outdoor NLOS channels are frequency dependent
as intervening materials have dielectric properties that are
strongly frequency dependent. 2) Both narrowband and UWB
channels are made up of multipath and time-varying compo-
nents. 3) In outdoor NLOS environment, the largest scattering,
i.e., the highest magnitude does not always appear at the first
path. 4) The outdoor UWB channels we obtained are similar
in their basic features as indoor models. However, they are
different in the arrival of cluster and subsequent rays as well
as envelope decay. 5) The amplitude of channel coefficient at
each path can be more accurately characterized as log-logistic
distribution (LLD) other than log-normal, Weibull or Rayleigh
due to the best goodness-of-fit and smallest root-mean-square-
error (RMSE).
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Abstract— In this paper, we propose a Time Difference
of Arrival (TDoA) algorithm for passive geolocation based
on delay estimation of two correlated wireless channels. It’s
assumed that the passive receiver is carried by a small flying
UAV in the sky, and the transmitter is located on the ground
(static or mobile), so Rician flat fading model should be used.
To estimate the delay of two correlated channels, Block Phase
Estimation (BPE) is used for each wireless channel estimation,
and then the two estimated channels are compared to get
the best time delay. We also compare it against a cross-
correlation-based TDoA algorithm. Simulation results show
that our TDoA algorithm performs much better than the
cross-correlation-based TDoA algorithm with a lower level
of magnitude in terms of average TDoA error and Root-
Mean-Square-Error (RMSE). Four different Rician fading
channel groups are evaluated, and conclusions are drawn for
our TDoA algorithm and the cross-correlation-based TDoA
algorithm.

Index Terms : Passive geolocation, Time Difference of Arrival
(TDoA), block phase estimation, Rician fading.

I. INTRODUCTION

Determining the location of an emitting target is one
of the fundamental functions of communication Electronic
Warfare (EW) systems [8]. The U.S. military has a urgent
need to pinpoint an enemy based purely on the reception of
radio signals, without the need for using radar. In contrast,
locating an enemy actively with radar is to be avoided,
since it draws unwanted attention to the platform operating
the radar. The measurement of an emitter’s position using
electronic support (ES) sensors is termed passive geoloca-
tion, and plays an important part both in electronic support
and electronic attack. Existing systems and technology for
the precision geolocation of non-cooperative RF emitters
are costly and time consuming to develop and deploy, and
lack the flexibility to make cost-effective enhancements
once deployed. Additionally, existing systems also rely on
Global Positioning System (GPS), which is susceptible to
jamming. Several techniques of passive geolocation were
presented in [8], which includes triangulation, Time of
Arrival (ToA), Time Difference of Arrival (TDoA), Angle

of Arrival (AoA), etc. In this paper, we are interested
in studying passive geolocation from wireless commu-
nication point of view and propose a TDoA algorithm
for passive geolocation based on wireless channels delay
estimation. Some related works in this direction have
already been reported. In [6], a TDoA location scheme for
the orthogonal frequency division multiplexing (OFDM)
based wireless metropolitan area networks (WMANs) was
presented. The TDoA algorithm enhances the location
performance by utilizing the information in the time and
frequency domains obtained from the received location
OFDM signals. In [1], a TDoA estimation is carried out
for narrowband multipath system using a correlation tech-
nique and a super-resolution method - root multiple signal
classification (MUSIC). In [2], ultra-wideband (UWB)
radio for positioning techniques were overviewed, which
include the angle of arrival (AOA), the signal strength
(SS), or time delay information, etc. In order to achieve
timing error reduction in TDoA, a high-resolution first
arriving path detector from propagation channel estimates
is derived based on the minimum variance (MV) estimates
and normalized minimum variance (NMV) of the power
delay profile in [11]. In [7], a received signal phase-based
TDoA approach was proposed in [7]. The least squares
range difference location problem has been investigated by
Schmidt [10] and others. Schmidt showed that the TDoA
averaging process produced the geolocation that was the
closest feasible one in a lest squared sense based on the
measured ranging differences.

In this paper, we propose a TDoA algorithm via wireless
channel estimation. The rest of this paper is organized as
follows. In Section II, we propose a blind channel phase
estimation approach named Block Phase Estimation (BPE)
without knowing the unique words. In Section III, we
propose our TDoA algorithm based on the estimated phase
differences of the two wireless channels. In Section IV, we
present our simulation results on our TDoA algorithm and
compare it against an existing TDoA approach. Section V
concludes this paper.
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II. BLOCK PHASE ESTIMATION FOR WIRELESS

CHANNEL

In passive geolocation applications, the passive receiver
is carried by a small flying UAV in the sky, and the
transmitter is located on the ground (static or mobile). Two
parallel antennas with distance d are equipped under the
UAV. When d < 0.38λ [3], where λ is the wavelength of
the RF signal, the two wireless channels are correlated,
and one is the delayed version of the other. There exists a
Line of Sight (LoS) between transmitter and receiver, and
Rician flat fading model should be used.

The general structure of the phase estimator is illustrated
in Fig. 1. We are supposed to estimate the phase at the
midpoint of the estimation period which is denoted as TE ,
it encompassNE m-ary symbols, and we let NE = 2N+1,
where N is the number of samples before and after the
sample whose phase is to be estimated. In this context and
in the presence of additive white Gaussian noise(AWGN)
and zero frequency uncertainty, Fig. 1 with the dotted
box eliminated (so that x

′
n = xn, y

′
n = yn)represents

the optimal (maximum likelihood) estimator for m = 1,
Δf = 0 which corresponds to an unmodulated carrier. For
m-PSK modulated waveform, the phase of each succes-
sive symbol should take a different value. Obviously, the
above estimator is useless. To solve it, a two-dimentional
(complex) nonlinear function is inserted in the dotted box

x′n + iy′n = F (ρn)eimφn (1)

where ρn =
√
x2

n + y2
n and φn = tan−1(yn/xn). This is

a rectangular-to-polar transformation. Multiply phase φn

by m and perform an arbitrary nonlinear transformation
on ρn; and finally perform a polar-to-rectangular transfor-
mation on the result. Obviously by using the preceding and
succeeding N symbols to estimate each symbol phase, all
but the first and last N symbol estimates can be made
unbiased by overlapping estimation periods. For F (ρ) =
ρk, k even,

E(
ρ2k

σ2k
cos2ε′) = γk

m+k∑
n=0

n!(
m+k
n )(

m−k+n+1
n )(

−2
γ

)n

+(−1)m+k+12ke−γ/2(
2
γ

)k+1

·
m−k−1∑

n=0

(
m+k+n
n )

(m+ k)!
(m− k − n− 1)!

(
2
γ

)n,

k ≤ m− 2, (2)

E

(
ρ2k

σ2k

)
=

k∑
n=0

(
k
n

)2

γk−n2nn!, k = m, (3)

where σ2 is the variance of the real and the imaginary
part of each sample. From the above equation, it is shown
in [12], for QPSK (m = 4), by choosing F (ρ) = 0, ρ2,
and ρ4, the estimator can performs nearly as well as the

linear estimator for unmudulated carries with moderate
degradation.
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Fig. 1. Block phase estimator for m-PSK carriers

To implement the nonlinear transformation, we need to
first multiply the phase by m, along with the final operation
of dividing the tan−1 function by m, thus gives rise to an
m-fold ambiguity in the phase estimate. Liang and Wang
applied Unique Words (UW) to remove the ambiguity
in wireless channel estimation [5], however the receive
antennas don’t know any UW in the passive geolocation
application. Fortunately, we only need the phase differ-
ences of the two correlated wireless channels, so ambiguity
is not a problem in our applicaation, and it’s automatically
canceled by each other of the two wireless channels. After
the nonlinear transformation, for each block, we got

θ̂(m) =
1
m
tan−1(

y

x
), (4)

without considering the phase ambiguity, where x =
1

2N+1

∑N
n=−N x

′
n and y = 1

2N+1

∑N
n=−N y

′
n. Using the

preceding and succeeding N symbols to estimate each
symbol phase individually, so that make the estimation un-
biased. That is, approximately (2N+1) as many operations
as performing a single estimate are required for all the
(2N + 1) symbols in the interval [12]. In our scheme, we
set up a parameter s denoted as step. For each s symbols,
we only do the estimation once, and get the phase of the
other s− 1 symbols by interpolation. Thus, we only need
(2N+1)/s operations. It is shown in the simulation result
that there is hardly any degradation in terms of the BER.

III. TDOA FINDING ALGORITHM AND COMPARISON

WITH EXISTING APPROACH

Based on the BPE algorithm in Section II, we could be
able to obtain two channels g1(t) and g2(t). Since the two
channels are highly correlated, and ideally one is the delay
of the other. We construct a cost function,

J(ζ) =
1
T

∫ T

0

[g1(t− ζ) − g2(t)]2dt (5)

where T is the burst length, and the ζ value that can
minimize the cost function is the TDoA value, i.e.,

ζ̂ = inf
ζ∈[0,T ]

J(ζ) (6)

= arg inf
ζ∈[0,T ]

1
T

∫ T

0

[g1(t− ζ) − g2(t)]2dt (7)

2
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For discrete case, our TDoA finding algorithm can be
represented as

ζ̂ = arg min
ζ∈{1,2,··· ,L}

1
L

L∑
n=0

[g1(n− ζ) − g2(n)]2 (8)

where L is the total number of symbols of a burst.
Our approach is a channel estimation-based TDoA

approach based on the received signals. In the existing
approach, a cross-correlation of the received signals based
TDoA approach was proposed in [8]. We summarize this
approach and will compare with our TDoA algorithm. The
received signals from two parallell antennas j and k are

rj(t) = s(t) + nj(t) (9)

rk(t) = As(t− τjk) + nk(t) (10)

where A is an attentuation factor and τjk is the relative
time delay between the antennas. The cross correlation of
these two received signals is given by

Cjk(τ) = E{rj(k)rk(t− τ)} (11)

= AE [s(t)s(t− τ − τjk)] (12)

= ACss(τ − τjk) (13)

where Css(τ) is the autocorrelation function of s(t).
|Cjk(τ)| ≤ 1 and its maximum value is 1 when tau = τjk ,
so the delay τjk could be estimated based on the cross-
correlation of the received signals.

IV. SIMULATIONS

We evaluated our TDoA algorithm for different time
delays betwen the two wireless channels, and compared
it against the cross-correlation-based approach. The burst
length is 936 symbols and transmitting 1 burst needs 10ms,
so the symbol rate is 93,600 symbols/s. We totally ran two
sets of simulations with 100 symbols delay (i.e., 1.07ms)
for the two algorithms. We studied four groups of Rician
fading channels and each group has two channels (one
is the delayed version of the other): the first group with
Rician factor K = 12dB, doppler shift fd = 200Hz; the
second group of channels K = 12dB, dd = 500Hz; the
third group of channels K = 9dB, fd = 200Hz; and the
fourth group of channels K = 9dB, fd = 500Hz.

For channel simulation, we chose N = 60 (number
of scatters), and ran our simulations for different SNR
values. At each SNR values, we ran the Monte-Carlo
simulations for MC = 50, 000 bursts, and obtained the
average TDoA estimation errors for the two TDoA al-
gorithms which are plotted in Fig. 2(a)(b) for the 100-
symbol delay. Observe these figures, the average TDoA
errors are not zero, which means both TDoA algorithms
are not unbiased, so Cramer-Rao bound can’t be used for
the TDoA error variance analysis.
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Fig. 2. The average TDoA error versus SNR for four different Rician
fading channels with 1.07ms (100-symbol) time delay. (a) Our TDoA
Algorithm, (b) Cross-correlation-based TDoA algorithm [8].

We evaluated the estimation variance via the Monte-
Carlo simulations based on MC = 50, 000 bursts. We
used the root-mean-square-error (RMSE) of the TDoA
estimation, which is defined as

RMSE =

√√√√ 1
MC

MC∑
i=1

(ζ̂i − ζi)2 (14)

where i is the index of bursts in Monte-Carlo simulations.
The RMSE for the two TDoA algorithms were plotted in
Fig. 3(a)(b) for the 100-symbol delay.

Observe these figures for average TDoA error and
RMSE (Figs. 2 and 3),

1) Our TDoA algorithm performs much better than the
cross-correlation-based TDoA algorithm with differ-
ent magnitude level. In terms of average TDoA error
as well as RMSE, our TDoA algorithm performs
more than 10 times lower than the cross-correlation-
based TDoA algorithm. Why the cross-correlation-
based TDoA algorithm couldn’t perform well? It’s
because it ignores the channel fading phase dis-

3
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Fig. 3. The TDoA RMSE versus SNR for four different Rician
fading channels with 1.07ms (100-symbol) time delay. (a) Our TDoA
Algorithm, (b) Cross-correlation-based TDoA algorithm [8].

tortion, but channel fading happens in all mobile
communications.

2) Our TDoA algorithm performs very well with very
low average TDoA error, for example, the average
TDoA error is 0.57 symbol time, and RMSE is 16.7
symbol time for channel K = 12dB, fd = 200Hz,
at SNR = 10dB when the delay is 100-symbol
time.

3) The TDoA algorithm performance is related to chan-
nel fading condition. According to our simulations,
our TDoA algorithm performs in the following order
(from the best to the worst):

• K = 12dB, fd = 200Hz;
• K = 9dB, fd = 200Hz;
• K = 12dB, dd = 500Hz;
• K = 9dB, fd = 500Hz.

It’s very clear that larger Doppler shift fd and lower
fading factor K cause TDoA performance degra-
dation. But surprisingly, the cross-correlation-based
TDoA algorithm doesn’t perform in a consistent
order for the four channels because channel fading

was not considered in this algorithm.
4) The TDoA performance is sensitive to the time delay.

The performance is better for larger time delay case
than for smaller time delay. It’s because for larger
time delay, the time delay finding algorithm will
easily locate the delay with less error.

V. CONCLUSIONS

We have proposed a Time Difference of Arrival (TDoA)
algorithm for passive geolocation based on delay esti-
mation of two correlated wireless channels. It’s assumed
that the passive receiver is carried by a small flying
UAV in the sky, and the transmitter is located on the
ground (static or mobile), so Rician flat fading model
should be used. To estimate the delay of two correlated
channels, Block Phase Estimation (BPE) was used for each
wireless channel estimation, and then the two estimated
channels are compared to get the best time delay. We also
compared our TDoA algorithm against a cross-correlation-
based TDoA algorithm. Simulation results showed that
our TDoA algorithm performs much better than the cross-
correlation-based TDoA algorithm with a lower level of
maganitude in terms of average TDoA error and Root-
Mean-Square-Error (RMSE).
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Abstract— Motivated by recent advances on Compressive
Sensing (CS), we study the sparsity of sense-through-foliage
radar signals. Based on CLEAN method, we obtain the impulse
response for sense-through-foliage communication channels for
three different radars, 200MHz, 400MHz, and UWB radars.
Channel impulse responses for the above three different kinds
of channels demonstrate that the sense-through-foliage signals
are very sparse, which means CS is possible to be applied to
sense-through-foliage radar signals to tremendously reduce the
sampling rate. We apply CS and linear programming to sparse
signal compression and recovery, and it turns out that we could
achieve compression ratio of 32:1 with perfect recovery for the
UWB radar signals.
Index Terms : Compressive sensing, radars, sense-through-
foliage, UWB, sparsity.

I. INTRODUCTION

Compressive sensing (CS) is a new method to capture and
represent compressible signals at a rate significantly below
the Nyquist rate. It employs nonadaptive linear projections
that preserve the structure of the signal; the signal is then
reconstructed from these projections using an optimization
process. This leads immediately to new signal reconstruction
methods that are successful with surprisingly few measure-
ments, which in turn leads to signal acquisition methods
that effect compression as part of the measurement process
(hence “compressive sensing”). These recent realizations
(though built upon prior work exploiting signal sparsity)
have spawned an explosion of research yielding exciting
results in a wide range of topics, encompassing algorithms,
theory, and applications.

In CS for radar signals, very few works have been
reported. In [1], it shows that matched filter could be
eliminated if CS is used for radar. In [2], SAR radar image
was processed using wavelets basis. In [11], a stylized
compressed sensing radar is proposed in which the time-
frequency plane is discretized into an N×N grid. In [13], a
joint basis selection and sparse parameter estimation (called
fast Bayesian mathcing pursuit) algorithm was proposed. In
[15], a heuristic, graph-structured, sparse signal represen-
tation algorithm for overcomplete dictionaries that can be
decomposed into subdictionaries was proposed and applied
to SAR imaging. In [3][4], passive radar using OFDM was
applied to target signature detection.

The rest of this paper is organized as follows. In Section II,
we give an overview of compressive sensing. In Section III,
we study the sparsity of narrowband and UWB radar signals.
In Section IV, we present our results on compressive sensing
for UWB radar signals. Section V concludes this paper.

II. COMPRESSIVE SENSING: AN OVERVIEW

CS provides a framework for integrated sensing and
compression of discrete-time signals that are sparse or
compressible in a known basis or frame. Let z denote a
signal of interest, and Ψ denote a sparsifying basis (or called
transform domain), such that z = Ψθ, with θ ∈ RN being
a K-sparse vector, i.e. ‖θ‖0 = K . Traditional transform
coding compression techniques acquire first z in its entirety,
and then calculate its sparse representation θ in order to
encode its nonzero values and their locations, but CS aims
to preclude the full signal acquisition by measuring a set y
of linear projections of z into vectors φi, 1 ≤ i ≤ M . By
stacking these vectors as rows of a matrix Φ (measurement
matrix), we can represent the measurements as y = Φz =
ΦΨθ. The main result in CS states that when the matrix ΦΨ
holds the restricted isometry property (RIP) [7][10], then the
original sparse representation θ is the unique solution to the
linear program

θ̂ = arg min
θ∈RN

‖θ‖�1
(1)

s.t. y = ΦΨθ, (2)

known as Basis Pursuit, where �1–norm is defined as
(‖θ‖�1

≡ ∑
i |θi|). Thus, the original signal z can be re-

covered from the measurement vector y in polynomial time.
Furthermore, choosing Φ to be a matrix with independent
gaussian-distribtued entries satisfies the RIP for ΦΨ when
Ψ is a basis or tight frame and M = O(K log(N/K)).

III. SPARSITY OF NARROWBAND AND UWB RADAR

SIGNALS

Recently, we studied different radar sensor signals (with
narrowband 200MHz, 400MHz, and UWB) in a foliage en-
vironment and observed that it is very sparse, which satisfies
the requirement for compressive sensing. Our work is based
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on the data collected by AFRL in radar-based sense-through-
foliage experiment in late summer and fall. Late summer
foliage, because of the limited rainfall, involved foliage with
decreased water content. Late fall and winter measurements
involved largely defoliated but dense forest, providing a rich
scattering environment. Because of wind or different temper-
atures in dense forest, it’s also a time-varying environment.
The sense-through-foliage experiment was constructed on
a seven-ton man lift (as shown in Fig. 1a), which had a
total lifting capacity of 450 kg. The limit of the lifting
capacity was reached during the experiment as essentially
the entire measuring apparatus was placed on the lift. The
principle pieces of equipment secured on the lift are: Barth
pulser, Tektronix model 7704 B oscilloscope, dual antenna
mounting stand, two antennas, rack system, IBM laptop, HP
signal Generator, Custom RF switch and power supply and
Weather shield (small hut). The target is a trihedral reflector
(as shown in Fig. 1b). Throughout this work, a Barth pulse
source (Barth Electronics, Inc. model 732 GL) was used.
The pulse generator uses a coaxial reed switch to discharge
a charge line for a very fast rise time pulse outputs. The
model 732 pulse generator provides pulses of less than 50
picoseconds (ps) rise time, with amplitude from 150 V to
greater than 2 KV into any load impedance through a 50
ohm coaxial line. The generator is capable of producing
pulses with a minimum width of 750 ps and a maximum
of 1 microsecond. This output pulse width is determined by
charge line length for rectangular pulses, or by capacitors
for 1/e decay pulses. For the data we used, each sample is
spaced at 50 picosecond interval, and 16,000 samples were
collected for each collection for a total time duration of 0.8
microseconds at a rate of approximately 20 Hz. The Barth
pulse source was operated at low amplitude and 35 pulses
reflected signal were averaged for each collection.

We applied the CLEAN algorithm to obtain the channel
model based on the transmitted pulses and received echos.
The CLEAN algorithm was first introduced in [12] and
has been applied to UWB measurements [8][14] and it
assumes that the channel is a series of impulses which is
consistent with the tapped-delay line channel model. This
algorithm searches the received echos iteratively with the
transmit pulse to find the maximum correlation [6]. Based on
the CLEAN method, we successfully obtained the channel
impulse responses based on transmit pulses and receive
echoes. For illustration purposes, in Figs. 2, 3, and 4, we
plot the channel impulse responses for 200MHz, 400MHz,
and UWB channels using CLEAN method based on one
experiment for each case.

Observe Figs. 2c, 3c, and 4c, the channel impulse response
θ = [θ1, θ2, · · · , θn] has very few nonzero taps out of
32,000 sample index). Let ψ(i) denote the transmit pulse,
The received echo could be represented as (if no noise)

z(i) = θ ∗ ψ(i) =
n∑

j=1

θjψ(i− j) = Ψθ (3)

 

(a)

 

(b)

Fig. 1. (a) The lift in the experiment. The antennas are at the far end of the
lift from the viewer under the roof that was built to shield the equipment
from the elements. (b) The target (a trihedral reflector) is shown on the
stand at 300 feet from the lift.

where ∗ stands for convolution, and Ψ = [ψ1, ψ2, · · · , ψn]
are transform domain functions (different time-shifts of
transmit pulse). Since most θj’s are zeroes under the trans-
form basis Ψ, so the narrowband and UWB radar signals
z(i) are very sparse, which validates that CS could be used
to reduce the number of samples to collect. We have some
preliminary results on CS for UWB radar signals.

IV. COMPRESSIVE SENSING AND RECOVERY

We chose an iid Gaussian random matrix as sensing
matrix Φ. ΦΨ is also iid Gaussian for various orthonor-
mal bases Ψ such as spikes, sinusoids, wavelets, Gabor
functions, curvelets, and so on [10], so we chose ψ j(i) =
n−1/2 cos(2πji/n), i = 0, 1, · · · , n−1. ΦΨ is shown to have
satisfied RIP with high probability, if M ≥ cK log (N/K),
where c is a small constant and hence stable reconstruction
is possible with high probability [10]. Note that it is not
known in advance which coefficients of θ are zeroes, or
which samples of z are not needed.

We apply a linear programming algorithm [5] to (2).
We introduce new variables θ+, θ−, constrained to be
nonnegative, and let θi = θ+i + θ−i [5].(Our intention is
to have θi = θ+i or θi = −θ−i , depending on whether θi is
positive or negative.) We then replace the occurrence of |θ i|
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Fig. 2. Narrowband radar (200MHz) transmitted pulse, received echo,
and channel impulse response in one experiment. (a) Transmitted pulse. (b)
Received echo. (c) Channel impulse responses using CLEAN method.

with θ+
i + θ−i and obtain the alternative formulation

min
N∑

i=1

(θ+i + θ−i ) (4)

subject to ΦΨθ+
i − ΦΨθ−i = y (5)

θ+, θ− ≥ 0, (6)

where θ+ = (θ+1 , θ
+
2 , · · · , θ+n ) and θ− = (θ−1 , θ

−
2 , · · · , θ−n ).

The relations θi = θ+i + θ−i , θ+ ≥ 0 , θ− ≥ 0, are not
enough to guarantee that |θi| = θ+i + θ−i , and the validity
of this reformulation may not be entirely obvious. At an
optimal solution to the reformulated problem, and for each
i, we must have either θ+

i = 0 or θ−i = 0, because otherwise
we could reduce both θ+

i and θ−i by the same amount and
preserve feasibility, while reducing the cost, in contradiction
of optimality. Having guaranteed that either θ+

i = 0 or θ−i =
0, the desired relation |θi| = θ+i + θ−i now follows.
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Fig. 3. Narrowband radar (400MHz) transmitted pulse, received echo,
and channel impulse response in one experiment.(a) Transmitted pulse. (b)
Received echo. (c) Channel impulse responses using CLEAN method.

Let A be the m by 2n matrix [ΦΨ,−ΦΨ]. (5) can be
written as:

Ax = y, z ≥ 0. (7)

where x
�
= [θ+i , θ

−
i ]T It has a solution x∗, says, a vector in

R2n which can be partitioned as x∗ = [u∗ v∗]; then θ∗ =
u∗−v∗ solves (2). The reconstruction is very straightforward,
i.e., z∗ = Ψθ∗

We ran simulations based on the above algorithm and
it turned out we could use only 500 samples to recover
the original 16,000 samples, so the compression ratio is
32:1. For illustration purpose, in Fig. 5(a), we plot 16,000
samples sense-through-foliage signals in one collection of
sense-through-foliage UWB radar sensors. In Fig. 5(b), we
plot the original sparse signals θ (received echo z projected
to cosine basis functions ψj(i)) of the and recovered sparse
signals (obtained via (2)). Observe that the original signals
could be perfectly recovered.
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Fig. 4. UWB radar transmitted pulse, received echo, and channel impulse
response in one experiment. (a) Transmitted pulse. (b) Received echo. (c)
UWB channel impulse responses using CLEAN method.

V. CONCLUSIONS

Motivated by recent advances on Compressive Sensing
(CS), we studied the sparsity of sense-through-foliage radar
sensors. Based on CLEAN method, we obtained the impuse
response for sense-through-foliage communication channels
for three different radars, 200MHz, 400MHz, and UWB
radars. Channel impulse responses for the above three
different kinds of channels demonstrated that the sense-
through-foliage signals are very sparse, which means CS is
possible to be applied to sense-through-foliage radar signals
to tremendously reduce the sampling rate. We applied linear
programming to sparse signal recovery, and it turned out
that we could achieve compression ratio of 32:1 with perfect
recovery for the UWB radar signals.
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Abstract— Inspired by recent advances in MIMO radar, we introduce
orthogonal pulse compression codes to MIMO radar system in order to
gain better target direction finding performance. We propose the concept
and the design methodology for the optimized ternary pulse compression
codes called the optimized punctured Zero Correlation Zone sequence-
Pair Set (ZCZPS). According to codes property analysis, our proposed
codes are able to provide the optimized autocorrelation and cross
correlation properties during ZCZ. We also present a generalized MIMO
radar system model using our proposed codes as pulse compression codes
and simulate the target direction finding performance of the fluctuating
and nonfluctuating system. The simulation results show that the more
antennas used, the better target direction finding performance could be
provided.

I. INTRODUCTION

There has been considerable interest in MIMO radars which
employ multiple antennas both at the transmitter and at the receiver.
The present important research of MIMO radar includes all kinds
of techniques. Direction finding [1] is such a technology that a
well known waveform is transmitted by an omnidirectional antenna,
and a target reflects some of the transmitted energy toward an
array of sensors that is used to estimate some unknown parameters,
e.g. bearing, range, or speed. Also, beamforming [2] is another
important process generally used in direction finding process that
an array of receivers can steer a beam toward any direction in space.
The advantages of using an array of closely spaced sensors at the
receiver are the lack of any mechanical elements in the system, the
ability to use advanced signal processing techniques for improving
performance, and the ability to steer multiple beams at once.

However, MIMO radars, unlike phased array radars, could transmit
different waveforms on the different antennas of the transmitter,
which makes it necessary to do the waveform design for the system.
In this paper, we design a set of orthogonal ternary codes which
are used as pulse compression codes for the MIMO radar system.
To the best of our knowledge, it is the first time to introduce
pulse compression codes to MIMO radar system. Pulse compression,
known as a technique to raise the signal to maximum sidelobe (signal-
to-sidelobe) ratio to improve the target detection and range resolution
abilities of the radar system, allows a radar to simultaneously achieve
the energy of a long pulse and the resolution of a short pulse without
the high peak power [3]. Hence, a generalized MIMO radar signal
model using our orthogonal ternary codes as pulse compression codes
could achieve the high resolution and orthogonality of MIMO radar
system simutaneously. In this paper, we focuses on the direction
finding performance of the system regarding the orthogonality of
the codes and we will consider the resolution performance in the
later work. The simulation results show that better direction findsing
performance could be obtained by combining MIMO radar and pulse
compression codes together.

The rest of the paper is organized as follows. Section 2 introduces
the definition and properties of optimized punctured ZCZPS. A
method using optimized punctured sequence-pair and Hadamard ma-
trix to construct ZCZPS is also given. Section 3 presents and analyzes
a generalized MIMO radar system for our proposed codes. In section
4, some simulation results are provided by using specific examples
with different number of uniform linear antennas at the transmitter
and receiver of MIMO radar system. In Section 5, conclusions are
drawn on our newly provided orthogonal pulse compression codes
and MIMO radar system.

II. ORTHOGONAL PULSE COMPRESSION CODES

A set of orthogonal pulse compression codes could be used in the
MIMO radar system to gain the diversity and improve the direction
finding performance. In this section, we will propose and analyze
the concept and design methodology for a new ternary codes which
could be applied to MIMO radar system.

A. Definition and Design for Optimized Punctured ZCZ Sequence-
Pair Set

Matsufuji and Torii have provided some methods of constructing
ZCZ sequences in [4] [5]. In this section, a set of novel ternary
codes, namely the optimized punctured ZCZ sequence-pair set, is
constructed through applying the optimized punctured sequence-
pair [6] to the zero correlation zone. In other words, optimized
punctured ZCZPS is a specific kind of ZCZPS.

Definition 2-1 [6] Sequence u = (u0, u1, ..., uN−1) is the punc-
tured sequence for v = (v0, v1, ..., vN−1),

uj =

{
0, if uj is punctured
vj , if uj is Non-punctured

(1)

Where P is the number of punctured bits in sequence v, suppose
vj ∈ (−1, 1), uj ∈ (−1, 0, 1), u is P -punctured binary sequence,
(u, v) is called a punctured binary sequence-pair.

Definition 2-2 [6] The autocorrelation of punctured sequence-pair
(u, v) is defined

Ruv(τ ) =

N−1∑
i=0

uiv(i+τ)modN , 0 ≤ τ ≤ N − 1 (2)

If the punctured sequence-pair has the following autocorrelation
property:

Ruv(τ ) =

{
E, if τ ≡ 0modN
0, otherwise

(3)

the punctured sequence-pair is called optimized punctured sequence-

pair [6]. Where, E =
∑N−1

i=0
uiv(i+τ)modN = N −P , is the energy

of punctured sequence-pair.
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Definition 2-3 Assume (X, Y) to be sequence-pair set of length N
and the number of sequence-pairs K, where i = 1, 2, 3, ..., N−1, p =
0, 1, 2, ..., K − 1, if all the sequences in the set satisfy the following
equation:

Rx(p)y(q) (τ ) =

N−1∑
i=0

x
(p)
i y

(q)∗
(i+τ)mod(N)

=

N−1∑
i=0

y
(p)
i x

(q)∗
(i+τ)mod(N)

=

{
λN, for τ = 0, p = q
0, for τ = 0, p �= q
0, for 0 < |τ | ≤ Z0

(4)

where 0 < λ ≤ 1, then (x(p), y(p)) is called a ZCZ sequence-
Pair, ZCZP (N, K, Z0) is an abbreviation. (X, Y) is called a ZCZ
sequence-Pair Set, and ZCZPS(N, K, Z0) is an abbreviation.

Definition 2-4 If (X, Y) in Definition 2-3 is constructed by
optimized punctured sequence-pair and a certain matrix, such as
Hadamard matrix or an orthogonal matrix, here

x
(p)
i ∈ (−1, 1), i = 0, 1, 2, ..., N − 1

y
(q)
i ∈ (−1, 0, 1), i = 0, 1, 2, ..., N − 1.

Then (X, Y) can be called optimized punctured ZCZ sequence-pair
set.

Based on odd length optimized punctured binary sequence pairs
and a Hadamard matrix, an optimized punctured ZCZPS can be
constructed on following steps:

Step 1: Considering an optimized punctured binary sequence-pair
(u, v) of odd length N1.

Step 2: A Hadamard matrix B (consisting of several Walsh
sequences) of order N2 is considered. The length of the sequence
of the matrix is also N2.

Step 3: Processing bit-multiplication on the optimized punctured
binary sequence-pair and each row of Hadamard matrix B, then
sequence-pair set (X, Y ) is obtained.

Because of space limit, the steps would be described in detail in
the later version, as well as the proof.

Since the optimized punctured binary sequence-pairs here are of
odd lengths and the lengths of Walsh sequence are 2n, n = 1, 2, ...,
common divisor of N1 and N2 is 1, GCD(N1, N2) = 1. The
sequence-pair set (X, Y) is optimized punctured ZCZPS and N1 − 1
is the zero correlation zone Z0. The length of each sequence in
optimized punctured ZCZPS is N = N1 ∗ N2. The number of
sequence-pairs in optimized punctured ZCZPS rests on the order of
the Hadamard matrix. The sequence x(p) in sequence set X and the
corresponding sequence y(p) in sequence set Y construct a sequence-
pair (x(p), y(p)) that can be used as a pulse compression code.

B. Properties of Optimized Punctured ZCZ Sequence-pair Set

In this section, the optimized punctured ZCZPS (X, Y) is con-
structed by 5-bit length optimized punctured binary sequence-pair
(u, v), u = [+ +−+−], v = [+ +000] (using ′+′ and ′−′ symbols
for ′1′ and ′−1′) and Hadamard matrix H of order 4. We follow the
three steps presented in the previous part to construct an optimized
punctured ZCZPS. The number of sequence-pairs here is 4, and the
length of each sequence is 5 ∗ 4 = 20. Each row of each matrix
X = [x(1); x(2); x(3); x(4)] and Y = [y(1); y(2); y(3); y(4)] constitute a
certain optimized punctured ZCZP (x(p), y(p)). The autocorrelation
property and cross correlation property of 20-bit length optimized
punctured ZCZ sequence pair set (X, Y) are shown in Fig. 1.

From the Fig. 1, the sidelobe of autocorrelation of the codes can
be as low as 0 when the time delay is kept within Z0 = N1 = 5

Fig. 1. Correlation property of optimized punctured ZCZPS
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(zero correlation zone) and the cross correlation value is kept as low
as 0 during the whole time domain.

It is known that a suitable criterion for evaluating pulse compres-
sion code of length N is the ratio of the peak signal divided by the
peak signal sidelobe (PSR). The sidelobe of the new code shown
in Fig. 1 can be as low as 0, so the PSR can be as high as infinite
which could effectively avoid masking mainlobes of the other targets.
In addition, the zero cross correlation properties make those codes
well cooperate in the MIMO radar system without introducing the
interference. Hence, our proposed codes could be used as a set of
orthogonal pulse compression codes in the MIMO radar system.

III. SIGNAL MODEL OF MIMO RADAR

In this section, we describe a signal model for the MIMO radar
system using orthogonal pulse compression codes. Assume a radar
system that utilizes an array with M antennas at the transmitter,
and N antennas at the receiver. For simplicity, we assume that the
arrays at the transmitter and receiver are parallel. A transmitting linear
array made up of M elements equally spaced a distance d apart.
The elements are assumed to be isotropic radiators in that they have
uniform response for signals from all directions. The first antenna
will be taken as the reference with zero phase. The signal radiated
by the transmit antenna impinges at angle θ which is the angle of
arrival (AOA) relative to the transmitting array normal. From simple
geometry, the difference in path length between adjacent elements
for signals transmitting at an angle θ with respect to the normal to
the antenna, is dsinθ. This gives a phase difference between adjacent
elements of φ = 2π(d/λ)sinθ, where λ is wavelength of the received
signal. And the phase difference for m-th transmit antenna is φm =
2π((m−1)d/λ)sinθ [3]. For convenience, we take the amplitude of
the received signal at each element to be unity. A pulse compression
code C(m) =

∑N−1

p=0
C

(m)
p (t − pτc) is applied to m-th transmit

antenna, and the signal vector induced by the m-th transmit antenna
is given by

g(m) = e−jφm [C
(m)
0 , C

(m)
1 , C

(m)
2 , ..., C

(m)
P−1]

T , 1 ≤ m ≤ M (5)

The signal vectors are organized in the M ×P transmit matrix G =
[g(1), g(2), ..., g(M)]T . The transmitted waveforms are listed along
the diagonal of the matrix S = diag(s1, ..., sM ). The transmitted
waveforms could be normalized such that |si|2 = 1/M . The normal-
izing method ensures that transmitted power is not dependent of the
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number of transmitting antennas. Suppose, all antennas transmit the
same waveform, S = sIM , where the subscript M denotes the order
of the unity matrix.

Similar to the transmitter, the model for the array at the receiver
could be developed, resulting in an N × P channel matrix K.
Similarly, the first antenna on the receiving part will be taken as the
reference with zero phase. The signal radiated by the receive antenna
impinges at angle θ0 which is the angle of arrival (AOA) relative to
the receiving array normal. The phase difference for n-th transmit
antenna is ϕn = 2π((n− 1)dr/λ)sinθ0. For phase-modulated pulse
compression waveforms, the corresponding pulse compression codes
C

′(n) =
∑P−1

p=0
C

′(n)
p (t − pτc) have to be applied to each receive

antenna to implement the matched filter. The signal vector arrived at
the n-th receive antenna could be given by

k(n) = e−jϕn [C
′(n)
0 , C

′(n)
1 , C

′(n)
2 , ..., C

′(n)
P−1]

T , 1 ≤ n ≤ N ;

K = [k(1), k(2), ..., k(N)]T (6)

Since we study the pulse compression technique in the MIMO
radar system, the number of matched filters on the receiving side
should be the same as the number of transmitting signals. For the
further research in this paper, we assume the number of transmitting
antennas and that of receiving antennas are the equivalent. Here, N =
M .

Assume there is a far field complex (multiple scatters) target and
it is known that small changes in the aspect angle of complex targets
can cause major changes in the radar cross section (RCS). Here, RCS
for each receiver antenna is assumed to have isotropic reflectivity
modeled by zero-mean, unit-variance per dimension, independent and
identically distributed (i.i.d.) Gaussian complex random variables λi.
The target is then modeled by the diagonal matrix

Σ =
1√
2M




λ0 0 · · · 0

0 λ1

. . .
...

...
. . .

. . . 0
0 ... 0 λM−1


 (7)

where the normalization factor makes the target average RCS=∑M−1

i=0
|λi|2

2M
independent of the number of receiving antennas in the

model. The nonfluctuating target modeled using non-zero constants
for λi is identified as ”Swerling0” or ”Swerling5” model. For
the fluctuating target, if the target RCS is drawn from the Rayleigh
pdf and vary independently from pulse to pulse, the target model
represents a classical ”Swerling2” model.

Processing the transmit matrix, the target matrix and the receive
matrix together, the MIMO radar channel model is given by M ×M
matrix shown in (8).

According to the (8), it is easy to notice that
∑P−1

p=0
C

(m)
p C

′(n)
p

specified by the pulse compression codes exists at each position of the
matrix. If we select orthogonal pulse compression codes for transmit
and receive antennas, it is satisfied that

P−1∑
p=0

C(m)
p C

′(n)
p =

{
Es m = n
0 m �= n

(9)

The H matrix turns to be shown as (10).
As a result, the signal vector received by the MIMO radar is given

by

r = HS + n (11)

Where the additive white Gaussian noise vector n consists of i.i.d,
zero-mean complex normal distributed random variables. In this case
we assume that all antennas transmit the same waveform, S = sIM .

If receiver antenna uses a beamformer to steer towards direction
θ
′
0, ϕ

′
n = 2π((n − 1)dr/λ)sinθ

′
0. The beamformer is modeled by a

diagonal matrix

β(θ′
0) =




ejϕ
′
1 0 · · · 0

0 ejϕ
′
2 · · · 0

...
...

. . .
...

0 ... 0 ejϕ
′
M


 (12)

The output of the beamformer is shown in (13).
Processing the output of y, we obtain the diagonal of the output

matrix y and change it into a M × 1 vector y′. The output of the
beamformer at the receiver antenna is

y′ = [λ0e
j(φ1+ϕ

′
1−ϕ1)Ess, λ1e

j(φ2+ϕ
′
2−ϕ2)Ess, · · · ,

λM−1e
j(φN+ϕ

′
N

−ϕN )Ess]
T + n

′
(14)

where Es >> σ2(n′).
In MIMO radar for direction finding (DF) purpose, the transmit

antennas are sufficiently separated, so the phase shifts at the trans-
mitter are set to zero. It is easy to see that when θ = 0, φm =
2π(d/λ)sinθ = 0 and g(m) = [C

(0)
m , C

(1)
m , C

(2)
m , ..., C

(N−1)
m ]T . If

the beamformer can well estimate the direction θ0 at the receiver
antenna, stating differently, θ

′
0
∼= θ0 and ϕn = ϕ′

n. The result at the
MIMO receiver antennas is

y′′ = [λ0Ess, λ1Ess, . . . , λM−1Ess]
T + n

′
(15)

Here, we apply MSE (mean square error) to the output y′ of
receiver antennas to estimate direction finding error. Similar to RAKE
receiver, we can choose the path which could provide the minimum
phase difference in y′ to find the direction of the target, which
could be called Selective Combining. Considering target detection or
recognition, we could also sum up all the paths in order to achieve the
diversity gain, however, we only focus on the research of direction
finding in this paper.

IV. SIMULATIONS AND ANALYSIS

In this section, we are running MATLAB simulations of the MIMO
radar system using different number of antennas to see the direction
finding performance. The numbers of transmitting and receiving
antennas are both M , the transmit antennas are spaced sufficiently
and the antenna array is used in the receiving part. The target
fluctuating model in which the channel fluctuated according to a
Rayleigh distribution is considered besides the nonfluctuating model.
Estimation MSE is used as the common figure of merit for comparing
the performance.

We choose the path which provides the best performance before
estimate MSE called Selective Combining method. Using nonfluc-
tuating and fluctuating target model, the MIMO radar systems of
different antennas are illustrated in Fig. 2.

From the Fig. 2, it is easy to see that under the situation of
both nonfluctuating and fluctuating modelss the system with more
antennas could always achieve less MSE than the system with less
antennas especially when the SNR value is not large. However,
considering the nonfluctuating model, when the SNR increases the
advantage becomes less distinct. Comparing the Fig.2(a) and 2(b), the
performance of our system for fluctuating modeal is degraded because
of the Rayleigh fading. According to the results, a general conclusion
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H = K[GHΣ] =




k1

k2

...
kM


 [g∗

1g∗
2 . . . g∗

M ]




λ0 0 · · · 0

0 λ1

. . .
...

...
. . .

. . . 0
0 ... 0 λM−1


 (8)

=




λ0e
j(φ1−ϕ1)

∑P−1

p=0
C

(p)
1 C

′(p)
1 λ1e

j(φ2−ϕ1)
∑P−1

p=0
C

(p)
2 C

′(p)
1 . . . λM−1e

j(φM−ϕ1)
∑P−1

p=0
C

(p)
M C

′(p)
1

λ0e
j(φ1−ϕ2)

∑P−1

p=0
C

(p)
1 C

′(p)
2 λ1e

j(φ2−ϕ2)
∑P−1

p=0
C

(p)
2 C

′(p)
2 . . . λM−1e

j(φM−ϕ2)
∑P−1

p=0
C

(p)
M C

′(p)
2

...
...

. . .
...

λ0e
j(φ1−ϕM )

∑P−1

p=0
C

(p)
1 C

′(p)
M λ1e

j(φ2−ϕM )
∑P−1

p=0
C

(p)
2 C

′(p)
M . . . λM−1e

j(φM−ϕM )
∑P−1

p=0
C

(p)
M C

′(p)
M


 .

H =




λ0e0
j(φ1−ϕ1)Es 0 · · · 0

0 λ1e
j(φ2−ϕ2)Es · · · 0

...
...

. . .
...

0 ... 0 λM−1e
j(φM−ϕM )Es


 (10)

y = rβ(θ
′
0) = HSβ(θ

′
0) + n

′
=




λ0e
j(φ1−ϕ1+ϕ′

1)Ess 0 . . . 0

0 λ1e
j(φ2−ϕ2+ϕ′

2)Ess . . . 0
...

...
. . .

...
0 0 . . . λM−1e

j(φM−ϕM +ϕ′
M

)Ess


+ n

′
(13)

Fig. 2. MSE of beamforming at the receiver

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

nonfluctuating−4antennas
nonfluctuating−16antennas
nonfluctuating−32antennas

(a) nonfluctuating model

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−3

10
−2

10
−1

10
0

SNR

M
S

E

fluctuating−4antennas
fluctuating−16antennas
fluctuating−32antennas

(b) fluctuating model

could be drawn that the more antennas MIMO radar system utilized
the better direction finding performance could achieved in the both
models.

V. CONCLUSIONS

In this paper, we introduced the orthogonal pulse compression
codes to the MIMO radar system which has the same number of
transmit and receive antennas to improve the radar direction finding
performance. We provided a set of new optimized triphase pulse
compression codes, gave a specific example and analyzed the codes’
properties. We presented and analyzed a generalized MIMO radar
system model for our provided framework. Simulation results showed
that significant SNR gain could be obtained in MIMO radar system
using orthogonal pulse compression codes. The MIMO radar system
using more antennas outperformes the one having less antennas.
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